
uBASIC User Guide

(from ‘UBASIC/TutorialScratchpad’
@

CHDK Wiki)

Draft 0.3, 17 July 2009, DanielF

http://chdk.wikia.com/wiki/CHDK

Contents
Preface.. 4

Starting Out .. 5

The Script Header .. 6

The Basics of BASIC Programming.. 7

Logic Commands ... 7

The LET Command ... 7

The IF / THEN / ELSE Commands ... 7

The FOR / TO / NEXT Commands ... 7

Do / Until Loops .. 8

While / Wend Loops .. 9

Subroutines using GOSUB (and related GOTO) Commands and Labels 9

Sub-Routines.. 9

GOSUB and GOTO Examples .. 9

The “print” Command.. 10

The “print_screen” Command ... 11

The “cls” Command... 12

The “sleep” Command... 12

The “get_tick_count” Command ... 12

The “get_day_seconds” Command.. 12

The “rem” Command... 13

The “exit_alt” Command ... 13

The “end” Command ... 14

Special Build Commands... 14

Fingalo’s Builds ... 14

FOR / TO / STEP / NEXT Loops ... 14

IF / THEN / ELSE / ENDIF – Multiple Statements.. 15

IS_KEY Optional Method... 15

Microfunguy’s SDM (Stereo Data Maker) Builds... 15

uBASIC variables .. 16

Labels ... 16

‘Restore’ label .. 16

Math Expressions allowed in uBASIC .. 16

Logical Operators: AND, OR, NOT .. 17

Camera Operation Commands ... 18

shoot ... 19

click/press/release “up”, “down”, “left”, “right” ... 19

click/press/release “set”..19

click/press/release “shoot_half” ...19

click/press/release “shoot_full” ..19

click/press/release “zoom_in”, “zoom_out”...19

click/press/release “menu” ...20

click/press/release “display”...20

click/press/release “print”...20

click/press/release “erase” ..21

click/press/release “iso”, “flash”, “mf”, “macro”, “video”, “timer” (S-series only)........22

The wait_click and is_key commands..22

The set_tv, get_tv, etc commands ..22

The set_zoom, set_zoom_rel, get_zoom, set_zoom_speed commands24

The set_focus and get_focus commands ..25

The set_iso and get_iso commands ..25

Special Build Commands ...25

MX3’s Motion Detection Build..25

md_detect_motion ...26

md_get_cell_diff..27

Fingalo’s Builds..29

LED Lamp Control (Fingalo’s builds only) ..29

GET_VBATT Read Battery Voltage... 30

SET_RAW enable/disable RAW Recording ...31

MORE USER VARIABLES!!!!!! ...31

SET Dark Frame subtraction state (ON|OFF|AUTO) ...31

SET/GET_PROP – Read/Set Property-Case Values ...31

Allbest’s Builds ..44

Get ops commands (to be associated with suitable return parameters):44

Set OPS (usually associated with suitable parameters):47

And some recently introduced commands:.. 48

Microfunguy’s SDM (StereoData Maker) Builds ..49

USB Remote Cable-Release Function! ..49

Debugging: the Unk Alert ..50

Debugging Scripts on a PC or Mac ..51

Using UBDebug – an Integrated Development Environment for Scripts51

Using the UBASIC_TEST.EXE Console...51

Script-Writer’s Handy Command-Reference List ..53

CHDK Command List ..53

Page 4 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Preface
This uBASIC User Guide was prepared using (largely) the HTML page
http://chdk.wikia.com/wiki/UBASIC/TutorialScratchpad, with additions from various other
pages (especially http://chdk.wikia.com/wiki/PropertyCase) and a few edits based on my own
(limited!) experience using CHDK (a470-101b-0.9.8-778) and writing scripts for it.

As you would expect with a community-based development project, those source pages are a
mishmash of information from many different authors, sometimes based on different versions
of CHDK code, and quoting results from many different camera models.

As a result, it is not possible to prepare a definitive ‘uBASIC User Guide’ that can be reliably
used for all cameras and all versions of CHDK. When features from ‘fringe’ versions of
CHDK are found to be useful by many users, they are often then incorporated into the ‘main’
release of CHDK.

So it’s possible that features described in this manual as being “only in so-and-so’s build”
might in fact be found in the main release at some stage. Where I’ve found this to already be
the case, I’ve transferred those ‘special’ command instructions into the ‘main’ section, but
there could be many others still in the ‘specials’ sections that are now ‘mainstream’.

Rather than trawling the many discussion forums trying to ascertain what’s included and
what’s not, it’s often quicker to simply write a little test script and run it on your camera with
your version of CHDK to see whether that feature works!

I doubt that I’ll be spending much time on the various CHDK websites and discussion groups
(my life is just too busy for that!), but I’m quite happy to maintain this manual (if anyone
other than me finds it useful) if program authors and users are prepared to contact me (e-mail
me directly) about corrections/changes/updates.

This manual was prepared using Microsoft Word 2000, and converted to bookmarked/
hyperlinked PDF using EasyPDFprinter5. It is formatted for double-sided printing on A4
paper.

DanielF
(dfnojunk at shoalhaven dot net dot au)

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 5 of 60

Starting Out
Keep these things in mind when writing your scripts:

• Use any text editor to compose your scripts. Make sure it is saving the file as TEXT-
ONLY. Do NOT use programs like Word or other advanced editors. These insert
hidden header info and use non-standard ASCII characters for Return/Line-Feed
commands, quotation marks, and others. The simplest of text-editors will suffice, but
even then watch out not to use TAB for indenting (Notepad or [preferably] Crimson in
Windows, nano in Linux, for example.) Mac users, make sure your script is in UTF-8
encoding, see this special note concerning Macs and Script Files.

• Keep all commands in lower-case. Variables are case-sensitive (a and A are not the
same).

• You are limited to 8k (8192 bytes) for the size of your script in CHDK Build 119 or
later, 2k (2048 bytes) in CHDK Build 116 or earlier.

• Be aware that not all commands work on all cameras, if you plan on sharing your
script try to keep it as generic as possible unless you have a special need for the
camera-specific commands. Try to also provide a more generic version so that all may
benefit from it.

• If using earlier CHDK Builds some commands listed here will not be available to you
and cause errors. Try to keep your version of CHDK up-to-date, from the Wikia
website.

• Keep your script concise and efficient! It takes 10ms of time for each line of your
script to be interpreted by tiny uBASIC. If your script is 10 lines long this takes
1/10th of a second, 100 lines takes a full second, etc. This can greatly impact high-
speed uses. Even rem statements take 10ms to be processed, use them sparingly. See
this section in the discussion area for script timing test results for further info. In
versions 0.5.5 and later, up to 100 rem statements and labels will be executed before a
10ms wait is required.

• Keep in mind the scripting and CHDK works by stealing time from a cooperative
multitasking system – you’re not writing in a time-slicing system like Linux or
Windoze. You need to yield back to the camera with a ‘sleep…’ so the camera can do
its stuff reliably as well. For example, some sleep after print gives the camera time to
write to the LCD without corrupting what’s already on the display. ‘Sleep 100’ seems
to be a commonly-used value, but depending on the camera and other factors, you may
need to sleep for 300–400 ms after certain operations. Failure to do this may result in
(intermittent!) camera lock-ups or shutdowns (there’s a ‘watchdog’ in the camera turns
it off when something goes badly wrong).

• If you write an interesting script, please share it with the rest of us on the User Written
Scripts pages so we may learn from you! Beginner script-writers can be some of the
most creative!

• See these pages for some ideas and examples if you are just starting out: User Written
Scripts

• Two new Scripts Menu options have been added to some special builds, read about
them in the Special Builds Features on the firmware usage page. By using these two
options in conjunctions with these scripts, you are able to execute any script when first
powering on your camera. This allows you an unlimited number of favourite Custom
shooting modes and USB-Remote functionality. You may want to write your scripts
taking these extra features into account.

Page 6 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

The Script Header
When viewing scripts you’ll often see the opening section look something like this:

@title Interval shooting
@param a Shoot count
@default a 5
@param b Interval (Minutes)
@default b 0

Let’s break down what each of those lines mean and how they are used by CHDK.

@title Your Script Title

This is the title that will appear when you have the script loaded in CHDK and go to
“Scripting Parameters” menu selection. It will appear under the line “----Current Script----“
as well as in the lower-left corner of your viewfinder when you are in <ALT> mode. Keep
your title short (20 characters or less). Otherwise the title will cover up the <ALT> label.

@param x (label)
@default x n

This is where you will define the beginning values of any variables used in your script. These
are often used to set how many exposures you want, how long of a delay you want, how many
bracketing steps you want, etc. These variables can be changed by the end-user from the
“Scripting Parameters” menu items. In that sub-menu, they will appear under the line
“----Script Parameters----“

@param x (label)

The “x” in that line will be one of any lower-case Latin letter from a to j. The (label) is the
text string that will appear in your “----Script Parameters----“ list, to let the end user know
which of the variables they are changing (i.e. number of shots, how many steps, etc.).
Maximum length of label text is 26 characters (including spaces) (to fit in Parameters Menu
space).

Up to 10 @param statements (user-controllable variables) may be used in any one script.

Note: The latest builds of CHDK now allow you to have up to 52 variables, a to z and A to Z.
But the user-definable variables must be in lower-case if used for that purpose. Also be
aware that lower and uppercase variables are unrelated. If you use a lower-case j for a
variable, it is not the same as using J, and vice-versa.

@default x n

This statement sets up the default, or beginning value of your (lower-case letter) variable,
where “x” is the variable from the @param statement above, and “n” is the default value to
start with. This value is only used when a script is loaded for the first time.

Notes:

If there is no @title command the filename of script is used. If there are no @param
commands CHDK assumes that there are three adjustable variables: a, b and c. Remember –
when naming @param variables, use only a character from a thru z.

After your default variable values have been defined here, it is good to add some lines right
after this section to ensure those numbers will be used in case the user has input 0 (zero) for
some value that needs to be higher (or lower). You will see this in scripts as:

if a<2 then let a=5

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 7 of 60

If your default value that you wanted the user to start out at for parameter variable a was 5,
then if they left that setting at 0 (zero) or 1, then this will automatically increase that
variable’s value back up to 5.

After you have set up your variable parameters, then comes the crux of your script, the part
that does the actual work and tells the camera what to do, when to do it, and what buttons or
commands need to be executed. Since we are working with a very small subset of the larger
uBASIC programming language, it might be good to list and explain only those that are
available to the CHDK script writer.

The Basics of BASIC Programming

Logic Commands

All programs are designed to mindlessly repeat some commands. In order to make them work
in the proper order, and the correct number of sequences, they have to be contained in some
simple recurring loops and counters. Testing for when some condition has been met, before it
can go onto the next command, or finally end the program (script).

There are several ways this can be done in BASIC, by using numeric counters, and loops.
There are some built-in commands to simplify these tasks.

The LET Command

This one is simple. If you see a command that says “let a = 2” then that’s exactly what
happens. It defines the value of 2 to the variable a.

This command is mostly included just for legibility. You can leave off the let command and
it will still work. Example: let a=2 can be written more simply as a=2. Or this example: if
z>5 then let b=0 can be simplified to if z>5 then b=0. Doing so will greatly save on script
space if you have to define and redefine many variables many times.

The IF / THEN / ELSE Commands

These are used to test for the truth of a certain condition. IF something is true, THEN this
takes place, ELSE (otherwise) do this if it is not true.

A simple example:

if a > 2 then goto “subroutine1”
If in your script, the variable a has been assigned to a value greater-than 2, then the
script will jump to the labelled subroutine1.

if a >2 then goto “subroutine1” else goto “subroutine2”
In this case if a is NOT greater than the value of 2, your program will jump to
subroutine2.

The conditional expressions allowed in uBASIC are: = (equal to), > (greater than), < (less
than), <> (not equal to), <= (less than or equal to), >= (greater than or equal to)

The FOR / TO / NEXT Commands

These are used to set up simple loops. You will often see them in scripts as in this example:

for n=2 to a
 sleep t
 print “Shoot”, n, “of”, a
 shoot
next n

Page 8 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

The first line “for n=2 to a” means that the “for / to / next” loop will run while variable-n
equals the sequence of numbers of 2 up to whatever the number variable-a has been assigned
to. The commands that take place in the loop are contained between the FOR statement and
the NEXT statement. “next n” tells the loop to go back to the beginning “for ...” statement
until the a value has been reached.

For example:

for n=1 to 10
 print “This is line number”, n
next n

This will produce the sequence of:

This is line number 1
This is line number 2
This is line number 3
.
.
.
This is line number 9
This is line number 10

and then that loop will end and go on to the next sequence of commands.

Do / Until Loops

Another method of creating loops for repetitive instructions or when waiting for some
condition to be true. Code within a Do/Until loop will always be executed at least once
(unlike While/Wend loops)

Usage:

do
statement
statement
statement
...
until relation

Where relation may be any logical expression. When it is true, the loop will exit.

