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Some Examples of PDE’s

Example 36.1 (Traffic Equation). Consider cars travelling on a straight road,
i.e. R and let u(t, x) denote the density of cars on the road at time t and space
x and v(t, x) be the velocity of the cars at (t, x). Then for J = [a, b] ⊂ R,
NJ(t) :=

R b
a
u(t, x)dx is the number of cars in the set J at time t. We must

have Z b

a

u̇(t, x)dx = ṄJ(t) = u(t, a)v(t, a)− u(t, b)v(t, b)

= −
Z b

a

∂

∂x
[u(t, x)v(t, x)] dx.

Since this holds for all intervals [a, b], we must have

u̇(t, x)dx = − ∂

∂x
[u(t, x)v(t, x)] .

To make life more interesting, we may imagine that v(t, x) = −F (u(t, x), ux(t, x)),
in which case we get an equation of the form

∂

∂t
u =

∂

∂x
G(u, ux) where G(u, ux) = −u(t, x)F (u(t, x), ux(t, x)).

A simple model might be that there is a constant maximum speed, vm and
maximum density um, and the traffic interpolates linearly between 0 (when
u = um) to vm when (u = 0), i.e. v = vm(1− u/um) in which case we get

∂

∂t
u = −vm ∂

∂x
(u(1− u/um)) .

Example 36.2 (Burger’s Equation). Suppose we have a stream of particles
travelling on R, each of which has its own constant velocity and let u(t, x)
denote the velocity of the particle at x at time t. Let x(t) denote the trajec-
tory of the particle which is at x0 at time t0. We have C = ẋ(t) = u(t, x(t)).
Differentiating this equation in t at t = t0 implies
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0 = [ut(t, x(t)) + ux(t, x(t))ẋ(t)] |t=t0 = ut(t0, x0) + ux(t0, x0)u(t0, x0)

which leads to Burger’s equation

0 = ut + u ux.

Example 36.3 (Minimal surface Equation). (Review Dominated convergence
theorem and differentiation under the integral sign.) LetD ⊂ R2 be a bounded
region with reasonable boundary, u0 : ∂D → R be a given function. We wish
to find the function u : D → R such that u = u0 on ∂D and the graph of u,
Γ (u) has least area. Recall that the area of Γ (u) is given by

A(u) = Area(Γ (u)) =

Z
D

q
1 + |∇u|2dx.

Assuming u is a minimizer, let v ∈ C1(D) such that v = 0 on ∂D, then

0 =
d

ds
|0A(u+ sv) =

d

ds
|0
Z
D

q
1 + |∇(u+ sv)|2dx

=

Z
D

d

ds
|0
q
1 + |∇(u+ sv)|2dx

=

Z
D

1q
1 + |∇u|2

∇u ·∇v dx

= −
Z
D

∇ ·
 1q

1 + |∇u|2
∇u
 v dx

from which it follows that

∇ ·
 1q

1 + |∇u|2
∇u
 = 0.

Example 36.4 (Heat or Diffusion Equation). Suppose that Ω ⊂ Rn is a region
of space filled with a material, ρ(x) is the density of the material at x ∈ Ω and
c(x) is the heat capacity. Let u(t, x) denote the temperature at time t ∈ [0,∞)
at the spatial point x ∈ Ω. Now suppose that B ⊂ Rn is a “little” volume in
Rn, ∂B is the boundary of B, and EB(t) is the heat energy contained in the
volume B at time t. Then

EB(t) =

Z
B

ρ(x)c(x)u(t, x)dx.

So on one hand,

ĖB(t) =

Z
B

ρ(x)c(x)u̇(t, x)dx (36.1)
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Fig. 36.1. A test volume B in Ω.

while on the other hand,

ĖB(t) =

Z
∂B

hG(x)∇u(t, x), n(x)idσ(x), (36.2)

where G(x) is a n × n—positive definite matrix representing the conduction
properties of the material, n(x) is the outward pointing normal to B at x ∈
∂B, and dσ denotes surface measure on ∂B. (We are using h·, ·i to denote the
standard dot product on Rn.)
In order to see that we have the sign correct in (36.2), suppose that x ∈ ∂B

and ∇u(x) ·n(x) > 0, then the temperature for points near x outside of B are
hotter than those points near x inside of B and hence contribute to a increase
in the heat energy inside of B. (If we get the wrong sign, then the resulting
equation will have the property that heat flows from cold to hot!)
Comparing Eqs. (36.1) to (36.2) after an application of the divergence

theorem shows thatZ
B

ρ(x)c(x)u̇(t, x)dx =

Z
B

∇ · (G(·)∇u(t, ·))(x) dx. (36.3)

Since this holds for all volumes B ⊂ Ω, we conclude that the temperature
functions should satisfy the following partial differential equation.

ρ(x)c(x)u̇(t, x) = ∇ · (G(·)∇u(t, ·))(x) . (36.4)

or equivalently that

u̇(t, x) =
1

ρ(x)c(x)
∇ · (G(x)∇u(t, x)). (36.5)

Setting gij(x) := Gij(x)/(ρ(x)c(x)) and

zj(x) :=
nX
i=1

∂(Gij(x)/(ρ(x)c(x)))/∂x
i
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the above equation may be written as:

u̇(t, x) = Lu(t, x), (36.6)

where

(Lf)(x) =
X
i,j

gij(x)
∂2

∂xi∂xj
f(x) +

X
j

zj(x)
∂

∂xj
f(x). (36.7)

The operator L is a prototypical example of a second order “elliptic” differ-
ential operator.

Example 36.5 (Laplace and Poisson Equations). Laplaces Equation is of the
form Lu = 0 and solutions may represent the steady state temperature distri-
bution for the heat equation. Equations like ∆u = −ρ appear in electrostatics
for example, where u is the electric potential and ρ is the charge distribution.

Example 36.6 (Shrodinger Equation and Quantum Mechanics).

i
∂

∂t
ψ(t, x) = −∆

2
ψ(t, x) + V (x)ψ(t, x) with kψ(·, 0)k2 = 1.

Interpretation,Z
A

|ψ(t, x)|2 dt = the probability of finding the particle in A at time t.

(Notice similarities to the heat equation.)

Example 36.7 (Wave Equation). Suppose that we have a stretched string sup-
ported at x = 0 and x = L and y = 0. Suppose that the string only undergoes
vertical motion (pretty bad assumption). Let u(t, x) and T (t, x) denote the
height and tension of the string at (t, x), ρ0(x) denote the density in equilib-
rium and T0 be the equilibrium string tension. Let J = [x, x +∆x] ⊂ [0, L],

Fig. 36.2. A piece of displace string

then

MJ(t) :=

Z
J

ut(t, x)ρ0(x)dx
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is the momentum of the piece of string above J. (Notice that ρ0(x)dx is the
weight of the string above x.) Newton’s equations state

dMJ(t)

dt
=

Z
J

utt(t, x)ρ0(x)dx = Force on String.

Since the string is to only undergo vertical motion we require

T (t, x+∆x) cos(αx+∆x)− T (t, x) cos(αx) = 0

for all ∆x and therefore that T (t, x) cos(αx) = T0, i.e.

T (t, x) =
T0

cos(αx)
.

The vertical tension component is given by

T (t, x+∆x) sin(αx+∆x)− T (t, x) sin(αx) = T0

·
sin(αx+∆x)

sin(αx+∆x)
− sin(αx)
cos(αx)

¸
= T0 [ux(t, x+∆x)− ux(t, x)] .

Finally there may be a component due to gravity and air resistance, say

gravity = −
Z
J

ρ0(x)dx and resistance = −
Z
J

k(x)ut(t, x)dx.

So Newton’s equations becomeZ x+∆x

x

utt(t, x)ρ0(x)dx = T0 [ux(t, x+∆x)− ux(t, x)]

−
Z x+∆x

x

ρ0(x)dx−
Z x+∆x

x

k(x)ut(t, x)dx

and differentiating this in ∆x gives

utt(t, x)ρ0(x) = uxx(t, x)− ρ0(x)− k(x)ut(t, x)

or equivalently that

utt(t, x) =
1

ρ0(x)
uxx(t, x)− 1− k(x)

ρ0(x)
ut(t, x). (36.8)

Example 36.8 (Maxwell Equations in Free Space).

∂E

∂t
= ∇×B

∂B

∂t
= −∇×E

∇ ·E = ∇ ·B = 0.
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Notice that

∂2E

∂t2
= ∇× ∂B

∂t
= −∇× (∇×E) = ∆E−∇ (∇ ·E) = ∆E

and similarly, ∂2B
∂t2 = ∆B so that all the components of the electromagnetic

fields satisfy the wave equation.

