
3 Riemann surfaces

3.1 Definitions and examples

From the definition of a surface, each point has a neighbourhood U and a homeomor-
phism ϕU from U to an open set V in R2. If two such neighbourhoods U,U ′ intersect,
then

ϕU ′ϕ−1
U : ϕU(U ∩ U ′) → ϕU ′(U ∩ U ′)

is a homeomorphism from one open set of R2 to another.

V’

U
U’

V

If we identify R2 with the complex numbers C then we can define:

Definition 8 A Riemann surface is a surface with a class of homeomorphisms ϕU

such that each map ϕU ′ϕ−1
U is a holomorphic (or analytic) homeomorphism.

We call each function ϕU a holomorphic coordinate.

Examples:

1. Let X be the extended complex plane X = C ∪ {∞}. Let U = C with ϕU(z) =
z ∈ C. Now take

U ′ = C\{0} ∪ {∞}

and define z′ = ϕU ′(z) = z−1 ∈ C if z 6= ∞ and ϕU ′(∞) = 0. Then

ϕU(U ∩ U ′) = C\{0}

and
ϕUϕ

−1
U ′ (z) = z−1
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which is holomorphic.

In the right coordinates this is the sphere, with ∞ the North Pole and the coordinate
maps given by stereographic projection. For this reason it is sometimes called the
Riemann sphere.

2. Let ω1, ω2 ∈ C be two complex numbers which are linearly independent over the
reals, and define an equivalence relation on C by z1 ∼ z2 if there are integers m,n such
that z1 − z2 = mω1 + nω2. Let X be the set of equivalence classes (with the quotient
topology). A small enough disc V around z ∈ C has at most one representative in
each equivalence class, so this gives a local homeomorphism to its projection U in X.
If U and U ′ intersect, then the two coordinates are related by a map

z 7→ z +mω1 + nω2

which is holomorphic.

This surface is topologically described by noting that every z is equivalent to one
inside the closed parallelogram whose vertices are 0, ω1, ω2, ω1 + ω2, but that points
on the boundary are identified:

We thus get a torus this way. Another way of describing the points of the torus is as
orbits of the action of the group Z× Z on C by (m,n) · z = z +mω1 + nω2.

3. The parallelograms in Example 2 fit together to tile the plane. There are groups
of holomorphic maps of the unit disc into itself for which the interior of a polygon
plays the same role as the interior of the parallelogram in the plane, and we get a
surface X by taking the orbits of the group action. Now we get a tiling of the disc:

30



In this example the polygon has eight sides and the surface is homeomorphic by the
classification theorem to the connected sum of two tori.

4. A complex algebraic curve X in C2 is given by

X = {(z, w) ∈ C2 : f(z, w) = 0}

where f is a polynomial in two variables with complex coefficients. If (∂f/∂z)(z, w) 6=
0 or (∂f/∂w)(z, w) 6= 0 for every (z, w) ∈ X, then using the implicit function theorem
(see Appendix A) X can be shown to be a Riemann surface with local homeomor-
phisms given by

(z, w) 7→ w where (∂f/∂z)(z, w) 6= 0

and
(z, w) 7→ z where (∂f/∂w)(z, w) 6= 0.

Definition 9 A holomorphic map between Riemann surfaces X and Y is a continu-
ous map f : X → Y such that for each holomorphic coordinate ϕU on U containing
x on X and ψW defined in a neighbourhood of f(x) on Y , the composition

ψW ◦ f ◦ ϕ−1
U

is holomorphic.

In particular if we take Y = C, we can define holomorphc functions on X.

Before proceeding, recall some basic facts about holomorphic functions (see [4]):
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• A holomorphic function has a convergent power series expansion in a neigh-
bourhood of each point at which it is defined:

f(z) = a0 + a1(z − c) + a2(z − c)2 + . . .

• If f vanishes at c then

f(z) = (z − c)m(c0 + c1(z − c) + . . .)

where c0 6= 0. In particular zeros are isolated.

• If f is non-constant it maps open sets to open sets.

• |f | cannot attain a maximum at an interior point of a disc (“maximum modulus
principle”).

• f : C 7→ C preserves angles between differentiable curves, both in magnitude
and sense.

This last property shows:

Proposition 3.1 A Riemann surface is orientable.