Example:

rem set some starting values for the variables
y=0
x=5

rem start do-loop

do

rem increment x by 10 each time
x=x+10

rem increment y by 1 each time
y=y+1

rem print results to viewfinder mini-console
print “This DO loop happened”, y; “times.”

rem repeating do-loop until x is equal to the value of 55
until x=55

end

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 9 of 60

While / Wend Loops

Similar to the DO / UNTIL loops. The loop will continue to execute while some statement
remains true, and will end, wend (while-end), when that statement is no longer true. Unlike
Do/Until loops, code within a While/Wend loop may never be run, if the test condition is
already false when the While statement is first reached.

Usage:

while relation
statement
statement
statement
...
wend

Example:

x=0
while x<200
 x=x+25
 print “The value of x is”, x
wend

This loop will increment the value of x by 25 each time and print the value of x, as long as
(while) the variable x remains less-than 200

Subroutines using GOSUB (and related GOTO) Commands and Labels

Sub-Routines

For complex programming tasks, it is often helpful to split the program into smaller
subroutines that can be called with gosub and goto commands. A sub-routine can be nearly
anything but it is generally used for a set of commands that will be called-up more than once.
Instead of writing the same set of commands over and over again you put that code into a
subroutine and then call it up from within the main program by using gosub ”label” or
goto ”label”. Subroutines are generally placed after the main code. A labelled subroutine
that will be called by gosub “label” needs to end with the return command, to tell the script
to jump out of that section of code and return back to from where it was called.

GOSUB and GOTO are similar but you should refrain from using GOTO unless you know
what you are doing. GOSUB will always return from a subroutine as soon as it reaches the
RETURN command. GOTO does not behave this way. GOTO should only be used when
you are going to jump to a section of the script one time and under special circumstances.

GOSUB and GOTO Examples

A simple GOSUB example (the subroutine’s label and subroutine are in bold):

for x=1 to 10
 gosub “display”
next x

:display
 print x
 return

A longer example that would capture 3 images with increased ISO settings would look
something like this:

Page 10 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

shoot
for i=1 to 3
 gosub “incISO”
 shoot
next i
for i=1 to 3
 gosub “decISO”
next
end

:incISO
 click “menu”
 [some more clicks]
 return

:decISO
 click “menu”
 [some more clicks]
 return

An example using the GOTO command taken from an endless intervalometer script. NOTE:
This situation creates an endless loop. Until you manually override the script it will continue.
This is generally considered BAD FORM! Any script should include/end-with all the
commands to reset the camera to its original configuration prior to running the script, and
properly end with the END command. Do not do this kind of thing unless you have a special
need for it and know what you are doing.

@title Interval Shooting Non-stop
@param a Interval (Minutes)
@default a 0
@param b Interval (Seconds)
@default b 5
@param c Interval (10th Seconds)
@default c 0

t=a*60000+b*1000+c*100

if t<100 then let t=5000

n=1

print “Interval shooting.”
print “Until you interrupt it.”
print “Use with caution.”

sleep 1000

:shot
 print “Shot number”, n
 shoot
 n=n+1
 sleep t
 goto “shot”

The “print” Command

This will print whatever text follows the statement to your LCD or EVF display in the mini-
console area (see firmware usage) while the script is running.

Syntax: print “25 characters of text”

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 11 of 60

Note: You are limited to 25 characters being displayed (without wrapping) in any one line of
text. You may also include the values of variables or integer-equations in your print
statement. CHR$() is not supported (indeed, it crashes CHDK!), nor is PRINT USING…

Examples:

rem Print total duration of interval to viewfinder

print “Total time:”, t*a/60000; “min”, t*a%60000/1000; “sec”

sleep 1000

rem Start actual camera operation in a loop

print “Shoot 1 of”, a
shoot
for n=2 to a
 sleep t
 print “Shoot”, n, “of”, a
 shoot
next n

Note that the comma (,) is replaced in the output with a space while a semicolon (;) results in
no whitespace.

Example:

print “C”,”H”,”D”,”K”
print “C”;”H”;”D”;”K”
will result in

C H D K
CHDK

However, note that a semicolon at the end of a print statement, e.g.
print “c=“, c;
does not suppress the newline (CR/LF) like it should!

The “print_screen” Command

Whatever the script prints on the mini-console screen can also be written to a file such as
‘\CHDK\LOGS\LOG_0001.TXT’.

To enable this console capture, include this initial command in your script:

print_screen n

where n is a non-zero positive integer constant, variable or expression with a value from 1 to
9999. A new file (e.g. for n=1, \CHDK\LOGS\LOG_0001.TXT) is created, or if it already
exists, it is emptied (i.e. the new dumped text will replace whatever it previously contained).

To turn off screen dumping, include this script command:

print_screen 0

Screen dumping can be turned on and off multiple times in one script, but keep in mind the
need to increment the value of ‘n’ if you don’t want to lose the earlier log contents.

The value of ‘n’ can exceed 9999, but the filename will still contain only 4 digits, and will
thus simply ‘wrap’ around. For example, if n=10000, the filename will be LOG_0000.TXT,
if n=10001 the filename will be LOG_0001.TXT, and so on. Negative values of ‘n’ can also
be used, but they will be converted to positive by CHDK. So, for example, n=–2 will produce
a filename LOG_0002.TXT. In other words, you are limited to a total of only 10,000
‘print_screen’ log files (should be enough for most people! ).

Page 12 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Example:

@title printscreen test

@param a None
@default a 0

@param n FileNum
@default n 1

print_screen n
print “START“, n
print_screen 0
n=n+1
print “Not written to file”
print_screen n
print “This should be written to next file.”
print “a=“;a
print_screen 0
end

This would create two files with the following contents:

\CHDK\LOGS\LOG_0001.TXT:
START 1

\CHDK\LOGS\LOG_0002.TXT:
This should be written to next file.
a=0

The “cls” Command

CLS stands for “Clear Screen”. This is used to clear the mini-console screen from any “print”
statements in an easy way. Instead of having to issue 5 command lines of print “ ”, you just
need to issue this one cls command.

The “sleep” Command

This pauses the script to allow some action to take place, or to delay when the next action
should occur. It is often necessary to insert sleeps in your script to allow the camera time to
execute essential actions – see “Starting Out” for an important note about this.

Syntax: sleep x

Where x is any variable or whole number. The value is in 1000ths of a second, but timer
resolution is only around 10–30 ms.

Example: sleep 1500 means to pause for 1.5 seconds.

The “get_tick_count” Command

This function returns the time, in milliseconds, since the camera was turned on. Note that this
function format is a bit different from the standard CHDK uBASIC function format.

Usage:

t = get_tick_count

The “get_day_seconds” Command

This function returns the number of seconds since midnight. Note that this function format is
a bit different from the standard CHDK uBASIC function format.

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 13 of 60

Usage:

t = get_day_seconds

For a simple example using this function to wait until a specific time of day before
continuing, see get_day_seconds_example. (That’s a fairly ‘messy’ example; a better
example might be ‘Nite&Day.bas’.)

The “rem” Command

The “rem” (which stands for “remark”) command is sometimes used to place comments in a
script. It is only used as a reminder for the person writing or viewing the script. Like an
internal note. This command is not executed nor seen when the script is run, however the
uBASIC interpreter spends time ‘parsing’ the rem statement before deciding to ignore it. And
keep in mind that scripts for CHDK can be only 8k (8,192 characters) in length. (Only 2k in
CHKD before Build 119.) Too many REM statements can slow down your script as well as
taking up valuable space.

REM statements can always be removed from a script if you feel there are too many or
unneeded. Removing a rem line will not impact the operation of the script in any way (other
than speeding it up and using up less memory space).

An (overzealous) example of REM commands in a script:
rem Interval shooting

@title Interval shooting
@param a Shoot count
@default a 10
@param b Interval (Minutes)
@default b 0
@param c Interval (Seconds)
@default c 10

rem Calculate 1000ths of seconds from variables:
t=b*60000+c*1000

rem Sets some default variables to initial values:
if a<2 then let a=10
if t<1000 then let t=1000

rem Print total duration of session in viewfinder:
print “Total time:”, t*a/60000; “min”, t*a%60000/1000; “sec”

rem Delay actual shooting so they can read the above print statement:
sleep 1000

rem Start actual camera operation in a loop:
print “Shoot 1 of”, a
shoot
for n=2 to a
 sleep t
 print “Shoot”, n, “of”, a
 rem This takes the actual exposure:
 shoot
next n

rem Ends this script

end

The “exit_alt” Command

This command leaves the <Alt> mode.

Page 14 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

The “end” Command

This should be the last line in your script. It tells the script to cease all operations and return
camera control back to you. Before ending a script, it is good form to always reset any
camera settings that the script took control of during initialization or running of your routine,
so that the end user doesn’t have to undo all the key-presses and menu changes that the script
created.

Special Build Commands

Due to the open-source sharing of this project, many other talented individuals have been
creating their own versions of CHDK, some with exceptional improvements or features that
don’t exist in the original CHDK. An attempt will be made to include the commands of those
builds that have important features worth considering. Please note that any commands that
appear in the “Special Builds” sections in this tutorial will not work with the original CHDK
by GrAnde, unless he sees fit to include them in his own builds one day.

Fingalo’s Builds

Available from: Fingalo’s CHDK2

FOR / TO / STEP / NEXT Loops
A standard BASIC step command was added to the for/to/next commands make loops easier.
Instead of using multiple lines for counters to increment numeric expressions with commands
like a=a+1 or b=b-3, a simple next command may now be used.

Usage:

for var=expr to expr step expr
statement
statement
statement
...
next var

Where var can be any variable, expr can be any defined variable or math expression, and
step can be any defined variable or math expression. The step value may also be negative to
increment in reverse.

Example:

@title Focus Bracket Steps
@param d Near Focus (mm)
@default d 2500
@param e Far Focus (mm)
@default e 4500
@param f Step Increment (mm)
@default f 100

for x=d to e step f
 set_focus x
 shoot
next x

end

If using the default values this simple script will start out at the Near Focus value of 2500mm,
increment that value by 100mm every time, shoot an image, and exit when the focus has
reached or passed 4500mm.

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 15 of 60

IF / THEN / ELSE / ENDIF – Multiple Statements
Fingalo reports: “Seems to have some bug when not using the else in nested if constructs!”

Usage:

if relation then
statement
statement
statement
...
else
statement
statement
statement
...
endif

The standard single-statement if...then...else... loop still works, but it cannot be used inside
the if...then...else...endif loops.

NOTE: nesting levels for all loop methods are currently set to 4 for all new constructs.

IS_KEY Optional Method
Also added a variation of the is_key statement, so is_key can be used as:

if is_key “set” then goto “continue”

And also as:

k = is_key “set”

The original statement version (example below) may still be used.

is_key k “set”
if k=1 then goto “continue”

The main reason for this new ‘is_key’ option and other loop methods is that you can now
more easily make key-press detection loops. Such as:

do
 if is_key “right” then gosub “r_label”
 if is_key “left” then gosub “l_label”
until is_key “set”

rem begin r_label subroutine
:r_label
 (commands)
rem begin l_label subroutine
:l_label
 (commands)

Microfunguy’s SDM (Stereo Data Maker) Builds

Microfunguy has reduced the number of ‘standard’ uBASIC programming commands to those
more commonly used.

He has also added a number of ‘plain English’ commands that simplify continuous and
custom-timer bracketing sequences.

The example below uses the number of images set in customer-timer menu and takes a
bracketed sequence such that each image is 1 stop darker than the previous one:

Page 16 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

hdr_bracket_1/3_ev_steps 3
each_photo_darker
“ Press switch”
wait_for_switch_press
“ Each image darker”
start_custom_timer_sequence
wait_until_done

uBASIC variables
Variables are represented by single letters of the Latin alphabet: a–z (in some versions, A–Z
also). All variables are 32-bit signed integers (–2147483648 to +2147483647). However,
due to a bug in the current main release, values greater than 6 decimal digits cannot be
assigned (i.e. 999,999 maximum).

Labels
A label must be the only statement in a line and start with a colon (:). Maximum string
length??

‘Restore’ label

There’s one important pre-defined label in uBASIC:

:restore

uBASIC tries to jump to label “restore” when you fully press the shutter button (which is
how you terminate a script prematurely).

The purpose of this label is to allow scriptwriters to code some ‘clean-up’ routine to restore
the camera to ‘normal’ settings after their script has forced some other settings. This could be
important, for example, if your script uses AF lock, where aborting prematurely may leave the
camera in a state where it cannot focus (without cycling power). So by using the restore
label you could include code to clear the AF lock and turn the display on.

Math Expressions allowed in uBASIC
Build 144:

+ Addition
– Subtraction
* Multiplication
/ Division
% Remainder (explanation see below)
< Less Than
> Greater Than
= Equal
<= Less Than or Equal (CHDK Build #144 or later)
>= Greater Than or Equal (CHDK Build #144 or later)
<> Not Equal (CHDK Build #144 or later)
& And
| Or
^ Xor

Most of the expressions are easy to understand, but the % (remainder) operation might need a
short explanation.

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 17 of 60

Example: Let’s say you have computed a number to equal how many seconds
something will take (its duration). Such as s=(some math expression) Where s is
being assigned the number of seconds computed.