Example 36.9 (Navier — Stokes). Here u(t, x) denotes the velocity of a fluid
ad (t, x), p(t, x) is the pressure. The Navier — Stokes equations state,

∂u

∂t
+ ∂uu = ν∆u−∇p+ f with u(0, x) = u0(x) (36.9)

∇ · u = 0 (incompressibility) (36.10)

where f are the components of a given external force and u0 is a given di-
vergence free vector field, ν is the viscosity constant. The Euler equations
are found by taking ν = 0. Equation (36.9) is Newton’s law of motion again,
F = ma. See http://www.claymath.org for more information on this Million
Dollar problem.

36.1 Some More Geometric Examples

Example 36.10 (Einstein Equations). Einstein’s equations from general rela-
tivity are

Ricg − 1
2
gSg = T

where T is the stress energy tensor.

Example 36.11 (Yamabe Problem). Does there exists a metric g1 = u4/(n−2)g0
in the conformal class of g0 so that g1 has constant scalar curvature. This is
equivalent to solving

−γ∆g0u+ Sg0u = kuα

where γ = 4n−1n−2 , α =
n+2
n−2 , k is a constant and Sg0 is the scalar curvature of

g0.

Example 36.12 (Ricci Flow). Hamilton introduced the Ricci — flow,

∂g

∂t
= Ricg,

as another method to create “good” metrics on manifolds. This is a possible
solution to the 3 dimensional Poincaré conjecture, again go to the Clay math
web site for this problem.
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First Order Quasi-Linear Scalar PDE

37.1 Linear Evolution Equations

Consider the first order partial differential equation

∂tu(t, x) =
nX
i=1

ai(x)∂iu(t, x) with u(0, x) = f(x) (37.1)

where x ∈ Rn and ai(x) are smooth functions on Rn. Let A(x) =
(a1(x), . . . , an(x)) and for u ∈ C1 (Rn,C) , let

Ãu(x) :=
d

dt
|0u(x+ tZ(x)) = ∇u(x) ·A(x) =

nX
i=1

ai(x)∂iu(x),

i.e. Ã(x) is the first order differential operator, Ã(x) =
Pn

i=1 ai(x)∂i. With
this notation we may write Eq. (37.1) as

∂tu = Ãu with u(0, ·) = f. (37.2)

The following lemma contains the key observation needed to solve Eq. (37.2).

Lemma 37.1. Let A and Ã be as above and f ∈ C1(Rn,R), then

d

dt
f ◦ etA(x) = Ãf ◦ etA(x) = Ã

¡
f ◦ etA¢ (x). (37.3)

Proof. By definition,

d

dt
etA(x) = A(etA(x))

and so by the chain rule

d

dt
f ◦ etA(x) = ∇f(etA(x)) ·A(etA(x)) = Ãf(etA(x))
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which proves the first Equality in Eq. (37.3). For the second we will need to
use the following two facts: 1) e(t+s)A = etA ◦ esZ and 2) etA(x) is smooth in
x. Assuming this we find

d

dt
f ◦ etA(x) = d

ds
|0f ◦ e(t+s)A(x) = d

ds
|0
£
f ◦ etA ◦ esZ(x)¤ = Ã

¡
f ◦ etA¢ (x)

which is the second equality in Eq. (37.3).

Theorem 37.2. The function u ∈ C1 (D(A),R) defined by
u(t, x) := f(etA(x)) (37.4)

solves Eq. (37.2). Moreover this is the unique function defined on D(A) which
solves Eq. (37.3).

Proof. Suppose that u ∈ C1 (D(A),R) solves Eq. (37.2), then
d

dt
u(t, e−tA(x)) = ut(t, e

−tA(x))− Ãu(t, e−tA(x)) = 0

and hence
u(t, e−tA(x)) = u(0, x) = f(x).

Let (t0, x0) ∈ D(A) and apply the previous computations with x = etA(x0)
to find u(t0, x) = f(etA(x0)). This proves the uniqueness assertion. The ver-
ification that u defined in Eq. (37.4) solves Eq. (37.2) is simply the second
equality in Eq. (37.3).

Notation 37.3 Let etÃf(x) = u(t, x) where u solves Eq. (37.2), i.e.

etÃf(x) = f(etA(x)).

The differential operator Ã : C1(Rn,R)→ C(Rn,R) is no longer bounded
so it is not possible in general to conclude

etÃf =
∞X
n=0

tn

n!
Ãnf. (37.5)

Indeed, to make sense out of the right side of Eq. (37.5) we must know f
is infinitely differentiable and that the sum is convergent. This is typically
not the case. because if f is only C1. However there is still some truth to
Eq. (37.5). For example if f ∈ Ck(Rn,R), then by Taylor’s theorem with
remainder,

etÃf −
kX

n=0

tn

n!
Ãnf = o(tk)

by which I mean, for any x ∈ Rn,

t−k
"
etÃf(x)−

kX
n=0

tn

n!
Ãnf(x)

#
→ 0 as t→ 0.
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Example 37.4. Suppose n = 1 and A(x) = 1, Ã(x) = ∂x then etA(x) = x + t
and hence

et∂xf(x) = f(x+ t).

It is interesting to notice that

et∂xf(x) =
∞X
n=0

tn

n!
f (n)(x)

is simply the Taylor series expansion of f(x + t) centered at x. This series
converges to the correct answer (i.e. f(x+ t)) iff f is “real analytic.” For more
details see the Cauchy — Kovalevskaya Theorem in Section 39.

Example 37.5. Suppose n = 1 and A(x) = x2, Ã(x) = x2∂x then etA(x) =
x

1−tx on D(A) = {(t, x) : 1− tx > 0} and hence etÃf(x) = f( x
1−tx) = u(t, x)

on D(A), where
ut = x2ux. (37.6)

It may or may not be possible to extend this solution, u(t, x), to a C1 solution
on all R2. For example if limx→∞ f(x) does not exist, then limt↑x u(t, x) does
not exist for any x > 0 and so u can not be the restriction of C1 — function
on R2. On the other hand if there are constants c± and M > 0 such that
f(x) = c+ for x > M and f(x) = c− for x < −M, then we may extend u to
all R2 by defining

u(t, x) =

½
c+ if x > 0 and t > 1/x
c− if x < 0 and t < 1/x.

It is interesting to notice that x(t) = 1/t solves ẋ(t) = −x2(t) = −A(x(t)),
so any solution u ∈ C1(R2,R) to Eq. (37.6) satisfies d

dtu(t, 1/t) = 0, i.e. u
must be constant on the curves x = 1/t for t > 0 and x = 1/t for t < 0. See
Example 37.13 below for a more detailed study of Eq. (37.6).

Example 37.6. Suppose n = 2.

1. If A(x, y) = (−y, x), i.e. A
µ
x
y

¶
=

µ
0 −1
1 0

¶µ
x
y

¶
then

etA
µ
x
y

¶
=

µ
cos t − sin t
sin t cos t

¶µ
x
y

¶
and hence

etÃf(x, y) = f (x cos t− y sin t, y cos t+ x sin t) .

2. If A(x, y) = (x, y), i.e. A
µ
x
y

¶
=

µ
1 0
0 1

¶µ
x
y

¶
then
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etA
µ
x
y

¶
=

µ
et 0
0 et

¶µ
x
y

¶
and hence

etÃf(x, y) = f
¡
xet, yet

¢
.

Theorem 37.7. Given A ∈ C1(Rn,Rn) and h ∈ C1 (R×Rn,R) .
1. (Duhamel’ s Principle) The unique solution u ∈ C1(D(A),R) to

ut = Ãu+ h with u(0, ·) = f (37.7)

is given by

u(t, ·) = etÃf +

Z t

0

e(t−τ)Ãh(τ, ·)dτ

or more explicitly,

u(t, x) := f(etA(x)) +

Z t

0

h(τ, e(t−τ)A(x))dτ. (37.8)

2. The unique solution u ∈ C1(D(A),R) to

ut = Ãu+ hu with u(0, ·) = f (37.9)

is given by
u(t, ·) = e

R
t
0
h(τ,e(t−τ)A(x))dτf(etA(x)) (37.10)

which we abbreviate as

et(Ã+Mh)f(x) = e
R t
0
h(τ,e(t−τ)A(x))dτf(etA(x)). (37.11)

Proof.We will verify the uniqueness assertions, leaving the routine check
the Eqs. (37.8) and (37.9) solve the desired PDE’s to the reader. Assuming u
solves Eq. (37.7), we find

d

dt

h
e−tÃu(t, ·)

i
(x) =

d

dt
u(t, e−tA(x)) =

³
ut − Ãu

´
(t, e−tA(x))

= h(t, e−tA(x))

and thereforeh
e−tÃu(t, ·)

i
(x) = u(t, e−tA(x)) = f(x) +

Z t

0

h(τ, e−τA(x))dτ

and so replacing x by etA(x) in this equation implies

u(t, x) = f(etA(x)) +

Z t

0

h(τ, e(t−τ)A(x))dτ.
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Similarly if u solves Eq. (37.9), we find with z(t) :=
h
e−tÃu(t, ·)

i
(x) =

u(t, e−tA(x)) that

ż(t) =
d

dt
u(t, e−tA(x)) =

³
ut − Ãu

´
(t, e−tA(x))

= h(t, e−tA(x))u(t, e−tA(x)) = h(t, e−tA(x))z(t).

