3 Riemann surfaces

3.1 Definitions and examples

From the definition of a surface, each point has a neighbourhood U and a homeomor-
phism ¢ from U to an open set V in R2. If two such neighbourhoods U, U’ intersect,
then

QOU/QDI_JI cop(UNUY) — o (UNT)

is a homeomorphism from one open set of R? to another.

N

/

If we identify R? with the complex numbers C then we can define:

Definition 8 A Riemann surface is a surface with a class of homeomorphisms oy
such that each map py@g" is a holomorphic (or analytic) homeomorphism.

We call each function ¢y a holomorphic coordinate.

Examples:

1. Let X be the extended complex plane X = C U {oc}. Let U = C with py(z) =
z € C. Now take
U'=C\{0} U{oc}

and define 2’ = ppi(z) = 271 € C if 2 # oo and @y (c0) = 0. Then
pu(UNU") = C\{0}

and

ovep (2) =271
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which is holomorphic.

In the right coordinates this is the sphere, with oo the North Pole and the coordinate
maps given by stereographic projection. For this reason it is sometimes called the
Riemann sphere.

2. Let wy,ws € C be two complex numbers which are linearly independent over the
reals, and define an equivalence relation on C by z; ~ 29 if there are integers m, n such
that z; — 2o = mw; + nws. Let X be the set of equivalence classes (with the quotient
topology). A small enough disc V' around z € C has at most one representative in
each equivalence class, so this gives a local homeomorphism to its projection U in X.
If U and U’ intersect, then the two coordinates are related by a map

Z = 2+ mwp + Nws

which is holomorphic.

This surface is topologically described by noting that every z is equivalent to one
inside the closed parallelogram whose vertices are 0, w;, ws,w; + we, but that points
on the boundary are identified:

We thus get a torus this way. Another way of describing the points of the torus is as
orbits of the action of the group Z x Z on C by (m,n) - z = z + mw; + nws.

3. The parallelograms in Example 2 fit together to tile the plane. There are groups
of holomorphic maps of the unit disc into itself for which the interior of a polygon
plays the same role as the interior of the parallelogram in the plane, and we get a
surface X by taking the orbits of the group action. Now we get a tiling of the disc:
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In this example the polygon has eight sides and the surface is homeomorphic by the
classification theorem to the connected sum of two tori.

4. A complex algebraic curve X in C? is given by
X ={(z,w) € C*: f(z,w) = 0}

where f is a polynomial in two variables with complex coefficients. If (0f/0z)(z, w) #
0or (0f /Ow)(z,w) # 0 for every (z,w) € X, then using the implicit function theorem
(see Appendix A) X can be shown to be a Riemann surface with local homeomor-
phisms given by

(z,w) — w where (0f/0z)(z,w) # 0

and

(z,w) +— z where (f/Ow)(z,w) # 0.

Definition 9 A holomorphic map between Riemann surfaces X and Y is a continu-
ous map f : X — Y such that for each holomorphic coordinate py on U containing
x on X and Yw defined in a neighbourhood of f(x) on'Y, the composition

Yw o f o,

18 holomorphic.
In particular if we take Y = C, we can define holomorphc functions on X.

Before proceeding, recall some basic facts about holomorphic functions (see [4]):
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A holomorphic function has a convergent power series expansion in a neigh-
bourhood of each point at which it is defined:

f(z) =ap+ai(z —c) +ay(z—c)+...
o If f vanishes at ¢ then
fe)=(Ez—-c)"(co+aca(z—c)+...)
where ¢y # 0. In particular zeros are isolated.
e If f is non-constant it maps open sets to open sets.

e |f| cannot attain a maximum at an interior point of a disc (“maximum modulus
principle”).

e f: C — C preserves angles between differentiable curves, both in magnitude
and sense.

This last property shows:
Proposition 3.1 A Riemann surface is orientable.