Now you want to display that as minutes and seconds. You will need a print statement
that effectively does this:

print “Total Time:” , s/60; “min”, (the remainder of s/60); “sec”

There is a very simple way to do this using the % command. Think of % as “the
remainder of s being divided by”. So all you need to do is have this print statement:

print “Total Time:” , s/60; “min”, s%60; “sec”

If s had the value of 328 seconds, then this would compute like this:

Total Time: (328/60)=5 min (the remainder of 328/60)=28 sec

and thus print like this:

Total Time: 5 min 28 sec

Some further notes:

< Less Than
> Greater Than
= Equal
<= Less Than or Equal
>= Greater Than or Equal
<> Not Equal

are relational operators, while

& And
| Or
^ Xor

are bitwise operators, not logic operators. (The logic operators of and, or, and not have been
added to CHDK build #144 or later.) Example use of the bitwise (&, |, and ^) binary
operators are:

e=5|3
print e

will return “7”.

5&3 will result in “1”

5^3 will result in “6”

For an explanation, refer to bitwise operators

Logical Operators: AND, OR, NOT

not logical not. Best to use in a form with parentheses i.e. not (expression),

and logical and

or logical or

Priority for evaluation order has been updated so expressions like

if a=1 or b=3 and c>4 or d<>7 then ...

Page 18 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

are being correctly calculated, although one would preferably use parentheses just to
understand what is being calculated.

Also priority for “&” and “|” has been changed the same way.

NOTE: Multiple relational operators are allowed!

Camera Operation Commands
These commands are designed to allow your script to control your camera much like you
would manually. Nearly anything you can do by pressing buttons on your camera with your
own fingers, you can also do automatically with these script commands. The complexity and
time-line of your script is only limited by your imagination and trying to keep your script
under the 8K character (8192 byte) limit.

Camera commands can be written in 3 flavours / command-methods:

 click “button-name”

Presses the button momentarily, used for one time, instantaneous commands. This
will be the most often used method of issuing a camera command.

 press “button-name”

Presses and HOLDS the required camera button, it remains pressed until the same
button-name is given the release command. Some camera commands can only be
accessed when a button is held down during use.

Example: In Manual Focus in the S-series cameras the MF button needs to be held
down while the focus commands are being issued. Or when shooting in high-speed
burst mode, then the shutter button must be held down during its needed duration with
the press “shoot_full” command.

 release “button-name”

Ends the press “button-name” command. If using a press “button-name”
command be sure to end it with the release “SAME-button-name command at the
appropriate sequence in your script to reset things back to normal.

All camera command buttons that you can press manually you may use in your scripts using
this syntax. The only exception is the often-used shoot command. shoot is used by itself
without the leading click, press, and release command methods.

All button-pressing commands (except shoot) should be written in the following syntax:

command-method “button-name”

where command-method may be click, press, or release, and the button-name must be
enclosed in double-quotes.

For example, a simple script using all 3 command-methods which makes AELock and
AFLock on A-series cameras:

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 19 of 60

sleep 2000
press “shoot_half”
sleep 1000
click “erase”
click “down”
release “shoot_half”

shoot

Records an image.

This command is similar to the click “shoot_full” command (see below), but it waits for the
camera to perform some normally automatic actions, such as auto-focusing, charging the
flash, etc. For example: if in AUTO, P, Tv, Av, or any SCN modes, using the “shoot”
command causes the camera to check focus and exposure for each shot. When “shoot” is
used in intervalometer scripts this far surpasses the camera’s own built-in intervalometer in
that the camera only sets exposure and focus once for the initial exposure, as if it was only
using the “click ‘shoot_full’” command. This “shoot” command in an intervalometer script
allows it to compensate for all the things that can change over the course of many minutes and
hours. For more precise manual control of the camera in scripts, see the click “shoot_half”,
click “shoot_full”, when used in conjunction with the get_tv, set_tv, set_tv_rel, get_av,
set_av, set_av_rel commands below.

click/press/release “up”, “down”, “left”, “right”

Actuates the respective directional button of your “Omni-Selector” (navigational buttons).

click/press/release “set”

Actuates the set button.

Note: press and release would not normally be used with this button, but without knowing
each and every camera model’s functions and the creative ways some might use scripts, these
two command-methods are also mentioned.

click/press/release “shoot_half”

Actuates the shutter-release in the half-press position. This is often used to lock focus,
exposure, or other camera settings.

(Note: In dim light it can sometimes take up to 2+ seconds for a camera to hunt for focus. If
your script is using this command to set auto-focus, and is designed for or intended to also be
used in low-light conditions, it would be good to follow a press “shoot_half” command with
a sleep x command, where x can have a value from 1500 to 2500.)

click/press/release “shoot_full”

Actuates the shutter-release button completely, regardless of whether the camera has finished
charging the flash or other normally automatic camera operations.

click/press/release “zoom_in”, “zoom_out”

Initiates your camera’s zoom control one zoom-step at a time. (It is uncertain at this time (I
didn’t test it), how this will act using the press and release commands.) The A-Series
cameras have 9 or 15 zoom steps (0 to 8/14), and the S-series cameras have 129 zoom steps (0
to 128). This command may require an extra sleep command after each zoom step. When

Page 20 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

using click the S-series cameras implement this command very slowly. Here’s an example of
how it may be used in a loop:

for s=2 to a print “Shoot”, s, “of”, a
 for n=1 to b shoot
 print “Zooming-in “, n; “...” next s
 click “zoom_in”
 sleep 600
 next n

Note the 0.6 second sleep command after each zoom_in step.

click/press/release “menu”

Actuates the menu button.

This is used to alter some of the cameras settings that can only be set through the record
menus, to set up the camera before or during a script session.

Note: press and release would not normally be used with this button, but without knowing
each and every camera model’s functions and the creative ways some might use scripts, these
two command methods are also mentioned.

Example:

:slowsync click “down”
 click “menu” sleep 400
 sleep 400 click “right”
 click “down” sleep 400
 sleep 400 click “menu”
 click “down” sleep 400
 sleep 400 return

This :slowsync” sub-routine will initialize the camera’s flash setting into slow-sync mode.
Note also the sleep commands, giving your camera time to respond to the new settings
between each directional button-press. Button-press delay times may be camera specific.
(Meaning it might be a good idea to set up a user-defined variable for these in some scripts to
save on script-size and make the script more adaptable to more makes and models of cameras.
A note could be made in the accompanying script’s documentation on what button-press
delays are needed per make and model of camera.)

click/press/release “display”

Actuates the camera’s display button.

Note: press and release would not normally be used with this button, but without knowing
each and every camera model’s functions and the creative ways some might use scripts, these
two command-methods are also mentioned.

click/press/release “print”

Actuates the camera’s print button. (Note: actuates the shortcut button for S-series cameras.)

Note: press and release would not normally be used with this button, but without knowing
each and every camera model’s functions and the creative ways some might use scripts, these
two command-methods are also mentioned.

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 21 of 60

click/press/release “erase”

Actuates the camera’s erase button. (Note: actuates the FUNC (function) button for S-series
cameras.)

This will often be used to select some shooting parameters like exposure-compensation,
movie frame-rates, white-balance settings, ... any of the options that can be reached by
pressing this button on your camera. It is then used in conjunction with directional button-
presses to choose the desired settings.

Note: press and release would not normally be used with this button, but without knowing
each and every camera model’s functions and the creative ways some might use scripts, these
two command-methods are also mentioned.

Example:
@title EXP bracketing
@param a Number of ±steps
@default a 2
@param b Step size (1/3EV)
@default b 3

if a<1 then let a=2
if b<1 then let b=3

sleep 1000

print “Preparing...”
click “erase”
for n=1 to a*b
 click “left”
next n

for s=1 to a*2
 print “Shoot”, s, “of”, a*2+1
 shoot
 for n=1 to b
 click “right”
 next n
next s

print “Shoot”, a*2+1, “of”, a*2+1
shoot

print “Finalizing...”
for n=1 to a*b
 click “left”
next n
click “erase”

end

In this “Exposure Bracketing” script, if you follow the embedded button-presses, you’ll see
that your Exposure Compensation setting is being selected by using the click “erase”
command. The click “right” and click “left” commands are moving the Exposure
compensation settings to the right and left (more exposure and less exposure), just as you
would if you were doing this manually from one shot to the next.

Page 22 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

click/press/release “iso”, “flash”, “mf”, “macro”, “video”, “timer”
(S-series only)

Actuates the S-series specific buttons.

(This will need to be added to with a few examples, specifically in using the new press/release
commands with some of these.)

The wait_click and is_key commands

Syntax:

wait_click timeout (waits for any button to be clicked; timeout is optional)

is_key x “button-name” (if last clicked key was “button-name” 1 will be placed in variable
x; for timeout checking “no_key” is used as button name)

Examples
:wait
 wait_click

 is_key k “set”
 if k=1 then goto “continue”
goto “wait”

:continue
...
...
:loop
 wait_click 5000
 is_key k “left”
 if k=1 then gosub “k_left”
 is_key k “right”
 if k=1 then gosub “k_right”
 is_key k “set”
 if k=1 then goto “k_set”
 is_key k “no_key”
 if k=1 then goto “timeout”
goto “loop”

:timeout
print “Timeout”
goto “end”

:k_left
...
return

:k_right
...
return

:k_set
...
:end

end

The set_tv, get_tv, etc commands

There are several commands for getting and setting the aperture and the speed. They only
work in Manual mode (well you can change the settings in any mode, but they are effective in

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 23 of 60

manual mode, probably also in Av and Tv modes). There’s a test script for these commands
in the “user written scripts”

The commands are
get_tv target
set_tv_rel val
set_tv val
get_av target
set_av_rel val
set_av val

Target is the name of a variable (a, b, … z), val is an expression.

An example of setting and printing the values.

:set_get
set_av c
set_tv b
print “AV,TV set to”,c,b
sleep 1000
click “shoot_half”
sleep 100
get_av n
get_tv m
print “AV,TV got”,n,m
end

You can change the settings relative to existing values (this might make bracketing easier and
faster):
rem increase light (1/3+1/3 steps)
set_tv_rel 0-1
set_av_rel 0-1
shoot
end

The Av and Tv settings
provide the following
actual values; roughly
±1 setting means
±1/3 EV change (CHDK
Build 119 remapped
values):

Usage Notes

When using the set_tv,
set_tv_rel, or set_av,
set_av_rel commands it
was found that it might
not be effective if
inserted into a sequence
of commands that used
the press and in some
instances the click
“button” commands.
If when testing your
script you find these

Aperture Exposure

Value Av Value Tv Value Tv Value Tv Value Tv

F/2.7 9 15" –12 1"" 0 1/15 12 1/250 24

F/3.2 10 13" –11 0"8 1 1/20 13 1/320 25

F/3.5 11 10" –10 0"6 2 1/25 14 1/400 26

F/4.0 12 8" –9 0"5 3 1/30 15 1/500 27

F/4.5 13 6" –8 0"4 4 1/40 16 1/640 28

F/5.0 14 5" –7 0"3 5 1/50 17 1/800 29

F/5.6 15 4" –6 1/4 6 1/60 18 1/1000 30

F/6.3 16 3"2 –5 1/5 7 1/80 19 1/1250 31

F/7.1 17 2"5 –4 1/6 8 1/100 20 1/1600 32

F/8.0 18 2" –3 1/8 9 1/125 21 1/2000 33

1"6 –2 1/10 10 1/160 22 1/2500 34

1"3 –1 1/13 11 1/200 23 1/3200 35

Page 24 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

commands will not alter the shutter-speed or aperture, try moving them to a position just
before any press “shoot_half/full” or click “timer” (unique s-series) commands. For an
example see the “Lightning Photography” scripts for where the set_tv command had to be
placed before it would work. It was tried in all other locations before the actual shooting was
to begin, setting the shutter-speed in other locations in the script wouldn’t work otherwise.

Canon firmware uses these ‘?v’ values in many ways, depending on operating mode. The
most usual way is that they are set by auto-exposure during half press. Thus to override auto-
exposure these prop_cases typically must be set after auto-exposure is finished. Otherwise
Canon firmware would just overwrite it and the command wouldn’t have any effect.

The set_zoom, set_zoom_rel, get_zoom, set_zoom_speed commands

(CHDK Build 119 or greater, command set_zoom_speed is available in Build 122 or greater)

Syntax:

set_zoom x (where x is 0 to 8, 14, or 129, see Range)

set_zoom_rel x (x is ±relative change)

get_zoom x (zoom-step value placed in variable x)

set_zoom_speed x (where x can be from 5-100 range. Will do nothing for A-series)

(5 is 5% of high-speed, 100 is 100% of high-speed)

Range:

A-series: x = 0 to 8 or 14 (9 or 15 steps)

S-series: x = 0 to 128 (129 steps)

Note 1: Camera does not refocus automatically after the end of zooming. Use a click or
press/release “shoot_half” command to implement a refocusing if needed.

Note 2: It was found that if using the slowest speed (5), that an S3 IS might shut down after it
has waited too long for the zoom to traverse the whole range of 129 steps. A speed of 10 did
not exhibit this behaviour on an S3 IS. 5 is so slow though, that I think it would rarely be
needed, except in movie-shooting scripts, and then the range could be limited to prevent
camera shut-down.