Proof: Assume X contains a Möbius band, and take a smooth curve down the
centre: γ : [0, 1] → X. In each small coordinate neighbourhood of a point on the
curve ϕUγ is a curve in a disc in C, and rotating the tangent vector γ′ by 90◦ or −90◦

defines an upper and lower half:

Identification on an overlapping neighbourhood is by a map which preserves angles,
and in particular the sense – anticlockwise or clockwise – so the two upper halves
agree on the overlap, and as we pass around the closed curve the strip is separated
into two halves. But removing the central curve of a Möbius strip leaves it connected:
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which gives a contradiction. 2

From the classification of surfaces we see that a closed, connected Riemann surface
is homeomorphic to a connected sum of tori.

3.2 Meromorphic functions

Recall that on a closed (i.e. compact) surfaceX, any continuous real function achieves
its maximum at some point x. Let X be a Riemann surface and f a holomorphic
function, then |f | is continuous, so assume it has its maximum at x. Since fϕ−1

U is a
holomorphic function on an open set in C containing ϕU(x), and has its maximum
modulus there, the maximum modulus principle says that f must be a constant c in
a neighbourhood of x. If X is connected, it follows that f = c everywhere.

Though there are no holomorphic functions, there do exist meromorphic functions:

Definition 10 A meromorphic function f on a Riemann surface X is a holomorphic
map to the Riemann sphere S = C ∪ {∞}.

This means that if we remove f−1(∞), then f is just a holomorphic function F with
values in C. If f(x) = ∞, and U is a coordinate neighbourhood of x, then using
the coordinate z′, fϕ−1

U is holomorphic. But z̃ = 1/z if z 6= 0 which means that
(F ◦ ϕ−1

U )−1 is holomorphic. Since it also vanishes,

F ◦ ϕ−1
U =

a0

zm
+ . . .

which is usually what we mean by a meromorphic function.

Example: A rational function

f(z) =
p(z)

q(z)

where p and q are polynomials is a meromorphic function on the Riemann sphere S.

The definition above is a geometrical one. Algebraically it is clear that the sum and
product of meromorphic functions is meromophic – they form a field.

Here is an example of a meromorphic function on the torus in Example 2.
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Define

℘(z) =
1

z2
+

∑
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
where the sum is over all non-zero ω = mω1 + nω2. Since for 2|z| < |ω|∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ ≤ 10
|z|
|ω|3

this converges uniformly on compact sets so long as∑
ω 6=0

1

|ω|3
<∞.

But mω1 + nω2 is never zero if m,n are real so we have an estimate

|mω1 + nω2| ≥ k
√
m2 + n2

so by the integral test we have convergence. Because the sum is essentially over all
equivalence classes

℘(z +mω1 + nω2) = ℘(z)

so that this is a meromorphic function on the surface X. It is called the Weierstrass
P-function.

It is a quite deep result that any closed Riemann surface has meromorphic functions.
Let us consider them in more detail. So let

f : X → S

be a meromorphic function. If the inverse image of a ∈ S is infinite, then it has a limit
point x by compactness of X. In a holomorphic coordinate around x with z(x) = 0,
f is defined by a holomorphic function F = fϕ−1

U with a sequence of points zn → 0
for which F (zn) − a = 0. But the zeros of a holomorphic function are isolated, so
we deduce that f−1(a) is a finite set. By a similar argument the points at which the
derivative F ′ vanishes are finite in number (check that this condition is independent of
the holomorphic coordinate). The points of X at which F ′ = 0 are called ramification
points.

Now recall another result from complex analysis: if a holomorphic function f has a
zero of order n at z = 0, then for ε > 0 sufficiently small, there is δ > 0 such that for
all a with 0 < |a| < δ, the equation f(z) = a has exactly n roots in the disc |z| < ε.

This result has two consequences. The first is that if F ′(x) 6= 0, then f maps a
neighbourhood Ux of x ∈ X homeomorphically to a neighbourhood Vx of f(x) ∈ S.
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Define V to be the intersection of the Vx as x runs over the finite set of points such
that f(x) = a, then f−1V consists of a finite number d of open sets, each mapped
homeomorphically onto V by f :

V
f

The second is that if F ′ = 0, we have

F (z) = zn(a0 + a1z + . . .)

for some n and F has a zero of order n at 0, where z(x) = 0. In that case there is
a neighbourhood U of x and V of a such that f(U) = V , and the inverse image of
y 6= x ∈ V consists of n distinct points, but f−1(a) = x. In fact, since a0 6= 0, we can
expand

(a0 + a1z + . . .)1/n = a
1/n
0 (1 + b1z + . . .)

in a power series and use a new coordinate

w = a
1/n
0 z(1 + b1z + . . .)

so that the map f is locally
w 7→ wn.