Solving this equation for z(t) then implies

u(t, e−tA(x)) = z(t) = e
R t
0
h(τ,e−τA(x))dτz(0) = e

R t
0
h(τ,e−τA(x))dτf(x).

Replacing x by etA(x) in this equation implies

u(t, x) = e
R t
0
h(τ,e(t−τ)A(x))dτf(etA(x)).

Remark 37.8. It is interesting to observe the key point to getting the simple
expression in Eq. (37.11) is the fact that

etÃ(fg) = (fg) ◦ etA = ¡f ◦ etA¢ · ¡g ◦ etA¢ = etÃf · etÃg.

That is to say etÃ is an algebra homomorphism on functions. This property
does not happen for any other type of differential operator. Indeed, if L is some
operator on functions such that etL(fg) = etLf · etLg, then differentiating at
t = 0 implies

L(fg) = Lf · g + f · Lg,
i.e. L satisfies the product rule. One learns in differential geometry that this
property implies L must be a vector field.

Let us now use this result to find the solution to the wave equation

utt = uxx with u(0, ·) = f and ut(0, ·) = g. (37.12)

To this end, let us notice the utt = uxx may be written as

(∂t − ∂x) (∂t + ∂x)u = 0

and therefore noting that

(∂t + ∂x)u(t, x)|t=0 = g(x) + f 0(x)

we have

(∂t + ∂x)u(t, x) = et∂x (g + f 0) (x) = (g + f 0) (x+ t).

The solution to this equation is then a consequence of Duhamel’ s Principle
which gives
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u(t, x) = e−t∂xf(x) +
Z t

0

e−(t−τ)∂x (g + f 0) (x+ τ)dτ

= f(x− t) +

Z t

0

(g + f 0) (x+ τ − (t− τ))dτ

= f(x− t) +

Z t

0

(g + f 0) (x+ 2τ − t)dτ

= f(x− t) +

Z t

0

g(x+ 2τ − t)dτ +
1

2
f(x+ 2τ − t)|τ=tτ=0

=
1

2
[f(x+ t) + f(x− t)] +

1

2

Z t

−t
g(x+ s)ds.

The following theorem summarizes what we have proved.

Theorem 37.9. If f ∈ C2(R,R) and g ∈ C1(R,R), then Eq. (37.12) has a
unique solution given by

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

Z t

−t
g(x+ s)ds. (37.13)

Proof.We have already proved uniqueness above. The proof that u defined
in Eq. (37.13) solves the wave equation is a routine computation. Perhaps the
most instructive way to verify that u solves utt = uxx is to observe, letting
y = x+ s, thatZ t

−t
g(x+ s)ds =

Z x+t

x−t
g(y)dy =

Z x+t

0

g(y)dy +

Z 0

x−t
g(y)dy

=

Z x+t

0

g(y)dy −
Z x−t

0

g(y)dy.

From this observation it follows that

u(t, x) = F (x+ t) +G(x− t)

where

F (x) =
1

2

µ
f(x) +

Z x

0

g(y)dy

¶
and G(x) =

1

2

µ
f(x)−

Z x

0

g(y)dy

¶
.

Now clearly F and G are C2 — functions and

(∂t − ∂x)F (x+ t) = 0 and (∂t + ∂x)G(x− t) = 0

so that¡
∂2t − ∂2x

¢
u(t, x) = (∂t − ∂x) (∂t + ∂x) (F (x+ t) +G(x− t)) = 0.
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Now let us formally apply Exercise 37.45 to the wave equation utt = uxx,
in which case we should let A2 = −∂2x, and hence A =

p−∂2x. Evidently we
should take

cos
³
t
p
−∂2x

´
f(x) =

1

2
[f(x+ t) + f(x− t)] and

sin
³
t
p−∂2x´p−∂2x g(x) =

1

2

Z t

−t
g(x+ s)ds =

1

2

Z x+t

x−t
g(y)dy

Thus with these definitions, we can try to solve the equation

utt = uxx + h with u(0, ·) = f and ut(0, ·) = g (37.14)

by a formal application of Exercise 37.43. According to Eq. (37.73) we should
have

u(t, ·) = cos(tA)f + sin(tA)
A

g +

Z t

0

sin((t− τ)A)

A
h(τ, ·)dτ,

i.e.

u(t, x) =
1

2
[f(x+ t) + f(x− t)]+

1

2

Z t

−t
g(x+s)ds+

1

2

Z t

0

dτ

Z x+t−τ

x−t+τ
dy h(τ, y).

(37.15)
An alternative way to get to this equation is to rewrite Eq. (37.14) in first

order (in time) form by introducing v = ut to find

∂

∂t

µ
u
v

¶
= A

µ
u
v

¶
+

µ
0
h

¶
withµ

u
v

¶
=

µ
f
g

¶
at t = 0 (37.16)

where

A :=

µ
0 1
∂2

∂x2 0

¶
.

A restatement of Theorem 37.9 is simply

etA
µ
f
g

¶
(x) =

µ
u(t, x)
ut(t, x)

¶
=
1

2

µ
f(x+ t) + f(x− t) +

R t
−t g(x+ s)ds

f 0(x+ t)− f 0(x− t) + g(x+ t) + g(x− t)

¶
.

According to Du hamel’s principle the solution to Eq. (37.16) is given byµ
u(t, ·)
ut(t, ·)

¶
= etA

µ
f
g

¶
+

Z t

0

e(t−τ)A
µ

0
h(τ, ·)

¶
dτ.

The first component of the last term is given by

1

2

Z t

0

·Z t−τ

τ−t
h(τ, x+ s)ds

¸
dτ =

1

2

Z t

0

·Z x+t−τ

x−t+τ
h(τ, y)dy

¸
dτ
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which reproduces Eq. (37.15).
To check Eq. (37.15), it suffices to assume f = g = 0 so that

u(t, x) =
1

2

Z t

0

dτ

Z x+t−τ

x−t+τ
dy h(τ, y).

Now

ut =
1

2

Z t

0

[h(τ, x+ t− τ) + h(τ, x− t+ τ)] dτ,

utt =
1

2

Z t

0

[hx(τ, x+ t− τ)− hx(τ, x− t+ τ)] dτ + h(t, x)

ux(t, x) =
1

2

Z t

0

dτ [h(τ, x+ t− τ)− h(τ, x− t+ τ)] and

uxx(t, x) =
1

2

Z t

0

dτ [hx(τ, x+ t− τ)− hx(τ, x− t+ τ)]

so that utt−uxx = h and u(0, x) = ut(0, x) = 0.We have proved the following
theorem.

Theorem 37.10. If f ∈ C2(R,R) and g ∈ C1(R,R), and h ∈ C(R2,R) such
that hx exists and hx ∈ C(R2,R), then Eq. (37.14) has a unique solution
u(t, x) given by Eq. (37.14).

Proof. The only thing left to prove is the uniqueness assertion. For this
suppose that v is another solution, then (u − v) solves the wave equation
(37.12) with f = g = 0 and hence by the uniqueness assertion in Theorem
37.9, u− v ≡ 0.

37.1.1 A 1-dimensional wave equation with non-constant
coefficients

Theorem 37.11. Let c(x) > 0 be a smooth function and C̃ = c(x)∂x and
f, g ∈ C2(R). Then the unique solution to the wave equation

utt = C̃2u = cuxx + c0ux with u(0, ·) = f and ut(0, ·) = g (37.17)

is

u(t, x) =
1

2

£
f(e−tC(x)) + f(etC(x))

¤
+
1

2

Z t

−t
g(esC(x))ds. (37.18)

defined for (t, x) ∈ D(C) ∩D(−C).
Proof. (Uniqueness) If u is a C2 — solution of Eq. (37.17), then³

∂t − C̃
´³

∂t + C̃
´
u = 0
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and ³
∂t + C̃

´
u(t, x)|t=0 = g(x) + C̃f(x).

Therefore ³
∂t + C̃

´
u(t, x) = etC̃ (g + f 0) (x) = (g + f 0) (etC(x))

which has solution given by Duhamel’ s Principle as

u(t, x) = e−tÀf(x) +
Z t

0

e−(t−τ)C̃
³
g + C̃f

´
(eτC(x))dτ

= f(e−tC(x)) +
Z t

0

³
g + C̃f

´
(e(2τ−t)C(x))dτ

= f(e−tC(x)) +
1

2

Z t

−t

³
g + C̃f

´
(esC(x))ds

= f(e−tC(x)) +
1

2

Z t

−t
g(esC(x))ds+

1

2

Z t

−t

d

ds
f(esC(x))ds

=
1

2

£
f(e−tC(x)) + f(etC(x))

¤
+
1

2

Z t

−t
g(esC(x))ds.