Proof: Assume X contains a Mobius band, and take a smooth curve down the
centre: v : [0,1] — X. In each small coordinate neighbourhood of a point on the
curve gy is a curve in a disc in C, and rotating the tangent vector v by 90° or —90°
defines an upper and lower half:

Identification on an overlapping neighbourhood is by a map which preserves angles,
and in particular the sense — anticlockwise or clockwise — so the two upper halves
agree on the overlap, and as we pass around the closed curve the strip is separated
into two halves. But removing the central curve of a Mdbius strip leaves it connected:




which gives a contradiction. |

From the classification of surfaces we see that a closed, connected Riemann surface
is homeomorphic to a connected sum of tori.

3.2 Meromorphic functions

Recall that on a closed (i.e. compact) surface X, any continuous real function achieves
its maximum at some point . Let X be a Riemann surface and f a holomorphic
function, then |f| is continuous, so assume it has its maximum at z. Since fyr;' is a
holomorphic function on an open set in C containing ¢y (z), and has its maximum
modulus there, the maximum modulus principle says that f must be a constant ¢ in
a neighbourhood of x. If X is connected, it follows that f = ¢ everywhere.

Though there are no holomorphic functions, there do exist meromorphic functions:

Definition 10 A meromorphic function f on a Riemann surface X is a holomorphic
map to the Riemann sphere S = C U {oo}.

This means that if we remove f~!(co), then f is just a holomorphic function F with
values in C. If f(x) = oo, and U is a coordinate neighbourhood of z, then using
the coordinate z’, fp;;' is holomorphic. But Z = 1/z if 2 # 0 which means that
(F o ¢y;')~! is holomorphic. Since it also vanishes,

a
Fogp{]lzz—:l—k...

which is usually what we mean by a meromorphic function.

Example: A rational function

where p and ¢ are polynomials is a meromorphic function on the Riemann sphere S.

The definition above is a geometrical one. Algebraically it is clear that the sum and
product of meromorphic functions is meromophic — they form a field.

Here is an example of a meromorphic function on the torus in Example 2.
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Define . . .
-5+ 2 (=)
w#0
where the sum is over all non-zero w = mw; + nws. Since for 2|z| < |w|

1 1

(z—w)? w?

2|
<10—3
TP

this converges uniformly on compact sets so long as

1 -
— < 00.
3
= |l

But mwy + nw» is never zero if m, n are real so we have an estimate
|mwy + nws| > kvVm? 4+ n?

so by the integral test we have convergence. Because the sum is essentially over all
equivalence classes
o(z + mw;y + nws) = p(z)

so that this is a meromorphic function on the surface X. It is called the Weierstrass
P-function.

It is a quite deep result that any closed Riemann surface has meromorphic functions.
Let us consider them in more detail. So let

f: X—S

be a meromorphic function. If the inverse image of a € S is infinite, then it has a limit
point = by compactness of X. In a holomorphic coordinate around = with z(x) = 0,
f is defined by a holomorphic function F' = fy;;' with a sequence of points z, — 0
for which F(z,) —a = 0. But the zeros of a holomorphic function are isolated, so
we deduce that f~'(a) is a finite set. By a similar argument the points at which the
derivative I’ vanishes are finite in number (check that this condition is independent of
the holomorphic coordinate). The points of X at which F’ = 0 are called ramification
points.

Now recall another result from complex analysis: if a holomorphic function f has a
zero of order n at z = 0, then for € > 0 sufficiently small, there is 6 > 0 such that for
all @ with 0 < |a| < §, the equation f(z) = a has exactly n roots in the disc |z| < e.

This result has two consequences. The first is that if F'(x) # 0, then f maps a
neighbourhood U, of x € X homeomorphically to a neighbourhood V, of f(x) € S.
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Define V' to be the intersection of the V, as x runs over the finite set of points such
that f(z) = a, then f~'V consists of a finite number d of open sets, each mapped
homeomorphically onto V' by f:

V0000 = &

The second is that if F/ =0, we have
F(z)=2"(ap +a1z2+...)

for some n and F' has a zero of order n at 0, where z(z) = 0. In that case there is
a neighbourhood U of x and V' of a such that f(U) = V, and the inverse image of
y # x € V consists of n distinct points, but f~1(a) = 2. In fact, since ag # 0, we can
expand
(ap+arz+..)"/" = aé/n(l +biz+...)
in a power series and use a new coordinate
w = a(l)/nz(l—i—blz—i-...)

so that the map f is locally

w— w".
There are then two types of neighbourhoods of points: at an ordinary point the map
looks like w — w and at a ramification point like w — w".