There are then two types of neighbourhoods of points: at an ordinary point the map
looks like w 7→ w and at a ramification point like w 7→ wn.

Removing the finite number of images under f of ramification points we get a sphere
minus a finite number of points. This is connected. The number of points in the
inverse image of a point in this punctured sphere is integer-valued and continuous,
hence constant. It is called the degree d of the meromorphic function f .

With this we can determine the Euler characteristic of the Riemann surface S from
the meromorphic function:

Theorem 3.2 (Riemann-Hurwitz) Let f : X → S be a meromorphic function of
degree d on a closed connected Riemann surface X, and suppose it has ramification
points x1, . . . , xn where the local form of f(x)− f(xk) is a holomorphic function with
a zero of multiplicity mk. Then

χ(X) = 2d−
n∑

k=1

(mk − 1)
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Proof: The idea is to take a triangulation of the sphere S such that the image of the
ramification points are vertices. This is straighforward. Now take a finite subcovering
of S by open sets of the form V above where the map f is either a homeomorphism
or of the form z 7→ zm. Subdivide the triangulation into smaller triangles such that
each one is contained in one of the sets V . Then the inverse images of the vertices
and edges of S form the vertices and edges of a triangulation of X.

If the triangulation of S has V vertices, E edges and F faces, then clearly the tri-
angulation of X has dE edges and dF faces. It has fewer vertices, though — in a
neighbourhood where f is of the form w 7→ wm the origin is a single vertex instead
of m of them. For each ramification point of order mk we therefore have one vertex
instead of mk. The count of vertices is therefore

dV −
n∑

k=1

(mk − 1).

Thus

χ(X) = d(V − E + F )−
n∑

k=1

(mk − 1) = 2d−
n∑

k=1

(mk − 1)

using χ(S) = 2. 2

Clearly the argument works just the same for a holomorphic map f : X → Y and
then

χ(X) = dχ(Y )−
n∑

k=1

(mk − 1).

As an example, consider the Weierstrass P-function ℘ : T → S:

℘(z) =
1

z2
+

∑
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
This has degree 2 since ℘(z) = ∞ only at z = 0 and there it has multiplicity 2. Each
mk ≤ d = 2, so the only possible value at the ramification points here is mk = 2. The
Riemann-Hurwitz formula gives:

0 = 4− n

so there must be exactly 4 ramification points. In fact we can see them directly,
because ℘(z) is an even function, so the derivative vanishes if −z = z. Of course
at z = 0, ℘(z) = ∞ so we should use the other coordinate on S: 1/℘ has a zero of
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multiplicity 2 at z = 0. To find the other points recall that ℘ is doubly periodic so
℘′ vanishes where

z = −z +mω1 + nω2

for some integers m,n, and these are the four points

0, ω1/2, ω2/2, (ω1 + ω2)/2 :

3.3 Multi-valued functions

The Riemann-Hurwitz formula is useful for determining the Euler characteristic of a
Riemann surface defined in terms of a multi-valued function, like

g(z) = z1/n.

We look for a closed surface on which z and g(z) are meromorphic functions. The
example above is easy: if w = z1/n then wn = z, and using the coordinate z′ = 1/z
on a neighbourhood of ∞ on the Riemann sphere S, if w′ = 1/w then w′n = z′.

Thus w and w′ are standard coordinates on S, and g(z) is the identity map S → S.
The function z = wn is then a meromorphic function f of degree n on S. It has two
ramification points of order n at w = 0 and w = ∞, so the Riemann-Hurwitz formula
is verified:

2 = χ(S) = 2n− 2(n− 1).

The most general case is that of a complex algebraic curve f(z, w) = 0. This is a
polynomial in w with coefficients functions of z, so its “solution” is a multivalued
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function of z. We shall deal with a simpler but still important case w2 = p(z) where
p is a polynomial of degree n in z with n distinct roots. We are looking then for a
Riemann surface on which √

p(z)

can be interpreted as a meromorphic function.