(Existence.) Let y = esC(x) so dy = c(esC(x))ds = c(y)ds in the integral
in Eq. (37.18), thenZ t

−t
g(esC(x))ds =

Z etC(x)

e−tC(x)
g(y)

dy

c(y)

=

Z etC(x)

0

g(y)
dy

c(y)
+

Z 0

e−tC(x)
g(y)

dy

c(y)

=

Z etC(x)

0

g(y)
dy

c(y)
−
Z e−tC(x)

0

g(y)
dy

c(y)
.

From this observation, it follows follows that

u(t, x) = F (etC(x)) +G(e−tC(x))

where

F (x) =
1

2

µ
f(x) +

Z x

0

g(y)
dy

c(y)

¶
and G(x) =

1

2

µ
f(x)−

Z x

0

g(y)
dy

c(y)

¶
.

Now clearly F and G are C2 — functions and³
∂t − C̃

´
F (etC(x)) = 0 and

³
∂t + C̃

´
G(e−tC(x)) = 0

so that
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∂2t − C̃2

´
u(t, x) =

³
∂t − C̃

´³
∂t + C̃

´ £
F (etC(x)) +G(e−tC(x))

¤
= 0.

By Du hamel’s principle, we can similarly solve

utt = C̃2u+ h with u(0, ·) = 0 and ut(0, ·) = 0. (37.19)

Corollary 37.12. The solution to Eq. (37.19) is

u(t, x) =
1

2

Z t

0

 Solution to Eq. (37.17)
at time t− τ

with f = 0 and g = h(τ, ·)

 dτ

=
1

2

Z t

0

dτ

Z t−τ

τ−t
h(τ, esC(x))ds.

Proof. This is simply a matter of computing a number of derivatives:

ut =
1

2

Z t

0

dτ
h
h(τ, e(t−τ)C(x)) + h(τ, e(τ−t)C(x))

i
utt = h(t, x) +

1

2

Z t

0

dτ
h
C̃h(τ, e(t−τ)C(x))− C̃h(τ, e(τ−t)C(x))

i
C̃u =

1

2

Z t

0

dτ

Z t−τ

τ−t
C̃h(τ, esC(x))ds =

1

2

Z t

0

dτ

Z t−τ

τ−t

d

ds
h(τ, esC(x))ds

=
1

2

Z t

0

dτ
h
h(τ, e(t−τ)C(x))− h(τ, e(τ−t)C(x))

i
and

C̃2u =
1

2

Z t

0

dτ
h
C̃h(τ, e(t−τ)C(x))− C̃h(τ, e(τ−t)C(x))

i
.

Subtracting the second and last equation then shows utt = Ã2u+ h and it is
clear that u(0, ·) = 0 and ut(0, ·) = 0.

37.2 General Linear First Order PDE

In this section we consider the following PDE,

nX
i=1

ai(x)∂iu(x) = c(x)u(x) (37.20)

where ai(x) and c(x) are given functions. As above Eq. (37.20) may be written
simply as

Ãu(x) = c(x)u(x). (37.21)

The key observation to solving Eq. (37.21) is that the chain rule implies
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d

ds
u(esA(x)) = Ãu(esA(x)), (37.22)

which we will write briefly as

d

ds
u ◦ esA = Ãu ◦ esA.

Combining Eqs. (37.21) and (37.22) implies

d

ds
u(esA(x)) = c(esA(x))u(esA(x))

which then gives
u(esA(x)) = e

R s
0
c(eσA(x))dσu(x). (37.23)

Equation (37.22) shows that the values of u solving Eq. (37.21) along any
flow line of A, are completely determined by the value of u at any point on
this flow line. Hence we can expect to construct solutions to Eq. (37.21) by
specifying u arbitrarily on any surface Σ which crosses the flow lines of A
transversely, see Figure 37.1 below.

Fig. 37.1. The flow lines of A through a non-characteristic surface Σ.

Example 37.13. Let us again consider the PDE in Eq. (37.6) above but now
with initial data being given on the line x = t, i.e.
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ut = x2ux with u(λ, λ) = f(λ)

for some f ∈ C1 (R,R) . The characteristic equations are given by

t0(s) = 1 and x0(s) = −x2(s) (37.24)

and the flow lines of this equations must live on the solution curves to dx
dt =−x2, i.e. on curves of the form x(t) = 1

t−C for C ∈ R and x = 0, see Figure
37.13.

52.50-2.5-5

10

5

0

-5

-10

t

x

t

x

Any solution to ut = x2ux must be constant on these characteristic curves.
Notice the line x = t crosses each characteristic curve exactly once while the

line t = 0 crosses some but not all of the characteristic curves.

Solving Eqs. (37.24) with t(0) = λ = x(0) gives

t(s) = s+ λ and x(s) =
λ

1 + sλ
(37.25)

and hence

u(s+ λ,
λ

1 + sλ
) = f(λ) for all λ and s > −1/λ.

(for a plot of some of the integral curves of Eq. (37.24).) Let

(t, x) = (s+ λ,
λ

1 + sλ
) (37.26)

and solve for λ :

x =
λ

1 + (t− λ)λ
or xλ2 − (xt− 1)λ− x = 0

which gives
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λ =
(xt− 1)±

q
(xt− 1)2 + 4x2
2x

. (37.27)

Now to determine the sign, notice that when s = 0 in Eq. (37.26) we have
t = λ = x. So taking t = x in the right side of Eq. (37.27) implies¡

x2 − 1¢±q(x2 − 1)2 + 4x2
2x

=

¡
x2 − 1¢± ¡x2 + 1¢

2x

=

½
x with +
−2/x with − .

Therefore, we must take the plus sing in Eq. (37.27) to find

λ =
(xt− 1) +

q
(xt− 1)2 + 4x2
2x

and hence

u(t, x) = f

(xt− 1) +
q
(xt− 1)2 + 4x2
2x

 . (37.28)

When x is small,

λ =
(xt− 1) + (1− xt)

q
1 + 4x2

(xt−1)2

2x
∼=
(1− xt) 2x2

(xt−1)2

2x
=

x

1− xt

so that

u(t, x) ∼= f

µ
x

1− xt

¶
when x is small.

Thus we see that u(t, 0) = f(0) and u(t, x) is C1 if f is C1. Equation (37.28)
sets up a one to one correspondence between solution u to ut = x2ux and
f ∈ C1(R,R).

Example 37.14. To solve

xux + yuy = λxyu with u = f on S1, (37.29)

let A(x, y) = (x, y) = x∂x + y∂y. The equations for (x(s), y(s)) := esA(x, y)
are

x0(s) = x(s) and y0(s) = y(s)

from which we learn
esA(x, y) = es(x, y).

Then by Eq. (37.23),

u(es(x, y)) = eλ
R s
0
e2σxydσu(x, y) = e

λ
2 (e

2s−1)xyu(x, y).
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Letting (x, y)→ e−s(x, y) in this equation gives

u(x, y) = e
λ
2 (1−e−2s)xyu(e−s (x, y))

and then choosing s so that

1 =
°°e−s(x, y)°°2 = e−2s(x2 + y2),

i.e. so that s = 1
2 ln

¡
x2 + y2

¢
. We then find

u(x, y) = exp

µ
λ

2

µ
1− 1

x2 + y2

¶
xy

¶
f(

(x, y)p
x2 + y2

).

Notice that this solution always has a singularity at (x, y) = (0, 0) unless f is
constant.

10.50-0.5-1

1

0.5

0

-0.5

-1

x

y

x

y

Characteristic curves for Eq. (37.29) along with the plot of S1.

Example 37.15. The PDE,

exux + uy = u with u(x, 0) = g(x), (37.30)

has characteristic curves determined by x0 := ex and y0 := 1 and along these
curves solutions u to Eq. (37.30) satisfy

d

ds
u(x, y) = u(x, y). (37.31)

Solving these “characteristic equations” gives

−e−x(s) + e−x0 =
Z s

0

e−xx0ds =
Z s

0

1ds = s (37.32)

so that
x(s) = − ln(e−x0 − s) and y(s) = y0 + s. (37.33)
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From Eqs. (37.32) and (37.33) one shows

y(s) = y0 + e−x0 − e−x(s)

so the “characteristic curves” are contained in the graphs of the functions

y = C − e−x for some constant C.

53.752.51.250-1.25

5

2.5

0

-2.5

-5

-7.5

-10

x

y

x

y

Some characteristic curves for Eq. (37.30). Notice that the line y = 0
intersects some but not all of the characteristic curves. Therefore Eq. (37.30)
does not uniquely determine a function u defined on all of R2. On the
otherhand if the intial condition were u(0, y) = g(y) the method would

produce an everywhere defined solution.

Since the initial condition is at y = 0, set y0 = 0 in Eq. (37.33) and notice
from Eq.(37.31) that

u(− ln(e−x0 − s), s) = u(x(s), y(s)) = esu(x0, 0) = esg(x0). (37.34)

Setting (x, y) = (− ln(e−x0 − s), s) and solving for (x0, s) implies

s = y and x0 = − ln(e−x + y)

and using this in Eq. (37.34) then implies

u(x, y) = eyg
¡− ln(y + e−x)

¢
.