Note 3: CAUTION! (Found on S3 IS) If set_zoom_speed is not written into the script when
set_zoom x is used, the camera will refocus some of your optics to make it where the camera
is unable to focus on anything in any mode. The camera (when zooming without a set-zoom
speed) appears to move an internal lens element that puts the lens into a Super-Macro mode
where it focuses on internal lens elements at widest-angle. If this command is left out of a
script using the set_zoom x command, you will have to shut down your camera and restart it
to reset the zoom-lens’ optics back to defaults. However, an interesting thing is found --
when running the “Zoom-Shoot” script by rem-ing out the set_zoom_speed command
(removing it from being implemented), after the camera resets its zoom, the lens is now in a
ZOOMED tele-macro SUPER-MACRO MODE! Giving you close-up focusing ability at
fullest zoom! (As if you had placed a +4 or so close-up lens on your camera.) Far surpassing
the capabilities that Canon designed. Perhaps this “bug” could be put to great use? Or it
might damage your focusing and zooming mechanisms. USE WITH CAUTION. Because
you can hear the camera strain up against some internal lens-adjustment stops when it’s trying
to reset the zoom. And the only way to “un-do” this (really nice!) tele-super-macro mode is
by turning the camera off and on again.

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 25 of 60

The set_focus and get_focus commands

(CHDK Build 125 or greater)

Syntax:

set_focus x (where x is the distance in mm)

get_focus x (the distance value placed in variable x)

The set_iso and get_iso commands

(CHDK Build 125 or greater)

Syntax:

set_iso x [where x is one of the following values: 0 = AutoISO; 1, 2, 3, 4,
5 = 50(80),100,200,400,800; –1 = HiISO (where applicable)]

get_iso x (the ISO value placed in variable x)

Special Build Commands

Due to the open-source sharing of this project, many other talented individuals have been
creating their own versions of CHDK, some with exceptional improvements or features that
don’t exist in the original CHDK. An attempt will be made to include the commands of those
builds that have important features worth considering. Please note that any commands that
appear in the “Special Builds” sections in this tutorial will not work with the original CHDK
by GrAnde, unless he sees fit to include them in his own builds one day.

MX3’s Motion Detection Build

Note 1: These uBASIC script commands are available in a special build of CHDK (available
here). It is unknown at this time if this will become a standard feature of CHDK or not, so
these commands are being placed in their own section so as not confuse people (thinking that
these will work with the standard CHDK platform). (This has gained immense popularity and
has become a standard feature in nearly all builds of CHDK, including the latest Allbest
Build.)

Note 2: MX3’s Motion-Detection has also been included in Fingalo’s and Microfunguy’s
Special Builds, see their extra commands below.

Note 3: There has been much discussion on the proper ways to use this sometimes-confusing
and highly adaptable and user-configurable feature. A lengthy discussion on the new CHDK
Forum on how to get the fastest reaction times for lightning photography has shed some light
on the subject (pun not intended). For further clarification on the best ways to implement
some of the timing controls, see this post in the “Motion Detection Too Slow?” discussion
thread, which also includes a script optimized to obtain the fastest detection speed possible by
using 2 different methods (both available in the same script). The MD routine has been
reworked for some cameras so the internal “immediate shoot” option is now lightning-fast
(literally). This change will probably be added to all new future builds (note added
2008-02-07 c.e.).

I am not the author of this feature, so some errors may exist in the information below.
Hopefully the author will check in to see if this is all correct or not. The main crux of it being
taken from MX3’s own demo and test script files.

Available Commands:

Page 26 of 48 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

md_detect_motion
This command is the main crux of setting all feature parameters.

 /--/-COLUMNS, ROWS to split picture into

 | | MEASURE MODE (Y,U,V R,G,B) – U=0, Y=1, V=2, R=3, G=4, B=5

 | | | TIMEOUT

 | | | | COMPARISON INTERVAL (msec)

 | | | | | THRESHOLD (difference in cell to trigger detection)

 | | | | | | DRAW GRID (0=no, 1=yes)

 | | | | | | | RETURN VARIABLE number of cells with motion detected

 | | | | | | | | OPTIONAL PARAMETERS:

 | | | | | | | | REGION (masking) mode: 0=no regions, 1=include, 2=exclude
 | | | | | | | | |

 | | | | | | | | | REGION FIRST COLUMN

 | | | | | | | | | | REGION FIRST ROW

 | | | | | | | | | | | REGION LAST COLUM

 | | | | | | | | | | | | REGION LAST ROW

 | | | | | | | | | | | | | PARAMETERS: 1=make immediate shoot,
 | | | | | | | | | | | | | | 2=log debug information into file (* see note below!),
 | | | | | | | | | | | | | | 4=dump liveview image from RAM to a file,
 | | | | | | | | | | | | | | 8=on immediate shoot, don’t release shutter.
 | | | | | | | | | | | | | | OR-ed values are accepted, e.g. use 9 for
 | | | | | | | | | | | | | | immediate shoot & don’t release shutter

 | | | | | | | | | | | | | | PIXELS STEP – Speed vs Accuracy adjustments
 | | | | | | | | | | | | | | | (1=use every pixel,
 | | | | | | | | | | | | | | | 2=use every second pixel, etc)

 | | | | | | | | | | | | | | | MILLISECONDS DELAY to begin triggering
 | | | | | | | | | | | | | | | | Can be useful for calibration with
 | | | | | | | | | | | | | | | | DRAW-GRID option.
 | | | | | | | | | | | | | | | |
md_detect_motion a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 27 of 60

The minimum number of variables that must be set with this command are:

md_detect_motion a, b, c, d, e, f, g, h

Timeout (d): [mx3] is time in milliseconds for which md_detect_motion will block execution
of next uBASIC commands, if during this period no motion is detected. This parameter is
useful if you want to execute periodically some other uBASIC commands together with MD.

E.g. MD routine waits for changes for 1 second; if no motion detected, script can continue to
execute some other code and then, if required, can resume motion detection by again calling
md_detect_motion. So timeout is just the time for which MD routine will wait for changes.
In practice, this TIMEOUT value (parameter d) should be greater than the MILLISECONDS
DELAY (parameter p), or else you will always get RETURN VARIABLE (parameter h) = 0.

Comparison Interval (e): The time delay in milliseconds in which to check for a change in a
cell’s values. If you need to filter out small changes made frequently by faster moving objects
(leaves in the wind, or flying insects, for example) you would increase this value so that timed
samples are further apart. Very useful when trying to detect changes in very slow moving
subjects, e.g. snails, slime-moulds, a slow-moving criminal trying to avoid motion detection
devices, etc.

h – RETURNED VARIABLE: this variable is used for deciding whether you want to shoot.
It contains a count of cells where the change is more than the specified threshold value.

Example: if h>0 then shoot

n=2 (debug mode): Since build #684 (Jan 18th 2009), this debug feature has been removed to
save RAM. To use it, a custom CHDK version must now be built (OPT_MD_DEBUG=1 in
makefile.inc will enable motion detector debug).

(Insert more information on variable parameter functions and uses as they become known or
more familiar.)

md_get_cell_diff
[mx3] This is an optional procedure for those people who want to know where in the scene
detection actually happened. This procedure is designed for scene change advanced analysis.
I’m not sure many people will need to use it. Most people will use the “h” variable from
above example to trigger shooting.

Usage: md_get_cell_diff (column), (row), x

where x will be difference of 0 to 255 between the last and present change in that cell.
Triggering a script to shoot on this value may be done by detecting no change, or
however much sensitivity you would like to detect in that cell.

Examples:

If you would like to have the camera shoot an image when all motion stops, use:

if x=0 then “shoot”

To shoot an image when any motion is detected at all use:

if x>0 then “shoot”

Interesting use of MD:

The following was copied from a post where MX3 mentions a feature of md_get_cell_diff
that was never documented before.

Page 28 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Nobody tried to use MD to get overall luminosity to automatically adjust shutter speed
override?

MD setup:

set delay_interval to 2–3 secs
timeout=delay_interval+1
threshold=255 (so it will not trigger)
cols=1
rows=1
md_get_cell_diff 1, 1, overall_luminosity
shutter_override_time = some_formula(overall_luminosity)

I don’t have camera nearby to test it.

I have thought about time-lapse movie script that would automatically override shutter speed
at night. I’m planning to make 2 days time-lapse movie (it seems 8GB SD card and power
adapter will help also )

NOTE: when MD stops working on timeout, cells contain absolute values instead of
difference.

The most important info is contained in that final “NOTE”!

Referring to the ‘md_detect_motion’ command-parameters in the WIKI article, ‘a’ and ‘b’
define the number of rows and columns to split the screen into. (If values less than zero are
entered or if total number of cells is greater than 1024, it defaults to 3 x 3.)

Parameter ‘g’ determines if the grid showing the detected cells is displayed.

Parameters ‘j, k, l, m’ define a sub-area of the screen where motion-detection is restricted-to
or excluded-from.

Parameter ‘i’ determines if the region is inclusion/exclusion or do not use regions.

You may detect motion based on changes of luminance (Y), blue-luminance (U), red-
luminance (V) or individual R, G or B values.

Parameter ‘c’ sets that mode.

(For an example of an image split into it’s YUV components, see the WIKI article.)

For non-specialised use, luminance (c = 1) will be used.

You then need to set a threshold-value (in parameter ‘f’) for the desired mode that will not
result in triggering in ‘normal’ operation.

The motion-detection event may be triggered by quick or slow changes in the screen image;
set a suitable value with parameter ‘e’.

The greatest accuracy of movement-detection results when every pixel is sampled, but a faster
response (suitable for some applications) may be obtained with a larger pixel-step.

Set an appropriate value in parameter ‘o’.

Set a maximum-time for a motion-detection event to occur with parameter ‘d’ so that after
that time the script-command terminates.

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 29 of 60

Motion-detection Parameters:

columns, input parameter. Number of columns to split screen into

rows, input parameter. Number of rows to split screen into

pixel_measure_mode, input parameter. 1 for Y, 2 for U, 3 for V, 4 for gray, 5 for R, 6 for G,
7 for B

detection_timeout, input parameter. Number of milliseconds to abort detection.
detected_cells_count will be 0 for timeout condition

measure_interval, input parameter. Number of milliseconds between comparison of two
pictures

threshold, input parameter. Difference value for which procedure will trigger detection of
changes

draw_grid, Boolean input parameter. True (1) to draw grid(detected sectors/cells). False (0)
to not display grid/detected sectors

detected_cells_count, output parameter. Count of cells where pixel values differs enough to
trigger motion detection

clipping, allows to exclude some region from motion detection triggering, or use only selected
area to make motion detection

I’m not sure that following parameters are required but using them anyway

clipping_region_mode, input parameter. 0 = no clipping regions, 1 = excludes selected region
from motion detection, 2 = use only this region to make motion detection

clipping_region_column1, input parameter.

clipping_region_row1, input parameter. This is top-left corner of clipping region

clipping_region_column2, input parameter.

clipping_region_row2, input parameter. This is right bottom corner of clipping region)

function md_get_cell_diff (col [in] = column of the cell we are requesting, row [in] = row of
the cell we are requesting, val [out] = value of difference between measurements/
comparisons)

Reserved parameters clipping regions, pixel_measure_mode, draw_grid

Fingalo’s Builds

Available from: Fingalo’s CHDK2

Added commands: SET_LED, GET_VBATT, SET_RAW, and SET_PROP / GET_PROP

Used to control the external LED lamps, read the battery voltage, turn RAW image recording
on and off from scripts, and to set/read “property-case” values (respectively).

NOTE: Fingalo has also included the amazing Motion-Detection command from MX3 as
outlined above. See MX3’s Motion Detection Commands

LED Lamp Control (Fingalo’s builds only)
Usage:

set_led a b c

Page 30 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Fingalo says, “ONLY for S3 (and S2 I guess)”

I tried with A560 and it worked, but there is no LED 10 (and no 6). And I think these work
with any A500-series camera.

Parameter a is the LED-lamp as follows:

a LED Lamp

4 GREEN (by power switch on S3 and A560)

5 YELLOW (by power switch on S3 and under green LED on A560)

6 (not used)

7 ORANGE (red LED on back of S3 and same place than green on A560)

8 BLUE

9 Focus Assist/Auto-Focus Lamp/AF Lamp (bright green on S3 & bright orange on A560)

10 Timer/Tally Lamp (bright orange lamp in front on S3)

Parameter b

0 LED is off, 1 LED is on

Parameter c (optional) is brightness

0–200, (Fingalo says, “Seems to work only on the blue LED.”)

(LEDs work on A560, but brightness doesn’t work for any of them.)

Example:

rem Turn on AF_Lamp, Focus Assist Lamp
set_led 9 1

rem Turn on Blue LED with reduced brightness
set_led 8 1 35

IMPORTANT NOTE: When using any LED lamp controls, remember to reset them to their
original condition as they were before executing your script. Failure to do so may result in
your power-indicator not alerting you that your camera still powered on. Or other important
camera functions involving the LED lamps may not light at their proper times.

Note 2: When testing the Blue LED brightness by putting it in a for x=0 to 200 loop to ramp
the value all the way up in 1 value increments, then and back down again, it doesn’t appear to
behave linearly. The LED ramps up, then turns off, briefly flashes, ramps up again, flashes,
then ramps down and flashes (or something similar to that). I suspect it might be working
from 0 to 127 using binary bit values. But I’ve not tested it for this.