Removing the finite number of images under f of ramification points we get a sphere
minus a finite number of points. This is connected. The number of points in the
inverse image of a point in this punctured sphere is integer-valued and continuous,
hence constant. It is called the degree d of the meromorphic function f.

With this we can determine the Euler characteristic of the Riemann surface S from
the meromorphic function:

Theorem 3.2 (Riemann-Hurwitz) Let f : X — S be a meromorphic function of
degree d on a closed connected Riemann surface X, and suppose it has ramification

points xy, ..., x, where the local form of f(x)— f(xx) is a holomorphic function with
a zero of multiplicity my. Then

X(X) =2d =) (mj — 1)
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Proof: The idea is to take a triangulation of the sphere .S such that the image of the
ramification points are vertices. This is straighforward. Now take a finite subcovering
of S by open sets of the form V' above where the map f is either a homeomorphism
or of the form z +— 2™. Subdivide the triangulation into smaller triangles such that
each one is contained in one of the sets V. Then the inverse images of the vertices
and edges of S form the vertices and edges of a triangulation of X.

If the triangulation of S has V vertices, F edges and F faces, then clearly the tri-
angulation of X has dFE edges and dF faces. It has fewer vertices, though — in a
neighbourhood where f is of the form w +— w™ the origin is a single vertex instead
of m of them. For each ramification point of order m; we therefore have one vertex
instead of my. The count of vertices is therefore

dV =Y (my —1).
k=1

Thus

n

XX)=dV-E+F)=)Y (mpy—1)=2d—Y (my—1)
k=1 k=1

using x(S5) = 2. O

Clearly the argument works just the same for a holomorphic map f : X — Y and
then

n

X(X) = dx(Y) =) (my = 1).

k=1

As an example, consider the Weierstrass P-function p : T'— S:

w#0

This has degree 2 since p(z) = oo only at z = 0 and there it has multiplicity 2. Each
my < d = 2, so the only possible value at the ramification points here is my = 2. The
Riemann-Hurwitz formula gives:

0=4—n

so there must be exactly 4 ramification points. In fact we can see them directly,
because p(z) is an even function, so the derivative vanishes if —z = z. Of course
at z = 0, p(z) = oo so we should use the other coordinate on S: 1/p has a zero of
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multiplicity 2 at z = 0. To find the other points recall that g is doubly periodic so
@ vanishes where
Z = —Z + mwi + nwa

for some integers m, n, and these are the four points

0,&]1/2,&)2/2,((4)1 +w2)/2:

.\
N
N
N
N
N
N
N
N

3.3 Multi-valued functions

The Riemann-Hurwitz formula is useful for determining the Euler characteristic of a
Riemann surface defined in terms of a multi-valued function, like

g(z) = 2"
We look for a closed surface on which z and ¢(z) are meromorphic functions. The
example above is easy: if w = 2!/ then w” = z, and using the coordinate 2’ = 1/z
on a neighbourhood of co on the Riemann sphere S, if w’ = 1/w then w™ = 2’

Thus w and w’ are standard coordinates on S, and g(z) is the identity map S — S.
The function z = w"™ is then a meromorphic function f of degree n on S. It has two
ramification points of order n at w = 0 and w = oo, so the Riemann-Hurwitz formula
is verified:

2=x(5)=2n—-2(n—1).

The most general case is that of a complex algebraic curve f(z,w) = 0. This is a
polynomial in w with coefficients functions of z, so its “solution” is a multivalued
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function of z. We shall deal with a simpler but still important case w? = p(z) where
p is a polynomial of degree n in z with n distinct roots. We are looking then for a
Riemann surface on which

p(z)
can be interpreted as a meromorphic function.

