Glossary of Z notation

Names

a, b	identifiers
d, e	declarations (e.g., $a: A ; b, \ldots: B \ldots$)
f, g	functions
m, n	numbers
p, q	predicates
s, t	sequences
x, y	expressions
A, B	sets
C, D	bags
Q, R	relations
S, T	schemas
X	schema text (e.g., $d, d \mid p$ or S)

Definitions

$a==x \quad$ Abbreviation definition
$a::=b \mid \ldots$ Free type definition (or $a::=b\langle\langle x\rangle\rangle \mid \ldots$)
[a] Introduction of a given set (or $[a, \ldots]$)
$a_{-} \quad$ Prefix operator
_a Postfix operator
_ $a_{-} \quad$ Infix operator

Logic

true	Logical true constant
false	Logical false constant
$\neg p$	Logical negation
$p \wedge q$	Logical conjunction
$p \vee q$	Logical disjunction
$p \Rightarrow q$	Logical implication $(\neg p \vee q)$
$p \Leftrightarrow q$	Logical equivalence $(p \Rightarrow q \wedge q \Rightarrow p)$
$\forall X \bullet q$	Universal quantification
$\exists X \bullet q$	Existential quantification
$\exists 1 X \bullet q$	Unique existential quantification
let $a==x ; \ldots \bullet p$ Local definition	

Sets and expressions

$x=y \quad$ Equality of expressions
$x \neq y \quad$ Inequality $(\neg(x=y))$
$x \in A \quad$ Set membership
$x \notin A \quad$ Non-membership $(\neg(x \in A))$
$\varnothing \quad$ Empty set
$A \subseteq B \quad$ Set inclusion
$A \subset B \quad$ Strict set inclusion $(A \subseteq B \wedge A \neq B)$
$\{x, y, \ldots\}$ Set of elements
$\{X \bullet x\} \quad$ Set comprehension
$\lambda X \bullet x \quad$ Lambda-expression - function
$\mu X \bullet x \quad$ Mu-expression - unique value

let $a==x ; \ldots \bullet y$ Local definition	
if p then x else y Conditional expression	
(x, y, \ldots)	Ordered tuple
$A \times B \times \ldots$	Cartesian product
$\mathbb{P} A$	Power set (set of subsets)
$\mathbb{P}_{1} A$	Non-empty power set
\mathbb{F}^{A}	Set of finite subsets
$\mathrm{F}_{1} A$	Non-empty set of finite subsets
$A \cap B$	Set intersection
$A \cup B$	Set union
$A \backslash B$	Set difference
$\cup A$	Generalized union of a set of sets
$\cap A$	Generalized intersection of a set of sets
first x	First element of an ordered pair
second x	Second element of an ordered pair
$\# A$	Size of a finite set

Relations

$A \hookrightarrow B$	Relation $(\mathbb{P}(A \times B))$
$a \mapsto b$	Maplet $((a, b))$
dom R	Domain of a relation
ran R	Range of a relation
id A	Identity relation
$Q \circ R$	Forward relational composition
$Q \circ R$	Backward relational composition $(R \circ Q)$
$A \triangleleft R$	Domain restriction
$A \ominus R$	Domain anti-restriction
$R \triangleright A$	Range restriction
$R \triangleright A$	Range anti-restriction
$R(\lfloor A \emptyset$	Relational image
iter $n R$	Relation composed n times
R^{n}	Same as iter $n R$
R^{\sim}	Inverse of relation $\left(R^{-1}\right)$
R^{*}	Reflexive-transitive closure
R^{+}	Irreflexive-transitive closure
$Q \oplus R$	Relational overriding $(($ dom $R \in Q) \cup R)$
$a \underline{R} b$	Infix relation

Functions

$A \nrightarrow B \quad$ Partial functions
$A \longrightarrow B \quad$ Total functions
$A \nrightarrow B \quad$ Partial injections
$A \longmapsto B \quad$ Total injections
$A \nrightarrow B \quad$ Partial surjections
$A \longrightarrow B \quad$ Total surjections
$A \longrightarrow B \quad$ Bijective functions
$A \leftrightarrows B \quad$ Finite partial functions
$A \dashv B \quad$ Finite partial injections
$f x \quad$ Function application (or $f(x)$)