GET_VBATT Read Battery Voltage
Read voltage, momentary value, varies a bit.

Usage:

a = get_vbatt

Value is returned in mV (millivolts, 1/1000th of a volt).

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 31 of 60

SET_RAW enable/disable RAW Recording
(Fingalo’s builds only [AllBest too])

Usage:

set_raw a

where: a = 0 RAW recording is OFF; a = 1 RAW recording is ON

MORE USER VARIABLES!!!!!!
(Currently, Fingalo’s v106 build only)

Fingalo’s version 106 allows UPPERCASE variables, in addition to lowercase variables. You
can use a-z and A-Z, for a total of 52 unique variables!

SET Dark Frame subtraction state (ON|OFF|AUTO)
(Currently only in Fingalo’s v106 or later)

Determines whether the camera will do a dark frame subtraction after taking a shot. Auto
means the camera decides, OFF means no, ON means yes. Dark frame acquisition and
subtraction typically occurs for images with an exposure time of 2/3 of a second or longer
(1.3 sec for A470?). It does consume time (it’s equivalent to taking another image at the same
exposure time).

Note: although this command refers to “raw”, it actually applies regardless of whether you are
in RAW mode or not. AUTO is the state the camera normally is in. CHDK allows you to
change this to the ON or OFF states, and this uBASIC command allows you to change it in a
script.

Usage:

set_raw_nr a

where the variable a determines the state: 0=Auto, 1=OFF, 2=ON

SET/GET_PROP – Read/Set Property-Case Values
(Fingalo’s builds only)

This is a powerful pair of commands. These are used to read and set “property-case” values
in the firmware of your camera. They can be used for: detecting and setting the flash mode,
mode-dial position, the internal self-timer delay, video frame rates, and more.

A new page has been created to describe the use of some of the more useful property
case values. See this link The Property Case Use page

The presently known property-case values were originally taken from a list posted at a
Russian authored List of known Property Cases. A more up-to-date list can be found here:
this page of Property Case IDs. [There is now a Discussion page section for user
contributions to determining the values and uses of the property cases. It also has a link to
scripts for exploring these items. You can find it here: Property case exploration.]

IMPORTANT
USE THE SET_PROP COMMAND WITH CAUTION. NOT ALL HAVE
BEEN TESTED FOR POSSIBLE OUTCOMES.

Property cases are different for Digic II and Digic III cameras.

Page 32 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

EXAMPLE: A570IS ISO is at #149, not #21 like on the S3IS, and the white
balance control is #268, not #206. Furthermore, some Digic III cameras (G7,
SD800IS, SD900) use the Digic II property set.

You are advised to confirm that these properties are appropriate for your
camera before you attempt to change them.

Usage:
set_prop propid value
get_prop propid value

where propid may be any of the following (for S3IS?? – see later tables for Digic II & III):

PropID Description

0 Shooting mode dial position

1 Photo effect

5 White balance

6 Drive mode (S3 values: 0 = single, 1 = continuous, 2 = timer)

8 Hi-speed continuous mode (S3: 1 = OFF, 0 = ON

9 Metering mode (S3 values: 0 = eval 1 = spot 2 = centre)

11 Macro (S3 values: 0 = normal, 1 = macro, 2 = super macro)

12 Manual Focus (S3 values: 1 = manual, 0 = auto)

14 Delay of self-timer (appears to be time in milliseconds)

16 Flash mode (S3: 2 = flash closed, otherwise 0 = auto, 1 = ON)

18 Red eye mode (S3: 0 = OFF, 1 = ON)

19 Flash slow sync (S3: 0 = OFF, 1 = ON)

20 Flash Sync Curtain (S3: 0 = first, 1 = second)

21 ISO value (S3: 0 = auto, 1 = ISO-HI, or actual ISO: 80,100,200,400,800)

23 Image quality (S3 values: 0, 1, 2 from best to worst)

24 Image resolution (S3 values: 0, 1, 2, 4, 8 for L, M1, M2, S, W)

25, 26 EV correction (positive or negative, 96 units per stop)

28 Flash correction (same units as 25/26)

32 Exp bracket range (Same units as 25/26: e.g. 96 = ±1 stop range)

34 Focus bracket range 2 = Smallest, 1 = Medium, 0 = largest

36 Bracket mode: 0 = NONE, 1 = exposure, 2 = focus

37 Orientation sensor

39 Chosen Av (by user)

40 Chosen Tv (by user)

65 Focus distance

67 Focus OK: 1 = Yes, 0 = NO

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 33 of 60

PropID Description

68 Coming Av

69 Coming Tv

74 AE lock: 1 = ON, 0 = OFF

126 Video FPS (15, 30 or 60. Don’t change here!)

127, 128 Video resolution (S3: 2, 1 for 640480; 1, 0 for 320240)

177 Intervalometer: # of shots (0 if not activated)

205 ? ‘1’ during shooting process

206 “MyColors?” mode (see link below)

218 Custom timer continuous: # of shots to be taken

219 Self-Timer setting: 0 = 2 sec, 1 = 10 sec, 2 = custom/continuous

And value may be any that is appropriate for that particular propid.

2, 3, 4, 207, 208, 209, 210 contain individual parameters for the “Custom” MyColors setting

For Digic II based camera (and some Digic III cameras: G7, SD800IS, SD900):

R/W Description A620 S3IS SD900

0,236 Shooting MODE Dial position * *

1 Photo effect

2 Custom MyColors Sharpness

3 Custom MyColors Saturation

4 Custom MyColors Contrast

5
White Balance Mode (0, 1, 2, 3, 4, 5, 7 = Auto, Day Light,
Cloudy, Tungsten, Fluorescent, Fluorescent H, Custom)

6 Drive mode (0=normal, 1=continuous, 2=timer)

8 Hi-speed continuous (1=OFF, 0=ON)

9 Metering mode (0=eval, 2=center, 1=spot)

10 Spot AE Point (0=center, 1=auto focus point)

11 Macro mode (0, 1, or 5 for normal, macro, super macro)

12 Manual Focus (0=Auto, 1=Manual)

13
AF
S3IS: 0=Single, 1=continuous

*

14 Delay of self-timer (in msec)

Page 34 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

R/W Description A620 S3IS SD900

15
Flash adjust mode
S3IS: 0=Auto, 1=Manual (see 28 & 29)

*

16 Flash mode (0, 1, 2 = flash auto, flash on, flash off)

18 Red-eye mode (0=OFF, 1=ON)

19 Flash slow sync (0=OFF, 1=ON)

20 Flash Sync Curtain (0=1st, 1=2nd)

21
ISO value
S3IS: 0=auto, 1=ISO-HI, or actual ISO: 80, 100, etc

*

23
Image quality
S3IS: 0, 1, 2 from best to worst

*

24
Image resolution
S3IS: 0, 1, 2, 4, 8 for L, M1, M2, S, W

*

25,26
EV correction (units: ±96 per 1 stop range) (On S3is and i
guess on more models: Also used in movie mode(!), but
AE-lock has to be activated → 205 to 1)

28 Flash correction (units: ±96 per 1 stop range, if #15=0)

29
Manual flash output (units 0, 1, 2 from less to full, if
#15=1)

32 Exposure bracket range (units: 96 per 1 stop extension)

34 Focus bracket range (2=Smallest, 1=Medium, 0=largest)

36 Bracket mode (0=none, 1=EV, 2=focus)

37
Orientation sensor
SD900: 0=Normal, 270=Left, 90=Right

*

38
Automatic Image Rotation
S3IS/SD900: 1=ON, 0=OFF

* *

39 Chosen Av (User AV)

40

Chosen Tv (User TV)
SD900: 65152=15”, 65184=13”, 65218=10”, 65248=8”,
65280=6”, 65312=5”, 65344=4”, 65376=3.2”, 65408=2.5”,
65440=2”, 65472=1.6”, 65504=1.3”, 0=1”

*

46/47
Seem to be influenced by stitch mode, I guess this is
important for Exif data → data for stitch programs or the
canon stitch assistant – assumption!

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 35 of 60

R/W Description A620 S3IS SD900

52

Stitch Mode
S3IS: 0=from left to right, 1=from right to left, 2=bottom to
top, 3=top to bottom,
4=top left→top right→bottom left→bottom right

*

57
Digital Zoom
S3IS: 0–6, 0 is no digital zoom, 6 is “most digital zoom”
(48x); SD900: 3=2.3x, 1=1.4x, 0=no Zoom / Default

* *

58
Digital Zoom State
S3IS: 1=On, 0=Off
SD900: 2=1.4x / 2.3x, 1=Default, 0=Off

* *

63
AF-light
S3IS/SD900: 1=ON, 2=OFF

* *

64 Manual settings

65,66 Focus distance

67
Focus OK (green, not yellow) when in photo mode 1=OK,
0=not set

68 Coming Av

69 Coming Tv

71 422

72 Looks like it’s ISO * something + 380

73 371

74
AE lock activated
S3IS: 1=yes, 0=no; see 205 (also in movie mode)

*

75 0

76 0

77 min available Av

78 R Flash fired

79 RW Flash fire

80 1

81 1

Page 36 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

R/W Description A620 S3IS SD900

82–
85

Often the same, sometimes slightly different

86 Av

87 0

88 2

89 0

90 0

91 5

92 0

93 0

94 0

95 8

96 10

99
Zoom step
S3IS: 0 = open wide, 128 = maximum zoom, on A620 this
will be 8 I guess

*

100 Custom White Balance (28 bytes)

101 Constantly varying with light

126
Video FPS
SD900: 30=30FPS, 15=15FPS

*

127
Video resolution
SD900: 3=1024768, 2=640480, 1=320240, 0=160120

*

128
Video resolution = 640480
SD900: 1=640480, 0=320240/1024768/160120

*

171 Zoom (what?)

172 Digital zoom(what?)

177 Intervalometer #of shots

178 File numbering (Continuous=0, Auto Reset=1)

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 37 of 60

R/W Description A620 S3IS SD900

181
Display mode (record mode only) (0 = show info icons, 1 =
Do not show info icons, 2 = LCD off, 3 = EVF)

184
Slideshow Settings – repeat slideshow (1 = repeat, 0 = do
not repeat)

185
Slideshow Settings – duration (1 = 3 seconds, 2 = 4s, 3 =
5s, 4 = 6s, 5 = 7s, 6 = 8s, 7 = 9s, 8 = 10s, 9 = 15s, 10 = 30s)

186 Print Settings/DPOF (1 = standard, 2 = overview, 3 = both)

187 Print Settings/DPOF (1 = date, 0 = no date)

188 Print Settings/DPOF (1 = filenumber, 0 = no filenumber)

190

In Postcard mode this determines what will be “printed”
into the pictures
available on cameras which support this
A620: 0 = off, 1 = date, 2 = date & time

*

192 AF Frame/Flexizone X-position

193 RW AFL active / activate AF

194

Used part of sensor when digital zoomed
S3IS: no digital zoom = 2816 then descending with
increased digital zoom: 2048,1600,1280,1024,832,704 –
can be useful!

*

195 Max resolution?

196 R

Language Setting:
2=English, 258=German, 514=French, 770=Dutch,
1026=Danish, 1282=Finnish, 1538=Italian,
1794=Norwegian, 2050=Swedish, 2306=Spanish,
2562=simplified Chinese, 2818=Russian,
3074=Portuguese, 3330=Greek, 3586=Polish, 3842=Czech,
4098=Hungarian, 4354=Turkish, 4610=traditional Chinese,
4866=Korean, 5122=Thai, 5378=Arabic, 5634=Japanese)
(Confirmed on S3is & A620 and several other cams)
NOTE: I just discovered that this setting directly is related
to NTSC/PAL setting. These numbers are valid for PAL.
If you set to NTSC, all these numbers are decremented by
1, meaning English is 1 and German is 257 in NTSC
(instead of 2 and 258).

* * *

200 Selected Movie mode *

Page 38 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

R/W Description A620 S3IS SD900

204

Related to flash (at least on S3is) – if flash popped down,
value is 4, if up value is 3 (in flash ON) and 0 (in Flash
AUTO mode) – on A620 when I disable flash, this is also 4
(I guess we can ignore this value on cameras with a “fixed”
flash, and use this on cameras with “pop-up flash” to detect
if the flash is popped up!)

*

205

1 during shooting process (this may be an indication that
exposure has been determined; it is set shortly after
shoot_half, and remains set if AE lock activated. See #74)
(in movie mode this is 1 when you activate AE Lock!!!)