We proceed to define coordinate neighbourhoods on each of which w is a holomorphic
function. First, if p(a) # 0 then

p(z) =pla)(1+a1(z—a)+ ...+ a,(z —a)").

For each choice of y/p(a) we have w expressed as a power series in z in a neigbourhood
of a:

w=+pla)1+a(z—a)+...+a(z—a))V?*=14+a12/2+....

So we can take z as a coordinate on each of two open sets, and w is holomorphic here.

00—~ @

If p(a) = 0, then since p has distinct roots,
p(z)=(z—a)(bp+bi(z—a)+...)

where by # 0. Put u?> = (2 — a) and p(z) = u?(by + byu? + ...) and so, choosing /by,
w has a power series expansion in w:

w = u\/bo(1 4 by /by + . ..).
(The other choose of /by is equivalent to taking the local coordinate —u.) This gives
an open disc, with u as coordinate, on which w is holomorphic.

For z = oo we note that )

so if n = 2m,

w2 (p—1
z z

and since a, # 0, putting v’ = 1/w and 2z’ = 1/z we get

w = a1+ ap12 Jan +...) 2
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which is a holomorphic function. If n = 2m + 1, we need a coordinate u?> = 2’ as
above.

The coordinate neighbourhoods defined above give the set of solutions to w? = p(z)
together with points at infinity the structure of a compact Riemann surface X such
that

e 2 is a meromorphic function of degree 2 on X
e w is a meromorphic function of degree n on X

e the ramification points of z are at the points (z = a,w = 0) where a is a root
of p(z), and if n is odd, at (z = oo, w = o0)

The Riemann-Hurwitz formula now gives

X(X)=2x2—-n=4-—n

if n is even and

X(X)=4—-(n+1)=3—-n
if n is odd.

This type of Riemann surface is called hyperelliptic. Since the two values of w =
\/p(z) only differ by a sign, we can think of (w, z) — (—w, z) as being a holomorphic
homeomorphism from X to X, and then z is a coordinate on the space of orbits.
Topologically we can cut the surface in two — an “upper” and “lower” half — and
identify on the points on the boundary to get a sphere:

It is common also to view this downstairs on the Riemann sphere and insert cuts
between pairs of zeros of the polynomial p(z):
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As an example, consider again the P-function @(z), thought of as a degree 2 map
o T — S. It has 4 ramification points, whose images are co and the three finite
points eq, es, €3 where

e1 = p(w1/2), e =p(ws/2), e3=p((wi+w2)/2).

So its derivative @'(z) vanishes only at three points, each with multiplicity 1. At each
of these points @ has the local form

o(z) =e1 + (z —wi/2)*(ag +...)
and so

— 3 (9(2) = e)(p(2) — e2)(p(2) —e3)

is a well-defined holomorphic function on 7" away from z = 0. But @(z) ~ 272 near
z =0, and so p'(z) ~ —2z7? so this function is finite at z = 0 with value 1/4. By
the maximum argument, since 7' is compact,the function is a constant, namely 1/4.

Thus the meromorphic function ©'(z) on 7" can also be considered as

2v/(u — e1)(u — e3)(u — e3)

setting u = p(z2).

Note that, substituting u = p(z), we have
du
2¢/(u—er)(u—e2)(u—e3)

By changing variables with a Mobius transformation of the form u — (au+0b)/(cu+d)
any integrand

=dz.

du
p(u)
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can be brought into this form if p is of degree 3 or 4. This can be very useful, for
example in the equation for a pendulum:

S~ |

0" = —(g/l)sin6
which integrates once to

0% = 2(g/t)cosf + c.

Substituting v = € we get

v =i\/2(g/0)(v3 +v) + cv2.

So time becomes (the real part of) the parameter z on C. In the torus this is a circle,
so (no surprise here!) the solutions to the pendulum equation are periodic.
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