This solution is only defined for y > −e−x.
Example 37.16. In this example we will use the method of characteristics to
solve the following non-linear equation,

x2ux + y2 uy = u2 with u := 1 on y = 2x. (37.35)

As usual let (x, y) solve the characteristic equations, x0 = x2 and y0 = y2 so
that
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(x(s), y(s)) =

µ
x0

1− sx0
,

y0
1− sy0

¶
.

Now let (x0, y0) = (λ, 2λ) be a point on line y = 2x and supposing u solves
Eq. (37.35). Then z(s) = u(x(s), y(s)) solves

z0 =
d

ds
u (x, y) = x2ux + y2 uy = u2(x, y) = z2

with z(0) = u(λ, 2λ) = 1 and hence

u

µ
λ

1− sλ
,

2λ

1− 2sλ
¶
= u(x(s), y(s)) = z(s) =

1

1− s
. (37.36)

Let

(x, y) =

µ
λ

1− sλ
,

2λ

1− 2sλ
¶
=

µ
1

λ−1 − s
,

1

λ−1/2− s

¶
(37.37)

and solve the resulting equations:

λ−1 − s = x−1 and λ−1/2− s = y−1

for s gives s = x−1 − 2y−1 and hence
1− s = 1 + 2y−1 − x−1 = x−1y−1 (xy + 2x− y) . (37.38)

Combining Eqs. (37.36) — (37.38) gives

u(x, y) =
xy

xy + 2x− y
.

Notice that the characteristic curves here lie on the trajectories determined
by dx

x2 =
dy
y2 , i.e. y

−1 = x−1 + C or equivalently

y =
x

1 + Cx

210-1-2

10

5

0

-5

-10

x

y

x

y

Some characteristic curves
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37.3 Quasi-Linear Equations

In this section we consider the following PDE,

A(x, z) ·∇xu(t, x) =
nX
i=1

ai(x, u(x))∂iu(x) = c(x, u(x)) (37.39)

where ai(x, z) and c(x, z) are given functions on (x, z) ∈ Rn×R and A(x, z) :=
(a1(x, z), . . . , a1(x, z)) . Assume u is a solution to Eq. (37.39) and suppose x(s)
solves x0(s) = A(x(s), u(x(s)).Then from Eq. (37.39) we find

d

ds
u(x(s)) =

nX
i=1

ai(x(s), u(x(s)))∂iu(x(s)) = c(x(s), u(x(s))),

see Figure 37.2 below. We have proved the following Lemma.

Fig. 37.2. Determining the values of u by solving ODE’s. Notice that potential
problem though where the projection of characteristics cross in x — space.

Lemma 37.17. Let w = (x, z), π1(w) = x, π2(w) = z and Y (w) =
(A(x, z), c(x, z)) . If u is a solution to Eq. (37.39), then

u(π1 ◦ esY (x0, u(x0)) = π2 ◦ esY (x0, u(x0)).
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Let Σ be a surface in Rn (x— space), i.e. Σ : U ⊂o Rn−1 −→ Rn such that
Σ(0) = x0 and DΣ(y) is injective for all y ∈ U. Now suppose u0 : Σ → R is
given we wish to solve for u such that (37.39) holds and u = u0 on Σ. Let

φ(s, y) := π1 ◦ esY (Σ(y), u0(Σ(y))) (37.40)

then

∂φ

∂s
(0, 0) = π1 ◦ Y (x0, u0(x0)) = A(x0, u0(x0)) and

Dyφ(0, 0) = DyΣ(0).

Assume Σ is non-characteristic at x0, that is A(x0, u0(x0)) /∈ Ran Σ0(0)
where Σ0(0) : Rn−1 → Rn is defined by

Σ0(0)v = ∂vΣ(0) =
d

ds
|0Σ(sv) for all v ∈ Rn−1.

Then
³
∂φ
∂s ,

∂φ
∂y1 , . . . ,

∂φ
∂yn−1

´
are all linearly independent vectors at (0, 0) ∈

R × Rn−1. So φ : R × Rn−1 → Rn has an invertible differential at (0, 0)
and so the inverse function theorem gives the existence of open neighborhood
0 ∈ W ⊂ U and 0 ∈ J ⊂ R such that φ¯̄

J×W is a homeomorphism onto an
open set V := φ(J ×W ) ⊂ Rn, see Figure 37.3. Because of Lemma 37.17, if

Fig. 37.3. Constructing a neighborhood of the surface Σ near x0 where we can
solve the quasi-linear PDE.

we are going to have a C1 — solution u to Eq. (37.39) with u = u0 on Σ it
would have to satisfy

u(x) = π2 ◦ esY (Σ(y), u0(Σ(y))) with (s, y) := φ−1(x), (37.41)

i.e. x = φ(s, y).

Proposition 37.18. The function u in Eq. (37.41) solves Eq. (37.39) on V
with u = u0 on Σ.
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Proof. By definition of u in Eq. (37.41) and φ in Eq. (37.40),

φ0(s, y) = π1Y ◦ esY (Σ(y), u0(Σ(y))) = A(φ(s, y)), u(φ(s, y))

and

d

ds
u(φ(s, y)) = π2Y (φ(s, y), u(φ(s, y))) = c(φ(s, y), u(φ(s, y))). (37.42)

On the other hand by the chain rule,

d

ds
u(φ(s, y)) = ∇u(φ(s, u)) · φ0(s, y)

= ∇u(φ(s, u)) ·A(φ(s, y)), u(φ(s, y)). (37.43)

Comparing Eqs. (37.42) and (37.43) implies

∇u(φ(s, y)) ·A(φ(s, y), u(φ(s, y))) = c(φ(s, y), u(φ(s, y))).

Since φ(J ×W ) = V, u solves Eq. (37.39) on V. Clearly u(φ(0, y)) = u0(Σ(y))
so u = u0 on Σ.

Example 37.19 (Conservation Laws). Let F : R→ R be a smooth function,
we wish to consider the PDE for u = u(t, x),

0 = ut + ∂xF (u) = ut + F 0(u)ux with u(0, x) = g(x). (37.44)

The characteristic equations are given by

t0(s) = 1, x0(s) = F 0(z(s)) and
d

ds
z(s) = 0. (37.45)

The solution to Eqs. (37.45) with t(0) = 0, x(0) = x and hence

z(0) = u(t(0), x(0)) = u(0, x) = g(x),

are given by

t(s) = s, z(s) = g(x) and x(s) = x+ sF 0(g(x)).

So we conclude that any solution to Eq. (37.44) must satisfy,

u(s, x+ sF 0(g(x)) = g(x).

This implies, letting ψs(x) := x+ sF 0(g(x)), that

u(t, x) = g(ψ−1t (x)).

In order to find ψ−1t we need to know ψt is invertible, i.e. that ψt is monotonic
in x. This becomes the condition

0 < ψ0t(x) = 1 + tF 00(g(x))g0(x).

If this holds then we will have a solution.
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Example 37.20 (Conservation Laws in Higher Dimensions). Let F : R→ Rn
be a smooth function, we wish to consider the PDE for u = u(t, x),

0 = ut +∇ · F (u) = ut + F 0(u) ·∇u with u(0, x) = g(x). (37.46)

The characteristic equations are given by

t0(s) = 1, x0(s) = F 0(z(s)) and
d

ds
z(s) = 0. (37.47)

The solution to Eqs. (37.47) with t(0) = 0, x(0) = x and hence

z(0) = u(t(0), x(0)) = u(0, x) = g(x),

are given by

t(s) = s, z(s) = g(x) and x(s) = x+ sF 0(g(x)).

So we conclude that any solution to Eq. (37.46) must satisfy,

u(s, x+ sF 0(g(x))) = g(x). (37.48)

This implies, letting ψs(x) := x+ sF 0(g(x)), that

u(t, x) = g(ψ−1t (x)).

In order to find ψ−1t we need to know ψt is invertible. Locally by the implicit
function theorem it suffices to know,

ψ0t(x)v = v + tF 00(g(x))∂vg(x) = [I + tF 00(g(x))∇g(x)·] v
is invertible. Alternatively, let y = x+sF 0(g(x)), (so x = y−sF 0(g(x))) in Eq.
(37.48) to learn, using Eq. (37.48) which asserts g(x) = u(s, x+ sF 0(g(x))) =
u(s, y),

u(s, y) = g (y − sF 0(g(x))) = g (y − sF 0(u(s, y))) .

This equation describes the solution u implicitly.

Example 37.21 (Burger’s Equation). Recall Burger’s equation is the PDE,

ut + uux = 0 with u(0, x) = g(x) (37.49)

where g is a given function. Also recall that if we view u(t, x) as a time
dependent vector field on R and let x(t) solve

ẋ(t) = u(t, x(t)),

then
ẍ(t) = ut + uxẋ = ut + uxu = 0.