206

Submode of “MyColors?” mode, including Color
accent/swap
S3IS: 0–11: off, strong, neutral, sepia, black/white, dia,
brighter skin tone, darker skin tone, strong blue, strong
green, strong red, custom color

* *

207 Custom MyColors Red

208 Custom MyColors Blue

209 Custom MyColors Green

210 Custom MyColors Skin Tone

211 Color Accent color

212 Color Swap from color

213 Color Swap to color

218 Custom timer continuous (value: # of shots to be taken)

219
Self Timer setting
S3IS: 0=2 sec, 1=10 sec, 2=custom continuous

*

223
Mic recording frequency (0 = 11.025 kHz, 1 = 22.050 kHz,
2 = 44.100 kHz)

226
MODE Dial – looks like it’s the same as PropertyCase 0
(S3IS: tested in scene mode, cycling through “programs”)

* *

227
Mic Level
S3IS: 1–5, low to high

*

228
Mic Wind Protection
S3IS: 1=ON, 0=OFF

*

229 IS (0,1,2,3 = continuous, shoot only, panning, off)

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 39 of 60

R/W Description A620 S3IS SD900

230 Converter (0=off, 1 = wide, 2 = tele)

231 Color Accent tolerance setting

233 Color Swap/Accent tolerance

235 Safety Shift (0 = off, 1 = on)

236 MODE Dial –

237 47

254 Focus, auto, 320–725

257 Color Swap tolerance setting

260 500

262 0 in fireworks or movie mode, otherwise 1

274 411

298 201329664

299 –201264128

* = camera supports PropertyCase (PropertyCase value may be camera specific)
– = camera does not support PropertyCase (at least value does not change)

For Digic III based cameras (such as SD1000, A470, A570IS and A590IS) and Digic IV
based cameras (such as SX10, SX1) not much tested yet...:

R/W Description

3 RO Auto-Exposure Lock

4 Exposure bracket range (units: 96 per 1 stop extension)

5 AF Assist Beam Setting (0, 1 = Off, On)

6 RO
Focus Mode (0, 1, 3, 4, 5 = Normal, Macro, Infinity, Manual, Super Macro
[SX10])

8 AiAF Mode (0, 1, 2 = On, Off, Face-Detect)

11 RW Auto-Focus Lock

12 AF Mode (0=single, 1=continuous) [SX10]

Page 40 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

R/W Description

18 RW
Auto-Focus state after half-press (stays 1 if shoot_half is released!) (0 orange,
>=1 green) (with AiAF=off only 0 or 1, with enabled AiAF or Face the value
depends on position and number of AF boxes)

21 Auto Rotate (0, 1 = Off, On)

23 RW Av (for next shot, updates on half-shoot), 96 per 1 stop

24
Min Av (widest available aperture for current zoom, updates on half shoot), 96
per 1 stop. Note: on SD990, this includes the ND filter, if the ND was selected
by the camera in an auto mode.

25
Min Av (widest available aperture for current zoom, updates on half shoot), 96
per 1 stop. Note: on SD990, this does not include the ND filter.

26 RW
User Av (user selected “market” value in M/Av modes, writes become effective
on LCD on half shoot), 96 per 1 stop.

29 Bracket mode (0=none, 1=EV, 2=focus)

34 Bv

49,50 MODE Dial

55 Custom Color: Saturation (–2, –1, 0, 1, 2 = 254, 255, 0, 1, 2)

57 Picture Quality (0, 1, 2 = Superfine, Fine, Normal)

59 Custom Color: Contrast (–2, –1, 0, 1, 2 = 254, 255, 0, 1, 2)

60 Converter (0, 1, 2, 4)

61

Language + video standard settings; Value=PAL; for NTSC=value–1 (A720)
English=1, German=257, French=513, Dutch=769, Danish=1025,
Finnish=1281, Italian=1537, Norwegian=1793, Ukrainian=2049,
Swedish=2305, Spanish=2561, Chinese simplified=2817, Russian=3073,
Portuguese=3329, Greek=3585, Polish=3841, Czech=4097, Hungarian=4353,
Turkish=4609, Chinese traditional=4865, Korean=5121, Thai=5377,
Arabic=5633, Romanian=5889, Japanese=6145

63 Number of continuous shots taken last time

64 RW Flash Sync Curtain (0=1st, 1=2nd)

65
Subject Dist 2 (“Near limit”, most linear to real distance. You can get-and-set
this prop_id, but it doesn’t affect the near limit and/or the focus – tested with
A590).

66 RW Date stamp (0=Off, 1=Date, 2=Date & Time); only postcard mode

79 Delta Sv (What is this? Someone please add a description.)

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 41 of 60

R/W Description

91 RO Digital Tele-Converter mode (>0 if enabled)

92 RO Digital zoom source image width in pixels

94 Digital zoom mode (1=“Standard”, 0=any other mode)

95 RO
Digital Zoom depth (0–6: 0=none, 1–6 are for camera dependent zoom steps,
higher number = higher magnification)

102 RO Drive Mode (0, 1, 3 = single, continuous, timers)

103
Changes with light only in M-Mode (–445 is completely dark and 328 is fully
bright. Also depends on the current av/tv setting.)

105
Display mode (record mode only) (0, 1, 2, 3 = show info icons, do not show info
icons, LCD off, EVF)

107,
207

RO,
RW

Exposure Shift/Compensation (32 for 1/3 stop)

111
External flash state (0=Absent, 1=Present and turned on, 2=Present but turned
off)

113 Focus bracket range (2=Smallest, 1=Medium, 0=largest)

115 RO Ready to shoot, focus okay.

117 File numbering (Continuous=0, Auto Reset=1)

121 RW Flash adjust mode (0=Auto, 1=Manual) (see 127&141)

122 RO Flash used in last shot (0, 1 = Flash not used, Flash used)

127 RW Flash exposure compensation (units: ±96 per 1 stop range, if #121=0)

133 RO Manual Focus Mode (0, 1 = Off, On)

141 RW Manual flash output (units 0, 1, 2 from min to full, if #121=1)

143 RW Flash Mode (0, 1, 2 = flash auto, flash on, flash off)

145 IS (0, 1, 2, 3 = continuous, shoot only, panning, off)

149 RW ISO Mode (0=auto, 1=high auto, 100=manual ISO 100 etc)

155 Metering Method (0, 1, 2 = Evaluative, Spot, Center)

165 RW Time lapse movie shoot interval (milliseconds)

166 Movie frame rate

169 Video size mode (160=0, 320=1, 640=2)

Page 42 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

R/W Description

170 Video play mode (LP=0, SP=1)

184
My Colors (0–11): 0=Off, 1=Vivid, 2=Neutral, 3=B/W, 4=Sepia, 5=Positive
Film, 6=Lighter Skin Tone, 7=Darker Skin Tone, 8=Vivid Red, 9=Vivid Green,
10=Vivid Blue, 11=Custom Color)

195 Optical Zoom position (0, 1, 2, 3, 4, 5, 6...)

196
(? Scene dependent/ stays 0 when scene is black or when scene has optimal
light)

206 Shooting in progress

208
Flash Ready (1 during shutter half press after metering if camera is going to use
flash)

212 Review info (0=Off, 2=detailed, 3=focus check) [SX10]

213 Red-Eye (0 “Off”, 1 “On”)

218 RW
Picture Size (0, 1, 2, 3, 4, 5, 6, 8 = L, M1, M2, M3, S, RAW (on g9), Postcard,
W)

219 RO Orientation Sensor (0, 90, 270)

220 Safety FE (0 “Off”, 1 “On”)

223 Timer Mode (0, 1, 2 = 2 Second, 10 Second, Custom)

224 Timer Delay (ms) (can’t override)

225 Custom Color: Sharpness (–2, –1, 0, 1, 2 = 254, 255, 0, 1, 2)

227
“Long time exposure” indicator: 1 always in “Night snapshot” scene mode and
when the exposure time is set to  1s

233 Orientation stitch assistant (left to right=0, right to left=1)

245 Subject Dist 1 (equals ID 65 on the A590)

246 Sv Market (for next shot, updates on half-shoot), 96 per 1 stop

247 Sv (for next shot, updates on half-shoot), 96 per 1 stop

249 Digital Zoom position, same as #95, 0–6 on A590

251
Optical Zoom position, same as #192, 0–128 on SX10, same as #195 on A590,
0–7 on A590

252 Manual focus: equal value like 65, 245

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 43 of 60

R/W Description

254 Focus related, –1 for infinity

262 RW Tv (for next shot, updates on half-shoot), 96 per 1 stop

264 RW
User Tv (user selected value in M/Tv modes, writes become effective on LCD
on half shoot), 96 per 1 stop

268
White Balance Mode (0, 1, 2, 3, 4, 5, 6, 7 = Auto, Day Light, Cloudy, Tungsten,
Fluorescent, Fluorescent H, Flash [SX10], Custom)

269
White Balance Value (Middle around 900. Less corrects red and higher corrects
blue. Can’t override.)

277 Safety MF (0 “Off”, 1 “On”)

280 RAW+JPG (Raw+Jpg off = 0, Raw+Jpg on = 1)

290 iContrast setting (0=off, 1=on) [SX10]

293 Servo AF (0=off, 1=on) [SX10]

294 Aspect/Widescreen (1=widescreen, 0=standard) [SX1] ([1])

296 RO
ND filter status (0 off, 1 on) for manual mode. NOT updated in auto modes
(SD990). Note: you can write to it, but actual ND state doesn’t change.

297 ??? (SX10, SD990: 1 after half-press)

On the A590, it seems that possible propIDs range from 0 to 287. IDs greater than 287 will
always return “14”.

Additional information (hopefully growing) about what values might work for some of these
properties can be found at the following link: Property case exploration page. This link also
has a more complete description of the MyColors settings (contrast, saturation, sharpness,
individual color intensities, etc).

Example script for setting and viewing Prop_IDs.

@title popcase
@param a propid
@default a 0
@param b value
@default b 0
:loop
 wait_click
 is_key k “left”
 if k=1 then set_prop a b
 is_key k “set”
 if k=1 then goto “lend”
 get_prop a b
 print a,b
goto “loop”
:lend
end

Page 44 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Allbest’s Builds

The Allbest build is a major rewrite of CHDK, in many ways. It also includes many new
uBASIC commands. Below is a partial list of the complete list of available commands, those
which are unique to the Allbest build. These have not been documented in total yet, and more
uBASIC commands are being added frequently. (Please see the CHDK forum for discussions
of any works in progress.)

NOTE: Syntax usage in most cases is command_name x, where x either sets or returns the
value in that command. Unless stated otherwise, assume this usage syntax. Otherwise they
may be acting as their own variable, and may be used as-is in a command string. Example:
get_vbatt is its own variable. It can either be assigned to another variable with x=get_vbatt,
or used on its own as in print get_vbatt. The different types of uBASIC command syntax
will be clarified as needed or as discovered. (Developers don’t document things very well.
We, as end-users, sometimes have to find these things by trial-and-error, or be perceived as a
major nuisance by hounding them for any clues into what they did.  I use both methods. )

Get ops commands (to be associated with suitable return parameters):
“get_av96”

Since Canon appears to use ?? to calculate the rate of 96 (found by analysing the values
match formulas APEX), and also in the token indicates that the installation corresponds to the
value of Av * 96. From my point of view, so convenient. Load-meaning teams receive
appropriate value in a variable Av * 96 from the relevant again, PropertyCase.
(This wording is an online automated translation from the original info in German. If anyone would like to make
sense of what it’s saying, please correct this text. {I’ll have a crack if someone points me to the original German
text [DanielF]})

Example of usage (set_shutter for Ixus) by Allbest:

@title Shutter TEST
sleep 500
rem initiation
press “shoot_half”
release “shoot_half”
get_tv96 t

:set_shutter
 print “Tv set to”,t
 wait_click
 is_key k “set”
 if k=1 then goto “k_set”
 is_key k “down”
 if k=1 then t=t-32
 k=0
 is_key k “up”
 if k=1 then t=t+32
 k=0
 set_tv96_direct t
 goto “set_shutter”

:k_set
 shoot
 end

“get_bv96” get brightness value

“get_day_second current within one second of the day

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 45 of 60

Syntax: x=get_day_seconds

get_day_seconds acts as its own variable, This allows you to even use it within
calculations without first assigning it to another variable.

“get_dof” get the depth of sharpness in mm

“get_far_limit” get the border zone ranged acceptable sharpness mm

“get_focus”

“get_hyp_dist” get hyperfocal distance

“get_iso_market” get “marketing” ISO (See the Allbest’s Firmware Usage page on ISO
values for what is meant by a “Market Value”.)

“get_iso_mode” obtain ISO mode (the former get_iso)

“get_iso_real” get real “value” ISO

“get_iso” obtain ISO mode

“get_near_limit” get dipped border zone acceptable sharpness

“get_prop” obtain property case, call

“get_sv96, receive sensitivity value in the standard APEX
(Additive system of Photographic Exposure, see
http://en.wikipedia.org/wiki/APEX_system). As always,
multiplied by 96

“get_tick_count” returns system time, in milliseconds since camera power-on

Syntax: x=get_tick_count

get_tick_count acts as its own variable. This allows you to even use it within
calculations without first assigning it to another variable.

“get_tv96 returns tv * 96. The following table is for DIGIC II and III cameras:

speed Tv96-val. speed Tv96-val. speed Tv96-val. speed Tv96-val.