Numbers

\mathbb{Z}	Set of integers
\mathbb{N}	Set of natural numbers $\{0,1,2, \ldots\}$
\mathbb{N}_{1}	Set of non-zero natural numbers $(\mathbb{N} \backslash\{0\})$
$m+n$	Addition
$m-n$	Subtraction
$m * n$	Multiplication
$m \operatorname{div} n$	Division
$m \bmod n$	Modulo arithmetic
$m \leq n$	Less than or equal
$m<n$	Less than
$m \geq n$	Greater than or equal
$m>n$	Greater than
$\operatorname{succ} n$	Successor function $\{0 \mapsto 1,1 \mapsto 2, \ldots\}$
$m \ldots n$	Number range
$\min A$	Minimum of a set of numbers
$\max A$	Maximum of a set of numbers

Sequences

$\operatorname{seq} A \quad$ Set of finite sequences
$\operatorname{seq}_{1} A \quad$ Set of non-empty finite sequences
iseq $A \quad$ Set of finite injective sequences
\rangle Empty sequence
$\langle x, y, \ldots\rangle \quad$ Sequence $\{1 \mapsto x, 2 \mapsto y, \ldots\}$
$s^{\wedge} t$ Sequence concatenation

- s Distributed sequence concatenation
head $s \quad$ First element of sequence $(s(1))$
tail s All but the head element of a sequence
lasts Last element of sequence ($s(\# s)$)
fronts All but the last element of a sequence
revs Reverse a sequence
squash f Compact a function to a sequence
$A \upharpoonleft s \quad$ Sequence extraction $(\operatorname{squash}(A \triangleleft s))$
$s \upharpoonleft A \quad$ Sequence filtering $(\operatorname{squash}(s \triangleright A))$
s prefix $t \quad$ Sequence prefix relation $\left(s^{\curvearrowright} v=t\right)$
s suffix $t \quad$ Sequence suffix relation $\left(u^{\wedge} s=t\right)$
s in $t \quad$ Sequence segment relation $\left(u^{\wedge} s^{\curvearrowright} v=t\right)$
disjoint A Disjointness of an indexed family of sets
A partition B Partition an indexed family of sets

Bags

$\operatorname{bag} A \quad$ Set of bags or multisets $\left(A \nrightarrow \mathbb{N}_{1}\right)$
■1 Empty bag
$\llbracket x, y, \ldots \rrbracket \quad$ Bag $\{x \mapsto 1, y \mapsto 1, \ldots\}$
count $C x$ Multiplicity of an element in a bag
$C \sharp x \quad$ Same as count $C x$
$n \otimes C \quad$ Bag scaling of multiplicity
$x \in C \quad$ Bag membership
$C \sqsubseteq D \quad$ Sub-bag relation
$C \uplus D \quad$ Bag union
$C \uplus D \quad$ Bag difference
items $s \quad$ Bag of elements in a sequence

Schema notation

Vertical schema.

New lines denote ';' and ' \wedge '. The schema name and predicate part are optional. The schema may subsequently be referenced by name in the document.

Axiomatic definition.

The definitions may be non-unique. The predicate part is optional. The definitions apply globally in the document.
$[a, \ldots]=$ Generic definition.
The generic parameters are optional. The definitions must be unique. The definitions apply globally in the document.
$S \hat{=}[X] \quad$ Horizontal schema
$[T ; \ldots \mid \ldots]$ Schema inclusion
z.a Component selection (given $z: S$)
$\theta S \quad$ Tuple of components
$\neg S \quad$ Schema negation
pre S Schema precondition
$S \wedge T \quad$ Schema conjunction
$S \vee T \quad$ Schema disjunction
$S \Rightarrow T \quad$ Schema implication
$S \Leftrightarrow T \quad$ Schema equivalence
$S \backslash(a, \ldots)$ Hiding of component(s)
$S \upharpoonright T \quad$ Projection of components
$S \doteq T \quad$ Schema composition $(S$ then $T)$
$S \gg T \quad$ Schema piping (S outputs to T inputs)
$S[a / b, \ldots]$ Schema component renaming (b becomes a,
$\forall X \bullet S \quad$ Schema universal quantification
$\exists X \bullet S \quad$ Schema existential quantification
$\exists_{1} X \bullet S \quad$ Schema unique existential quantification

Conventions

a ? Input to an operation
$a!\quad$ Output from an operation
$a \quad$ State component before an operation
$a^{\prime} \quad$ State component after an operation
$S \quad$ State schema before an operation
$S^{\prime} \quad$ State schema after an operation
$\Delta S \quad$ Change of state (normally $S \wedge S^{\prime}$)
ΞS

No change of state (normally
$\left.\left[S \wedge S^{\prime} \mid \theta S=\theta S^{\prime}\right]\right)$
Jonathan P. Bowen
University of Reading, Department of Computer Science Whiteknights, PO Box 225, Reading, Berks RG6 6AY, UK Email: J.P.Bowen@reading.ac.uk URL: http://www.cs.reading.ac.uk/people/jpb/