Therefore x has constant acceleration and
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x(t) = x(0) + ẋ(0)t = x(0) + g(x(0))t.

This equation contains the same information as the characteristic equations.
Indeed, the characteristic equations are

t0(s) = 1, x0(s) = z(s) and z0(s) = 0. (37.50)

Taking initial condition t(0) = 0, x(0) = x0 and z(0) = u(0, x0) = g(x0) we
find

t(s) = s, z(s) = g(x0) and x(s) = x0 + sg(x0).

According to Proposition 37.18, we must have

u((s, x0 + sg(x0)) = u(s, x(s)) = u(0, x(0)) = g (x0) . (37.51)

Letting ψt(x0) := x0 + tg(x0), “the” solution to (t, x) = (s, x0 + sg(x0)) is
given by s = t and x0 = ψ−1t (x). Therefore, we find from Eq. (37.51) that

u(t, x) = g
¡
ψ−1t (x)

¢
. (37.52)

This gives the desired solution provided ψ−1t is well defined.

Example 37.22 (Burger’s Equation Continued). Continuing Example 37.21.
Suppose that g ≥ 0 is an increasing function (i.e. the faster cars start to the
right), then ψt is strictly increasing and for any t ≥ 0 and therefore Eq. (37.52)
gives a solution for all t ≥ 0. For a specific example take g(x) = max(x, 0),
then

ψt(x) =

½
(1 + t)x if x ≥ 0

x if x ≤ 0
and therefore,

ψ−1t (x) =

½
(1 + t)−1x if x ≥ 0

x if x ≤ 0

u(t, x) = g
¡
ψ−1t (x)

¢
=

½
(1 + t)−1x if x ≥ 0

0 if x ≤ 0.
Notice that u(t, x)→ 0 as t→∞ since all the fast cars move off to the right
leaving only slower and slower cars passing x ∈ R.
Example 37.23. Now suppose g ≥ 0 and that g0(x0) < 0 at some point x0 ∈
R, i.e. there are faster cars to the left of x0 then there are to the right of
x0, see Figure 37.4. Without loss of generality we may assume that x0 =
0. The projection of a number of characteristics to the (t, x) plane for this
velocity profile are given in Figure 37.5 below. Since any C2 — solution to
Eq.(37.49) must be constant on these lines with the value given by the slope,
it is impossible to get a C2 — solution on all of R2 with this initial condition.
Physically, there are collisions taking place which causes the formation of a
shock wave in the system.
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2.51.250-1.25-2.5
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Fig. 37.4. An intial velocity profile where collisions are going to occur. This is the
graph of g(x) = 1/

¡
1 + (x+ 1)2

¢
.

52.50-2.5-5
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Fig. 37.5. Crossing of projected characteristics for Burger’s equation.

37.4 Distribution Solutions for Conservation Laws

Let us again consider the conservation law in Example 37.19 above. We will
now restrict our attention to non-negative times. Suppose that u is a C1 —
solution to

ut + (F (u))x = 0 with u(0, x) = g(x) (37.53)

and φ ∈ C2c ([0,∞)×R). Then by integration by parts,
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0 = −
Z
R
dx

Z
t≥0

dt(ut + F (u)x)ϕ

= −
Z
R
[uϕ]

¯̄̄t=∞
t=0

dx+

Z
R
dx

Z
t≥0

dt(uϕt + F (u)φx)

=

Z
R

g(x)ϕ(0, x)dx+

Z
R
dx

Z
t≥0

dt(u(t, x)φt(t, x) + F (u(t, x))φx(t, x)).

Definition 37.24. A bounded measurable function u(t, x) is a distributional
solution to Eq. (37.53) iff

0 =

Z
R

g(x)ϕ(0, x)dx+

Z
R
dx

Z
t≥0

dt(u(t, x)φt(t, x) + F (u(t, x))φx(t, x))

for all test functions φ ∈ C2c (D) where D = [0,∞)×R.
Proposition 37.25. If u is a distributional solution of Eq. (37.53) and u is
C1 then u is a solution in the classical sense. More generally if u ∈ C1(R)
where R is an open region contained in D0 := (0,∞)×R andZ

R
dx

Z
t≥0

dt(u(t, x)φt(t, x) + F (u(t, x))φx(t, x)) = 0 (37.54)

for all φ ∈ C2c (R) then ut + (F (u))x := 0 on R.

Proof. Undo the integration by parts argument to show Eq. (37.54) im-
plies Z

R

(ut + (F (u))x)ϕdxdt = 0

for all φ ∈ C1c (R). This then implies ut + (F (u))x = 0 on R.

Theorem 37.26 (Rankine-Hugoniot Condition). Let R be a region in
D0 and x = c(t) for t ∈ [a, b] be a C1 curve in R as pictured below in Figure
37.6.
Suppose u ∈ C1(R \ c([a, b])) and u is bounded and has limiting values u+

and u− on x = c(t) when approaching from above and below respectively. Then
u is a distributional solution of ut + (F (u))x = 0 in R if and only if

ut +
∂

∂x
F (u) := 0 on R \ c([a, b]) (37.55)

and for all t ∈ [a, b],

ċ(t)
£
u+(t, c(t))− u−(t, c(t))

¤
= F (u+(t, c(t)))− F (u−(t, c(t)). (37.56)
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Fig. 37.6. A curve of discontinuities of u.

Proof. The fact that Equation 37.55 holds has already been proved in the
previous proposition. For (37.56) let Ω be a region as pictured in Figure 37.6
above and φ ∈ C1c (Ω). Then

0 =

Z
Ω

(uφt + F (u)φx)dt dx

=

Z
Ω+

(uφt + F (u)φx)dt dx+

Z
Ω−

(uφt + F (u)φx)dt dx (37.57)

where

Ω± =
½
(t, x) ∈ Ω :

x > c(t)
x < c(t)

¾
.

Now the outward normal to Ω± along c is

n(t) = ± (ċ(t),−1)p
1 + ċ(t)2

and the “surface measure” along c is given by dσ(t) =
p
1 + ċ(t)2dt. Therefore

n(t) dσ(t) = ±(ċ(t),−1)dt

where the sign is chosen according to the sign in Ω±. Hence by the divergence
theorem,
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Ω±

(uφt + F (u)φx)dt dx

=

Z
Ω±

(u,F (u)) · (φt, φx)dt dx

=

Z
∂Ω±

φ(u, F (u)) · n(t) dσ(t)

= ±
Z β

α

φ(t, c(t))(u±t (t, c(t))ċ(t)− F (u±t (t, c(t))))dt.

Putting these results into Eq. ( 37.57) gives

0 =

Z β

α

{ċ(t) £u+(t, c(t))− u−(t, c(t))
¤

− (F (u+(t, c(t)))− F (u−(t, c(t)))}φ(t, c(t))dt
for all φ which implies

ċ(t)
£
u+(t, c(t))− u−(t, c(t))

¤
= F (u+(t, c(t)))− F (u−(t, c(t)).

Example 37.27. In this example we will find an integral solution to Burger’s
Equation, ut + uux = 0 with initial condition

u(0, x) =

0 x ≥ 1
1− x 0 ≤ x ≤ 1
1 x ≤ 0.

The characteristics are given from above by

x(t) = (1− x0)t+ x0 x0 ∈ (0, 1)
x(t) = x0 + t if x0 ≤ 0 and
x(t) = x0 if x0 ≥ 1.

52.50-2.5-5

4

2

0

-2

-4

t

x

t

x
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Projected characteristics

For the region bounded determined by t ≤ x ≤ 1 and t ≤ 1 we have u(t, x) is
equal to the slope of the line through (t, x) and (1, 1), i.e.

u(t, x) =
x− 1
t− 1 .

Notice that the solution is not well define in the region where characteris-
tics cross, i.e. in the shock zone,

R2 := {(t, x) : t ≥ 1, x ≥ 1 and x ≤ t} ,
see Figure 37.7. Let us now look for a distributional solution of the equation

Fig. 37.7. The schock zone and the values of u away from the shock zone.

valid for all (x, t) by looking for a curve c(t) in R2 such that above c(t), u = 0
while below c(t), u = 1.
To this end we will employ the Rankine-Hugoniot Condition of Theorem

37.26. To do this observe that Burger’s Equation may be written as ut +
(F (u))x = 0 where F (u) = u2

2 . So the Jump condition is

ċ(u+ − u−) = (F (u+)− F (u−))

that is

(0− 1)ċ =
µ
02

2
− 1

2

2

¶
= −1

2
.

Hence ċ(t) = 1
2 and therefore c(t) =

1
2 t+1 for t ≥ 0. So we find a distributional

solution given by the values in shown in Figure 37.8.
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Fig. 37.8. A distributional solution to Burger’s equation.

37.5 Exercises

Exercise 37.28. For A ∈ L(X), let

etA :=
∞X
n=0

tn

n!
An. (37.58)

Show directly that:

1. etA is convergent in L(X) when equipped with the operator norm.
2. etA is differentiable in t and that d

dte
tA = AetA.