64.0” -576 3.2” -160 1/6” 256 1/125” 672

50.8” -544 2.5” -128 1/8” 288 1/160” 704

40.3” -512 2.0” -96 1/10” 320 1/200” 736

32.0” -480 1.6” -64 1/13” 352 1/250” 768

25.4” -448 1.3” -32 1/15” 384 1/320” 800

20.0” -416 1.0” 0 1/20” 416 1/400” 832

16.0” -384 0.8” 32 1/25” 448 1/500” 864

12.7” -352 0.6” 64 1/30” 480 1/640” 896

10.0” -320 0.5” 96 1/40” 512 1/800” 928

8.0” -288 0.4” 128 1/50” 544 1/1000” 960

6.3” -256 0.3” 160 1/60” 576 1/1250” 992

5.0” -224 1/4” 192 1/80” 608 1/1600” 1021

4.0” -192 1/5” 224 1/100” 640 1/2000” 1053

E.g. the A620 ISO list:

0 Auto

50 50

100 100

200 200

400 400

Page 46 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

So for DIGIC II and III cameras you can calculate shutter speed from this equation:









 96

96

2
tv

Time seconds, though unfortunately uBASIC doesn’t facilitate this calculation, since
it lacks the ‘^’ (exponentiation) operator (‘twould be easy in assembler or C ).

“get_user_av_id”, the former get_av. Get custom installation av (in the manual modes) for ID
in CHDK:

E.g. the A620 list:

av_ID av * 96 Aperture

9 288 f2.8

10 320 f3.2

11 352 f3.5

12 384 f4.0

13 416 f4.5

14 448 f5.0

15 480 f5.6

16 512 f6.3

17 544 f7.1

18 576 f8.0

“get_user_av96” returns custom av * 96

“get_user_tv_id” returns CHDK identifier for the established user manual modes tv

E.g. the A620 list:

-4 -128 “2.5”

-3 -96 “2”

-2 -64 “1.6”

-1 -32 “1.3”

0 0 “1”

1 32 “0.8”

2 64 “0.6”

3 96 “0.5”

4 128 “0.4”

Important: earlier scripts just use the “get_tv” and “get_av” commands, these must be
changed to this newer “get_user_tv_id” and “get_user_av_id” commands to make them work
properly if using Allbest builds.

This is part of possible values. Meaning load deflection on the id, the same as in the case of
av. (I hope that makes sense to you – means nothing to me! [DF])

“get_user_tv96” returns value installed in the user manual modes. Important: tv * 96

(The step between successive
IDs is a shift of 1/3 EV)

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 47 of 60

“get_vbatt”, the voltage of the battery

Syntax: x=get_vbatt

get_vbatt acts as its own variable. This allows you to use it even within expressions,
e.g. if (get_vbatt <= 4300) then print “DEAD BATTERY!”

“get_zoom”

(What does this do?)

Set OPS (usually associated with suitable parameters):
“set_av96_direct” direct installation av * 96. It works similarly to direct the installation of the
interface chdk av. In any mode

“set_av_rel” see “set_user_av_by_id_rel (compatibility)

“set_av96”, the installation of av * 96 in accordance with acceptable Canon list for the
camera. Works in any mode

“set_av” see “set_user_av_by_id (compatibility)

“set_focus”

“set_iso_mode”, the installation of an ISO regime

“set_iso_real” Direct installation ISO. It works similarly to the installation of the CHDK ISO
interface

“set_iso” – see “set_iso_mode (compatibility)

“set_led” Transmit three-parameters ID, indicator state, and brightness (see p.31/32)

“set_prop”, install PropertyCase (?)

“set_raw_nr”, install script regime for noise reduction: “Auto”, “Off”, “On” (= 0, 1, 2 resp.)

“set_raw”, the installation script in raw mode; disables the last (previous?)

“set_sv96” direct installation of the sensitivity of APEX (Sv * 96)

“set_tv96_direct” direct tv * 96 installation. Works by installing excerpts from the CHDK
interface

“set_tv_rel” see “set_user_tv_rel_by_id” (interoperability)

“set_tv96” direct tv * 96 installation from a list of valid CANON values (this value type
N * 32. N for the A620 can have values from -12 to 32. Works by installing excerpts from
the CHDK interface

“set_tv” see “set_user_tv_by_id” (interoperability)

“set_user_av_by_id_rel” av installation on the current user on bias. The offset indicated in Id.
The Id rationale was listed above.

“set_user_av_by_id” custom install av according to the ID in CHDK

“set_user_av96” custom install av * 96 in the manual modes

“set_user_tv_rel_by_id” custom install tv relative to the current tv. The offset is indicated in
ID. ID rationale was listed above

“set_user_tv_by_id”, the installation of custom tv permissible, in accordance with Canon ID
for CHDK

Page 48 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

“set_user_tv96”, the installation of custom Tv * 96

“wheel_right”

“wheel_left”

“get_autostart” parameter checking autostart for scripts

Syntax: x=get_autostart (or used as it’s own variable-string in calculations; see
get_vbatt example)

“set_autostart” Setting this option to autostart scripts

With this command you should be cautious. Specifying Autorun causes the script to
run when you turn the camera on.

“get_usb_power, checking for USB connectivity. Works for series A and S-as a minimum.

Syntax x=get_usb_power

For G-series is not working. Integration with USB button. (?)

“exit_alt”

And some recently introduced commands:
shut_down

Simply powers-down the camera. Useful for Remote USB scripts where the USB
signal may wake up the camera, execute some script function, and then shut down the
camera again when done, to save on power for lengthy remote-shooting needs.

Example, if x=(some calculation) then shut_down, or just used as a line on its
own at the end of your script.

get_disk_size

get_free_disk_space

Returns values in KB. You can build scripts now that stop when a specific disk limit
is exceeded. For easier calculation divide by 1024 to return value in MB.

Syntax: x=get_disk_size, x=get_free_disk_space

Example, to print the space left in megabytes, print get_free_disk_space/1024
(this, amongst others, is one of those commands that acts as its own variable)

get_jpg_count

get_raw_count

Syntax: x=get_jpg_count, x=get_raw_count (acts as its own variable which may be
assigned to other variables)

Returns the calculated value of how many JPG or RAW shot space is left available on
the SD card. (JPG value is approximated and taken from an average of file-sizes,
using Canon’s own algorithm, the same as shots remaining left in your EVF/LCD
display.) Use this command to detect when not enough space is remaining for your
required script task to either end the script or shut_down the camera.

set_nd_filter x, where x is:

0 = OFF
1 = ND filter IN

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 49 of 60

2 = ND filter OUT

Added ability to set ND-filter for next set of cameras: a560, a570, g7, ixus700_sd500,
ixus70_sd1000, ixus800_sd700, a710 (deeply tested for Ixus800_sd700). This ability
replaces aperture override menu entry for Ixus and a560 camera set. For all others
from above-mentioned list it is an experimental feature.

get_raw_nr

Returns the condition of your NR (noise reduction setting).

Syntax: x=get_raw_nr

Microfunguy’s SDM (StereoData Maker) Builds

Available from: http://stereo.jpn.org/eng/sdm/index.htm

The basic CHDK commands that SDM supports and its own additional ‘plain English’
commands for custom-timer and continuous-shooting bracketing are detailed at
http://stereo.jpn.org/eng/sdm/uBASIC.htm.

The time_lapse command includes options for auto-shutdown, USB stop/start (ideal for
KAP), screen blanking and combined Tv and focus bracketing.

The script parameters are described at http://stereo.jpn.org/eng/sdm/tlapse.htm

A number of walk-through examples are at http://stereo.jpn.org/eng/sdm/tlapse2.htm

This example starts at an initial focus position and takes multiple photos at gradually
increasing step-size until infinity is reached :

set_focus_to 1000
auto_focus_bracketing
“ Autofocus bracketing”
“ Press switch”
wait_for_switch_press
start_continuous_sequence
wait_until_done
end_continuous_sequence

USB Remote Cable-Release Function!

This amazing feature was found by a talented Ukrainian programmer known as Zosim. You
may find his original source code and executable binaries for the A710IS camera at CHDK
binaries and source and photos to build simple cable-release switch. Fingalo and
Microfunguy have both added this remarkable addition to their builds of CHDK.

Be SURE to also check out the Special Builds Features in the Firmware Usage page for two
new Script Menu items on how you can use this feature to completely operate your camera by
remote control only. From turning it on to executing your last loaded/used script.

Using nothing more than a 3-volt button-battery and a small switch, you may turn any USB
extension cable into a remote shutter release by running a small script. Or by using this script
method as a subroutine within your own much more complex scripts.

Most all the cameras are supported for the Remote USB feature, and most all of the different
builds also include it now.

There are now two new functions available in the Scripting Menu to enable or disable remote
sensing so that you may still download images from your camera while CHDK is still loaded

Page 50 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

and running as well as a setting to allow activating the last loaded script. See the “Special
Build Usage“ section for a little more info.

Usage:
special remote camera button, used in is_key commands with is_key x “remote”

Running this small script (or the loop embedded as a subroutine in more lengthy scripts) is all
you will need:

@title Remote button
:loop
wait_click 1
is_key k “remote”
if k=1 then shoot
goto “loop”
end

Or, if using Fingalo’s builds you may like his version with the simpler while/wend loop
commands:

@title Remote button
while 1
 wait_click 1
 if is_key “remote” then shoot
wend

end

There are many ways of using this “remote” key function; these are just two of the simpler
(and faster) ways to implement it.

That’s it! That’s all you need! Well, one of those little scripts, the right CHDK build, and the
cable-switch too.

Between MX3’s Motion-Detection options and this amazing USB cable-release method, there
is no limit to the various ways you may control your camera by remote means. Any simple
electronic circuit that can close a switch and feed a 3v to 5v DC signal to the USB port’s
proper contacts (observe proper polarity!) can now be used. There is also no limit to the
length of wire that you may use, as long as you keep the final contact voltage at the camera-
end between the 3vdc and 5vdc range. Use sound-sensitive circuits to record when sound-
events happen. Use light or motion changing events to trigger shooting sessions. Use any
CHDK intervalometer scripts or electronic intervalometer circuits to trigger shots. (There are
thousands of simple circuits like these all over the Internet.) Have your mouse or cat press a
switch to record their vanity-quotient for a science-fair project! The sky (literally) is the limit
to how many ways you may use these functions.

Have fun!

Debugging: the Unk Alert
This tiny version of uBASIC includes some debugging help. When running a script with a
bad command you might sometimes get a uBASIC:nn err statement printed in red in the top-
left corner of your EVF or LCD display. This will alert you to why your coding didn’t work,
albeit in a very abbreviated format giving the line (nn) and error message.

Some examples of what you might see, and what they will mean:

uBASIC:24 Unk label Line 24 Unknown label

uBASIC:32 Parse err Line 32 Parse error – syntax error in uBASIC command

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 51 of 60

See the following sections for IDE and debugging aids ideal for both novice uBASIC
developers as well as the more experienced.

Debugging Scripts on a PC or Mac

There are now two ways you can test your CHDK scripts without needing to load them into
the camera every time, finding the error and then changing a line, loading it into the camera
again and again. The first way is to use the uBASIC_test program, a simple batch program
which only runs under Windows. The second way is to use the UBDebug program, which
runs under Windows or Mac OSX.

Using UBDebug – an Integrated Development Environment for Scripts

There’s now an interactive development environment for uBasic scripts. Written in java with
native support for both Windows and Mac OSX it lets you load a script and step through it
line-by-line, inspecting and setting variables. You can also set the values to be returned by
functions (such as get_usb_power) and alter the value of properties. A simple breakpoint
mechanism is available. Scripts can be edited and saved to disk. For details see here.

Using the UBASIC_TEST.EXE Console

Download this small file uBASIC_test.rar (if you can find it on a ‘clean’ website! [DF]),
UnRAR (like UnZIP) it to your scripts working location on your hard-drive. You should have
a file named uBASIC_test.exe in your scripts-work folder now. You have to run this program
from a Windows Command Prompt (the old time DOS window). Some people have a
“Launch Command Prompt Here” on the right-click menu of Windows Explorer, so you can
just right-click on the folder where your scripts and uBASIC_test.exe file reside. (You can
get this by installing “Open Command Window Here” Power Toy, available here.) Or you
can go to Programs > Accessories > Command Prompt (where I have mine for some reason).
And use the CD command to Change Directories until you get to where your scripts and
uBASIC_test.exe file reside. For example, if you start out in root directory C:\ and your
scripts are on drive D: in a sub-folder called CHDK\Files\Scripts\, at the command prompt
just type:

cd D:\CHDK\Files\Scripts

and you’ll be where you’re supposed to be. (You might want to rename that little program to
just test.exe to make it easier to type each time.)

To test one of your scripts in that folder, at the Command Prompt, just type “uBASIC_test
scriptname.bas” (without the quotes). Where “scriptname.bas” is the name of the script you
want to test. It will use the default settings you have assigned to your variables. For testing
you should change some of those values to make sure everything is working properly under
new user-defined settings. (The reason I suggest you rename that uBASIC_test.exe to just
text.exe, is then all you have to type is “test scriptname.bas”, saving you a few key-presses.)

The easiest way to run console programs is to use a file manager which has a command line.
For example, Far Manager or Total Commander.

You can also test your scripts via drag-&-drop with a batch file. Here’s how to do it…

Open a text editor and enter the following lines:

@uBASIC_test.exe %1
@pause

Page 52 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Save this as “uBASIC_test.bat” in the same folder where your uBASIC_test.exe is. Now you
can drag a script with your mouse onto this batch file and it will be executed. (This would
also work without making a special batch file, but we need the “pause” command to read the
output).