We proceed to define coordinate neighbourhoods on each of which w is a holomorphic
function. First, if p(a) 6= 0 then

p(z) = p(a)(1 + a1(z − a) + . . .+ an(z − a)n).

For each choice of
√
p(a) we have w expressed as a power series in z in a neigbourhood

of a:

w =
√
p(a)(1 + a1(z − a) + . . .+ an(z − a)n)1/2 = 1 + a1z/2 + . . . .

So we can take z as a coordinate on each of two open sets, and w is holomorphic here.

Vz

If p(a) = 0, then since p has distinct roots,

p(z) = (z − a)(b0 + b1(z − a) + . . .)

where b0 6= 0. Put u2 = (z − a) and p(z) = u2(b0 + b1u
2 + . . .) and so, choosing

√
b0,

w has a power series expansion in u:

w = u
√
b0(1 + b1u

2/b0 + . . .).

(The other choose of
√
b0 is equivalent to taking the local coordinate −u.) This gives

an open disc, with u as coordinate, on which w is holomorphic.

For z = ∞ we note that
w2

zn
= an +

an−1

z
+ . . .

so if n = 2m, ( w

zm

)2

= an +
an−1

z
+ . . .

and since an 6= 0, putting w′ = 1/w and z′ = 1/z we get

w′ = a−1/2
n z′m(1 + an−1z

′/an + . . .)−1/2
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which is a holomorphic function. If n = 2m + 1, we need a coordinate u2 = z′ as
above.

The coordinate neighbourhoods defined above give the set of solutions to w2 = p(z)
together with points at infinity the structure of a compact Riemann surface X such
that

• z is a meromorphic function of degree 2 on X

• w is a meromorphic function of degree n on X

• the ramification points of z are at the points (z = a, w = 0) where a is a root
of p(z), and if n is odd, at (z = ∞, w = ∞)

The Riemann-Hurwitz formula now gives

χ(X) = 2× 2− n = 4− n

if n is even and

χ(X) = 4− (n+ 1) = 3− n

if n is odd.

This type of Riemann surface is called hyperelliptic. Since the two values of w =√
p(z) only differ by a sign, we can think of (w, z) 7→ (−w, z) as being a holomorphic

homeomorphism from X to X, and then z is a coordinate on the space of orbits.
Topologically we can cut the surface in two – an “upper” and “lower” half – and
identify on the points on the boundary to get a sphere:

It is common also to view this downstairs on the Riemann sphere and insert cuts
between pairs of zeros of the polynomial p(z):
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As an example, consider again the P-function ℘(z), thought of as a degree 2 map
℘ : T → S. It has 4 ramification points, whose images are ∞ and the three finite
points e1, e2, e3 where

e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘((ω1 + ω2)/2).

So its derivative ℘′(z) vanishes only at three points, each with multiplicity 1. At each
of these points ℘ has the local form

℘(z) = e1 + (z − ω1/2)2(a0 + . . .)

and so
1

℘′(z)2
(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

is a well-defined holomorphic function on T away from z = 0. But ℘(z) ∼ z−2 near
z = 0, and so ℘′(z) ∼ −2z−3 so this function is finite at z = 0 with value 1/4. By
the maximum argument, since T is compact,the function is a constant, namely 1/4.

Thus the meromorphic function ℘′(z) on T can also be considered as

2
√

(u− e1)(u− e2)(u− e3)

setting u = ℘(z).

Note that, substituting u = ℘(z), we have

du

2
√

(u− e1)(u− e2)(u− e3)
= dz.

By changing variables with a Möbius transformation of the form u 7→ (au+b)/(cu+d)
any integrand

du√
p(u)
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can be brought into this form if p is of degree 3 or 4. This can be very useful, for
example in the equation for a pendulum:

θ′′ = −(g/`) sin θ

which integrates once to
θ′2 = 2(g/`) cos θ + c.

Substituting v = eiθ we get

v′ = i
√

2(g/`)(v3 + v) + cv2.

So time becomes (the real part of) the parameter z on C. In the torus this is a circle,
so (no surprise here!) the solutions to the pendulum equation are periodic.
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