Exercise 37.29. Suppose that A ∈ L(X) and v ∈ X is an eigenvector of
A with eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that
X = Rn and A is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn).

Exercise 37.30. Suppose that A,B ∈ L(X) and [A,B] := AB − BA = 0.
Show that e(A+B) = eAeB.

Exercise 37.31. Suppose A ∈ C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s, t ∈ R. Show

y(t) := e(
R t
0
A(τ)dτ)x

is the unique solution to ẏ(t) = A(t)y(t) with y(0) = x.

Exercise 37.32. Compute etA when

A =

µ
0 1
−1 0

¶
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and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.

Hint: Sum the series and use etAesA = e(t+s)A.

Exercise 37.33. Compute etA when

A =

0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is
the 3× 3 identity matrix. Hint: Sum the series.

Theorem 37.34. Suppose that Tt ∈ L(X) for t ≥ 0 satisfies
1. (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
2. (Norm Continuity) t → Tt is continuous at 0, i.e. kTt − IkL(X) → 0 as

t ↓ 0.
Then there exists A ∈ L(X) such that Tt = etA where etA is defined in Eq.

(37.58).

Exercise 37.35. Prove Theorem 37.34 using the following outline.

1. First show t ∈ [0,∞)→ Tt ∈ L(X) is continuous.
2. For � > 0, let S� := 1

�

R �
0
Tτdτ ∈ L(X). Show S� → I as � ↓ 0 and conclude

from this that S� is invertible when � > 0 is sufficiently small. For the
remainder of the proof fix such a small � > 0.

3. Show

TtS� =
1

�

Z t+�

t

Tτdτ

and conclude from this that

lim
t↓0

t−1 (Tt − I)S� =
1

�
(T� − IdX) .

4. Using the fact that S� is invertible, conclude A = limt↓0 t−1 (Tt − I) exists
in L(X) and that

A =
1

�
(T� − I)S−1� .

5. Now show using the semigroup property and step 4. that d
dtTt = ATt for

all t > 0.
6. Using step 5, show d

dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.
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Exercise 37.36 (Higher Order ODE). Let X be a Banach space, , U ⊂o
Xn and f ∈ C (J × U ,X) be a Locally Lipschitz function in x = (x1, . . . , xn).
Show the nth ordinary differential equation,

y(n)(t) = f(t, y(t), ẏ(t), . . . y(n−1)(t))

with y(k)(0) = yk0 for k = 0, 1, 2 . . . , n− 1 (37.59)

where (y00, . . . , y
n−1
0 ) is given in U , has a unique solution for small t ∈ J.

Hint: let y(t) =
¡
y(t), ẏ(t), . . . y(n−1)(t)

¢
and rewrite Eq. (37.59) as a first

order ODE of the form

ẏ(t) = Z(t,y(t)) with y(0) = (y00 , . . . , y
n−1
0 ).

Exercise 37.37. Use the results of Exercises 37.33 and 37.36 to solve

ÿ(t)− 2ẏ(t) + y(t) = 0 with y(0) = a and ẏ(0) = b.

Hint: The 2× 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I +B where B2 = 0.

Exercise 37.38. Suppose that A : R → L(X) is a continuous function and
U, V : R→ L(X) are the unique solution to the linear differential equations

V̇ (t) = A(t)V (t) with V (0) = I (37.60)

and
U̇(t) = −U(t)A(t) with U(0) = I. (37.61)

Prove that V (t) is invertible and that V −1(t) = U(t). Hint: 1) show
d
dt [U(t)V (t)] = 0 (which is sufficient if dim(X) < ∞) and 2) show com-
pute y(t) := V (t)U(t) solves a linear differential ordinary differential equation
that has y ≡ 0 as an obvious solution. Then use the uniqueness of solutions
to ODEs. (The fact that U(t) must be defined as in Eq. (37.61) is the content
of Exercise 19.32 in the analysis notes.)

Exercise 37.39 (Duhamel’ s Principle I). Suppose that A : R→ L(X) is
a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (37.60). Let x ∈ X and h ∈ C(R,X) be given.
Show that the unique solution to the differential equation:

ẏ(t) = A(t)y(t) + h(t) with y(0) = x (37.62)

is given by

y(t) = V (t)x+ V (t)

Z t

0

V (τ)−1h(τ) dτ. (37.63)

Hint: compute d
dt [V

−1(t)y(t)] when y solves Eq. (37.62).



816 37 First Order Quasi-Linear Scalar PDE

Exercise 37.40 (Duhamel’ s Principle II). Suppose that A : R → L(X)
is a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (37.60). Let W0 ∈ L(X) and H ∈ C(R, L(X)) be
given. Show that the unique solution to the differential equation:

Ẇ (t) = A(t)W (t) +H(t) with W (0) =W0 (37.64)

is given by

W (t) = V (t)W0 + V (t)

Z t

0

V (τ)−1H(τ) dτ. (37.65)

Exercise 37.41 (Non-Homogeneous ODE). Suppose that U ⊂o X is
open and Z : R × U → X is a continuous function. Let J = (a, b) be an
interval and t0 ∈ J. Suppose that y ∈ C1(J, U) is a solution to the “non-
homogeneous” differential equation:

ẏ(t) = Z(t, y(t)) with y(to) = x ∈ U. (37.66)

Define Y ∈ C1(J− t0,R×U) by Y (t) := (t+ t0, y(t+ t0)). Show that Y solves
the “homogeneous” differential equation

Ẏ (t) = Ã(Y (t)) with Y (0) = (t0, y0), (37.67)

where Ã(t, x) := (1, Z(x)). Conversely, suppose that Y ∈ C1(J − t0,R × U)
is a solution to Eq. (37.67). Show that Y (t) = (t+ t0, y(t+ t0)) for some y ∈
C1(J, U) satisfying Eq. (37.66). (In this way the theory of non-homogeneous
ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 37.42 (Differential Equations with Parameters). Let W be
another Banach space, U × V ⊂o X ×W and Z ∈ C(U × V,X) be a locally
Lipschitz function on U ×V. For each (x,w) ∈ U×V, let t ∈ Jx,w → φ(t, x, w)
denote the maximal solution to the ODE

ẏ(t) = Z(y(t), w) with y(0) = x. (37.68)

Prove
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w} (37.69)

is open in R× U × V and φ and φ̇ are continuous functions on D.
Hint: If y(t) solves the differential equation in (37.68), then v(t) :=

(y(t), w) solves the differential equation,

v̇(t) = Ã(v(t)) with v(0) = (x,w), (37.70)

where Ã(x,w) := (Z(x,w), 0) ∈ X×W and let ψ(t, (x,w)) := v(t). Now apply
the Theorem 6.21 to the differential equation (37.70).



37.5 Exercises 817

Exercise 37.43 (Abstract Wave Equation). For A ∈ L(X) and t ∈ R, let

cos(tA) :=
∞X
n=0

(−1)2n
(2n)!

t2nA2n and

sin(tA)

A
:=

∞X
n=0

(−1)2n+1
(2n+ 1)!

t2n+1A2n.

Show that the unique solution y ∈ C2 (R,X) to

ÿ(t) +A2y(t) = 0 with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (37.71)

is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0.

Remark 37.44. Exercise 37.43 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (37.71) as a first order ODE using Exercise
37.36. In doing so you will be lead to compute etB where B ∈ L(X ×X) is
given by

B =

µ
0 I
−A2 0

¶
,

where we are writing elements ofX×X as column vectors,
µ
x1
x2

¶
. You should

then show

etB =

µ
cos(tA) sin(tA)

A−A sin(tA) cos(tA)
¶

where

A sin(tA) :=
∞X
n=0

(−1)2n+1
(2n+ 1)!

t2n+1A2(n+1).

Exercise 37.45 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 37.43, but now consider the ODE,

ÿ(t) +A2y(t) = f(t) with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (37.72)

where f ∈ C(R,X). Show the unique solution to Eq. (37.72) is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0 +

Z t

0

sin((t− τ)A)

A
f(τ)dτ (37.73)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (37.73) from Exercise 37.39 and the comments in
Remark 37.44.