You may need to modify your BAT file to have the @uBASIC_test.exe %1 line to include
the full path to your uBASIC_text.exe file, as well as enclosing the variable %1 in quotes, in
case your script’s filename includes any spaces. For example:

@H:\Tests\CHDK_Files\SCRIPTS\uBASIC_test.exe “%1”
@pause

If you run into problems and this still doesn’t work (using this drag & drop method):

1) Make sure your uBASIC_test.exe file and scripts are not in any path that contains
spaces. (Example: you can’t have it in a sub-folder path of “D:\CHDK Files\Script
Tests\uBASIC_test.exe”. Change those spaces to _ [underscores] in your actual
folder-names if need be.) [DF:] Actually, you can have spaces in your path – just
enclose the entire path in quotation marks, like so:
@”H:\Tests\CHDK Files\SCRIPTS\uBASIC_test.exe”

2) Your BAT file association may have become corrupted. Here’s a handy page of
Windows® XP File Association Fixes Get the one for Batch Files. (Save them all,
they may come in handy one day!)

(How did I find this out? I had all these problems occurring )

An alternative drag-and-drop method (WinXP):

1) Right-click on uBasic.exe and make a shortcut on desktop,
2) Find/search for your script.
3) drag your script to uBASIC icon, let go and it runs!

You may have to adjust the ‘Icon’ properties to keep the result on-screen

The addition of a few extra print and rem statements will help debugging, also include values
to replace the @defaults.

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 53 of 60

Script-Writer’s Handy Command-Reference List
I got tired of trying to remember all the commands, so I put together this handy reference list
to keep open in my text-editor alongside any scripts I might be working on. I thought it might
help other scriptwriters too.

CHDK Command List

(Build 129 or later)

shoot

click “button-name”

press “button-name” (used in conjunction with release)

release “button-name”

button-names:

up / down / left / right

set

shoot_half

shoot_full

zoom_in / zoom_out

menu

display

print (means “shortcut” in s-series)

erase (means “func”in s-series)

S-series specific button-names:

iso

flash

mf

macro

video

timer

print commands:

print “text text text”, variable; “text”

The “print_screen” Command

Whatever the script prints on the mini-console screen is also written to file
‘/CHDK/SCRIPTS/PR_SCREEN.TXT’.

First call is either:

print_screen 0 The text is appended to the last file. If the file was there already, the text is
written at the end and the older text is not removed.

Page 54 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

print_screen 1 The text is written to “A/CHDK/BOOKS/PS00000.TXT”. The new text
overwrites any existing text in the file if there was any.

print_screen N The text is written to the next file number. The file number cycles between 0
and N-1. If the resulting file number is 5, then the text is written to file
“A/CHDK/BOOKS/PS00005.TXT”.

The file number of the last written file is kept in file “A/CHDK/BOOKS/PS_COUNT.TXT”.
Delete the file to reset the counter.

print_screen 0 turns off writing to the file and print_screen 1 turns it back on.

Example:

@title printscreen test

@param a None
@default a 0

@param c mode: 0-append, 1-replace, other-modulo c
@default c 1

print_screen c
print “START “c
print_screen 0
print “Not written to file”
print_screen 1
print “This should be written to the file.”
print “a=“a
print_screen 0
end

The “cls” Command

cls stands for “Clear Screen”. This is used to clear the mini-console screen from any
“print” statements in an easy way.

Other commands:

set_zoom, set_zoom_rel, get_zoom

syntax:set_zoom x (where x is 0 to 8, 14, or 129)

set_zoom_rel x (x is ±relative change)

get_zoom x (zoom value placed in variable x)

range: A-series: x = 0 to 8 or 14 (9 or 15 steps)

S-series: x = 0 to 128 (129 steps)

Zoom command restrictions:

* Camera does not refocus automatically after the end of zooming.
Use a click or press/release “shoot_half” command to implement a refocusing if
needed.

* The “sleep” command is needed after the “set_zoom” command.
Otherwise, camera will shutdown if other command is executed during zooming
process.

set_tv, set_tv_rel get_tv

syntax:set_tv x (where x is the index value)

set_tv_rel x (x is ±relative change)

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 55 of 60

get_tv x (index value placed in variable x)

Exposure

Value Index (w/ black-frame) Value Index

15” –12 (~33”) 1/15 12

13” –11 (~27”) 1/20 13

10” –10 (~21”) 1/25 14

8” –9 (~17”) 1/30 15

6” –8 (~13”) 1/40 16

5” –7 (~11”) 1/50 17

4” –6 (~9”) 1/60 18

3”2 –5 (~7”) 1/80 19

2”5 –4 (~6”) 1/100 20

2” –3 (~5”) 1/125 21

1”6 –2 (~4”) 1/160 22

1”3 –1 (~3”) 1/200 23

1” 0 1/250 24

0”8 1 1/320 25

0”6 2 1/400 26

0”5 3 1/500 27

0”4 4 1/640 28

0”3 5 1/800 29

1/4 6 1/1000 30

1/5 7 1/1250 31

1/6 8 1/1600 32

1/8 9 1/2000 33

1/10 10 1/2500 34

1/13 11 1/3200 35

(note: the w/ black-frame times are approximations for true total-time needed for the longer
shutter speeds)

(S-series)

Page 56 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

set_av, set_av_rel, get_av

syntax:set_av x (where x is the index value)

set_av_rel x (x is ±relative change)

get_av x (index value placed in variable x)

Aperture

Value Index

f2.7 9

f3.2 10

f3.5 11

f4.0 12

f4.5 13

f5.0 14

f5.6 15

f6.3 16

f7.1 17

f8.0 18

set_focus, get_focus

syntax:set_focus x (where x is the distance in mm)

get_focus x (the distance value placed in variable x)

set_iso, get_iso

syntax:set_iso x (where x is index value)

get_iso x (index value placed in variable x)

wait_click, is_key

syntax:wait_click (waits for keypress)

is_key k “<key>“ (sets k = 1 if the last key pressed was <key>)

ISO

Value index

AutoISO 0

50(80) 1

100 2

200 3

400 4

800 5 (where applicable)

HiISO –1 (where applicable)

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 57 of 60

LED Commands: (Fingalo’s Builds)

set_led a,b,c (ONLY for S3 (and S2 I guess))

Parameter a is the LED as follows:

a LED Lamp

4 GREEN (by power switch on S3 and A560)

5 YELLOW (by power switch on S3 and under green LED on A560)

6 (not used)

7 ORANGE (red LED on back of S3 and same place than green on A560)

8 BLUE

9 Focus Assist/Auto-Focus Lamp/AF Lamp (bright green on S3 & bright orange on A560)

10 Timer/Tally Lamp (bright orange lamp in front on S3)

Parameter b:
0 LED is off
1 LED is on

Parameter c (optional):
Brightness 0–200 (seems to work only on the blue LED)

Examples:

set_led 9,1 Turn on AF_beam
set_led 8,1,35 Turn on blue LED with reduced brightness

SDM Builds:

af_led_on
af_led_off

timer_led_on
timer_led_off

blue_led_on
blue_led_off

yellow_led_on
yellow_led_off

green_led_on
green_led_off

amber_led_on
amber_led_off

Special Build Commands:

set_prop and get_prop – Set and get property-case values directly. Use with caution!

Usage: set_prop a b
where a is the property-case location, b is the value

Page 58 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Property Cases (see earlier section for more recent tables):

Prop_ID Description

0 Shooting mode dial position

1 Photo effect

5 White balance

6 Drive mode (S3 values: 0=single, 1=continuous, 2=timer)

8 Hi-speed continuous mode (S3: 1=OFF, 0=ON

9 Metering mode (S3 values: 0=eval 1=spot 2=center)

11 Macro (S3 values: 0=normal, 1=macro, 2=super mac)

12 Manual Focus (S3 values: 1=manual, 0=auto)

14 Delay of selftimer (appears to be time in milliseconds)

16 Flash mode (s3: 2=flash closed, otherwise 0=auto, 1=ON)

18 Red eye mode (S3: 0=OFF, 1=ON)

19 Flash slow sync (S3: 0=OFF, 1=ON)

20 Flash Sync Curtain (S3: 0= first, 1 = second)

21 ISO value (S3: 0=auto, 1=ISO-HI, or actual ISO: 80,100,200,400,800)

23 Image quality (S3 values: 0,1,2 from best to worst)

24 Image resolution (S3 values: 0,1,2,4,8 for L,M1,M2,S,W)

25, 26 EV correction (positive or negative, 96 units per stop)

28 Flash correction (same units as 25,26)

32 Exp bracket range (Same units as 25/26: e.g. 96 = ±1 stop range)

34 Focus bracket range 2=Smallest, 1=Medium, 0=largest

36 Bracket mode: 0=NONE, 1 = exposure, 2 = focus

37 Orientation sensor

39 Chosen Av (by user)

40 Chosen Tv (by user)

65 Focus distance

67 Focus ok: 1=Yes, 0=NO

68 Coming Av

69 Coming Tv

74 AE lock: 1=ON, 0=OFF

126 Video FPS (15, 30 or 60. Don’t change here!)

127, 128 Video resolution (S3: 2,1 for 640x480; 1,0 for 320x240)

177 intervalometer: #of shots (0 if not activated)

205 0 ‘1’ during shooting process

206 “MyColors?” mode (See link below)

218 Custom timer continuous: # of shots to be taken

219 Self Timer setting: 0=2 sec, 1=10 sec, 2=custom continuous

D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc Page 59 of 60

Special Build USB Remote Routine:

Put 3v to USB cable to trigger Remote Cable Release

@title Remote button
:loop
wait_click 1
is_key k “remote”
if k=1 then shoot
goto “loop”
end

Fingalo Build Alt. Method:

@title Remote button
while 1
 wait_click 1
 if is_key “remote” then shoot
wend
end

Note: With this remote function the camera will not enter download mode when connecting
the USB cable. For download just disable CHDK by turning of write protect on the SD card.

Special Fingalo Build uBASIC Syntax

a=get_vbatt (inserts battery mV into variable a)

set_raw a (a=0 RAW recording off, a=1 RAW recording on)

Loop commands (do in lowercase, here in UPPER for clarity):

FOR / TO / STEP /.../ NEXT (step may be + or –)

DO /.../ UNTIL (exit when “until” is true)

WHILE /.../ WEND (loop as long as “while” is true)

IF /.../ THEN /.../ ELSE /.../ ENDIF (multiple relation statements)

Page 60 of 60 D:\Downloads\Software\CHDK\UBASIC_User_Guide_D0_3.doc

Notes:

	Contents
	Preface
	Starting Out
	The Script Header
	The Basics of BASIC Programming
	Logic Commands
	The LET Command
	The IF / THEN / ELSE Commands
	The FOR / TO / NEXT Commands
	Do / Until Loops
	While / Wend Loops
	Subroutines using GOSUB (and related GOTO) Commands and Labels
	Sub-Routines
	GOSUB and GOTO Examples
	The “print” Command
	The “print_screen” Command
	The “cls” Command
	The “sleep” Command
	The “get_tick_count” Command
	The “get_day_seconds” Command
	The “rem” Command
	The “exit_alt” Command
	The “end” Command

	Special Build Commands
	Fingalo’s Builds
	ingalo’s CHDK2
	FOR / TO / STEP / NEXT Loops
	IF / THEN / ELSE / ENDIF – Multiple Statements
	IS_KEY Optional Method

	Microfunguy’s SDM (Stereo Data Maker) Builds

	uBASIC variables
	Labels
	‘Restore’ label

	Math Expressions allowed in uBASIC
	itwise operators
	Logical Operators: AND, OR, NOT

	Camera Operation Commands
	shoot
	click/press/release “up”, “down”, “left”, “right”
	click/press/release “set”
	click/press/release “shoot_half”
	click/press/release “shoot_full”
	click/press/release “zoom_in”, “zoom_out”
	click/press/release “menu”
	click/press/release “display”
	click/press/release “print”
	click/press/release “erase”
	click/press/release “iso”, “flash”, “mf”, “macro”, “video”, “timer” (S-series only)
	The wait_click and is_key commands
	The set_tv, get_tv, etc commands
	The commands are
	Usage Notes

	The set_zoom, set_zoom_rel, get_zoom, set_zoom_speed commands
	The set_focus and get_focus commands
	The set_iso and get_iso commands
	Special Build Commands
	MX3’s Motion Detection Build
	md_detect_motion
	md_get_cell_diff

	Fingalo’s Builds
	X3’s Motion Detection Commands
	LED Lamp Control (Fingalo’s builds only)
	GET_VBATT Read Battery Voltage
	SET_RAW enable/disable RAW Recording
	MORE USER VARIABLES!!!!!!
	SET Dark Frame subtraction state (ON|OFF|AUTO)
	SET/GET_PROP – Read/Set Property-Case Values
	roperty case exploration.]
	IMPORTANT

	Allbest’s Builds
	Get ops commands (to be associated with suitable return parameters):
	Set OPS (usually associated with suitable parameters):
	And some recently introduced commands:

	Microfunguy’s SDM (StereoData Maker) Builds
	USB Remote Cable-Release Function!

	Debugging: the Unk Alert
	Debugging Scripts on a PC or Mac
	Using UBDebug – an Integrated Development Environment for Scripts
	ere.
	Using the UBASIC_TEST.EXE Console

	Script-Writer’s Handy Command-Reference List
	CHDK Command List
	Special Fingalo Build uBASIC Syntax