Exercise 37.46. Number 3 on p. 163 of Evans.
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Fully nonlinear first order PDE

In this section let U ⊂o Rn be an open subset of Rn and (x, z, p) ∈ Ū ×Rn ×
R → F (x, z, p) ∈ R be a C2 — function. Actually to simplify notation let us
suppose U =Rn. We are now looking for a solution u : Rn → R to the fully
non-linear PDE,

F (x, u(x),∇u(x)) = 0. (38.1)

As above, we “reduce” the problem to solving ODE’s. To see how this might
be done, suppose u solves (38.1) and x(s) is a curve in Rn and let

z(s) = u(x(s)) and p(s) = ∇u(x(s)).
Then

z0(s) = ∇u(x(s)) · x0(s) = p(s) · x0(s) and (38.2)

p0(s) = ∂x0(s)∇u(x(s)). (38.3)

We would now like to find an equation for x(s) which along with the above
system of equations would form and ODE for (x(s), z(s), p(s)). The term,
∂x0(s)∇u(x(s)), which involves two derivative of u is problematic and we would
like to replace it by something involving only ∇u and u. In order to get the
desired relation, differentiate Eq. (38.1) in x in the direction v to find

0 = Fx · v + Fz∂vu+ Fp · ∂v∇u = Fx · v + Fz∂vu+ Fp ·∇∂vu
= Fx · v + Fz ∇u · v + (∂Fp∇u) · v,

wherein we have used the fact that mixed partial derivative commute. This
equation is equivalent to

∂Fp∇u|(x,u(x),∇u(x)) = −(Fx + Fz ∇u)|(x,u(x),∇u(x)). (38.4)

By requiring x(s) to solve x0(s) = Fp(x(s), z(s), p(s)), we find, using Eq. (38.4)
and Eqs. (38.2) and (38.3) that (x(s), z(s), p(s)) solves the characteristic
equations,
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x0(s) = Fp(x(s), z(s), p(s))

z0(s) = p(s) · Fp(x(s), z(s), p(s))
p0(s) = −Fx(x(s), z(s), p(s))− Fz(x(s), z(s), p(s))p(s).

We will in the future simply abbreviate these equations by

x0 = Fp

z0 = p · Fp (38.5)

p0 = −Fx − Fzp.

The above considerations have proved the following Lemma.

Lemma 38.1. Let

A(x, z, p) := (Fp(x, z, p), p · Fp(x, z, p),−Fx(x, z, p)− Fz(x, z, p)p) ,

π1(x, z, p) = x and π2(x, z, p) = z.

If u solves Eq. (38.1) and x0 ∈ U, then

esA(x0, u(x0),∇u(x0)) = (x(s), u(x(s)),∇u(x(s))) and
u(x(s)) = π2 ◦ esA(x0, u(x0),∇u(x0)) (38.6)

where x(s) = π1 ◦ esA(x0, u(x0),∇u(x0)).
We now want to use Eq. (38.6) to produce solutions to Eq. (38.1). As in

the quasi-linear case we will suppose Σ : U ⊂o Rn−1 −→ Rn is a surface,
Σ(0) = x0, DΣ(y) is injective for all y ∈ U and u0 : Σ → R is given. We wish
to solve Eq. (38.1) for u with the added condition that u(Σ(y)) = u0(y). In
order to make use of Eq. (38.6) to do this, we first need to be able to find
∇u(Σ(y)). The idea is to use Eq. (38.1) to determine ∇u(Σ(y)) as a function
of Σ(y) and u0(y) and for this we will invoke the implicit function theorem. If
u is a function such that u(Σ(y)) = u0(y) for y near 0 and p0 = ∇u(x0) then

∂vu0(0) = ∂vu(Σ(y))|y=0 = ∇u(x0) ·Σ0(0)v = p0 ·Σ0(0)v.

Notation 38.2 Let ∇Σu0(y) denote the unique vector in Rn which is tan-
gential to Σ at Σ(y) and such that

∂vu0(y) = ∇Σu0(y) ·Σ0(0)v for all v ∈ Rn−1.
Theorem 38.3. Let F : Rn×R×Rn → R be a C2 function, 0 ∈ U ⊂o Rn−1,
Σ : U ⊂o Rn−1 C2−→ Rn be an embedded submanifold, (x0, z0, p0) ∈ Σ×R×Rn
such that F (x0, z0, p0) = 0 and x0 = Σ(0), u0 : Σ

C1−→ R such that u0(x0) =
z0, n(y) be a normal vector to Σ at y. Further assume

1. ∂vu0(0) = p0 ·Σ0(0)v = p0 · ∂vΣ(0) for all v ∈ Rn−1.
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2. Fp(x0, y0, z0) · n(0) 6= 0.
Then there exists a neighborhood V ⊂ Rn of x0 and a C2-function u : V →

R such that u ◦Σ = u0 near 0 and Eq. (38.1) holds for all x ∈ V.

Proof. Step 1. There exist a neighborhood U0 ⊂ U and a function p0 :
U0 → Rn such that

p0(y)
tan = ∇Σu0(y) and F (Σ(y), u(Σ((y)), p0(y)) = 0 (38.7)

for all y ∈ U0, where p0(y)tan is component of p0(y) tangential to Σ. This is

Fig. 38.1. Decomposing p into its normal and tangential components.

an exercise in the implicit function theorem.
Choose α0 ∈ R such that ∇Σu0(0) + α0n(0) = p0 and define

f(α, y) := F (Σ(y), u0(y),∇Σu0(y) + αn(y)).

Then
∂f

∂α
(α, 0) = Fp(x0, z0,∇Σu0(0) + αn(0)) · n(0) 6= 0,

so by the implicit function theorem there exists 0 ∈ U0 ⊂ U and α : U0 → R
such that f(α(y), y) = 0 for all y ∈ U0. Now define

p0(y) := ∇Σu0(y) + α(y)n(y) for y ∈ U0.

To simplify notation in the future we will from now on write U for U0.
Step 2. Suppose (x, z, p) is a solution to (38.5) such that F (x(0), z(0), p(0)) =

0 then
F (x(s), z(s), p(s)) = 0 for all t ∈ J (38.8)

because
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d

ds
F (x(s), z(s), p(s)) = Fx · x0 + Fzz

0 + Fp · p0

= Fx · Fp + Fz(p · Fp)− Fp · (Fx + Fzp) = 0. (38.9)

Step 3. (Notation). For y ∈ U let

(X(s, y), Z(s, y), P (s, y)) = esA(Σ(y), u0(y), p0(y)),

ie. X(s, y), Z(s, y) and P (s, y) solve the coupled system of O.D.E.’s:

X 0 = Fp with X(0, y) = Σ(y)

Z 0 = P · Fp with Z(0, y) = u0(y)

P 0 = Fx − FzP with P (0, y) = p0(y). (38.10)

With this notation Eq. (38.8) becomes

F (X(s, y), Z(s, y), P (s, y)) = 0 for all t ∈ J. (38.11)

Step 4. There exists a neighborhood 0 ∈ U0 ⊂ U and 0 ∈ J ⊂ R such that
X : J ×U0 → Rn is a C1 diffeomorphism onto an open set V := X(J ×U0) ⊂
Rn with x0 ∈ V. Indeed, X(0, y) = Σ(y) so that DyX(0, y)|y=0 = Σ0(0) and
hence

DX(0, 0)(a, v) =
∂X

∂s
(0, 0)a+Σ0(0)v = Fp(x0, z0, p0)a+Σ0(0)v.

By the assumptions, Fp(x0, z0, p0) /∈ Ran Σ0(0) and Σ0(0) is injective, it
follows that DX(0, 0) is invertible So the assertion is a consequence of the
inverse function theorem.
Step 5. Define

u(x) := Z(X−1(x)),

then u is the desired solution. To prove this first notice that u is uniquely
characterized by

u(X(s, y)) = Z(s, y) for all (s, y) ∈ J0 × U0.

Because of Step 2., to finish the proof it suffices to show∇u(X(s, y)) = P (s, y).
Step 6. ∇u(X(s, y)) = P (s, y). From Eq. (38.10),

P ·X 0 = P · Fp = Z0 =
d

ds
u(X) = ∇u(X) ·X 0 (38.12)

which shows
[P −∇u(X)] ·X 0 = 0.

So to finish the proof it suffices to show

[P −∇u(X)] · ∂vX = 0
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for all v ∈ Rn−1 or equivalently that

P (s, y) · ∂vX = ∇u(x) · ∂vX = ∂vu(X) = ∂vZ (38.13)

for all v ∈ Rn−1.
To prove Eq. (38.13), fix a y and let

r(s) := P (s, y) · ∂vX(s, y)− ∂vZ(s, y).

Then using Eq. (38.10),

r0 = P 0 · ∂vX + P · ∂vX 0 − ∂vZ
0

= (−Fx − FzP ) · ∂vX + P · ∂vFp − ∂v(P · Fp)
= (−Fx − FzP ) · ∂vX − (∂vP ) · Fp. (38.14)

Further, differentiating Eq. (38.11) in y implies for all v ∈ Rn−1 that

Fx · ∂vX + Fz∂vZ + Fp · ∂vP = 0. (38.15)

Adding Eqs. (38.14) and (38.15) then shows

r0 = −FzP · ∂vX + Fz∂vZ = −Fzr

which implies
r(s) = e−

R s
0
Fz(X,Z,P )(σ,y)dσr(0).

This shows r ≡ 0 because p0(y)T = (∇Σu0) (Σ(y)) and hence

r(0) = p0(y) · ∂vΣ(y)− ∂vu0(Σ(y))

= [p0(y)−∇Σu0(Σ(y))] · ∂vΣ(y) = 0.

Example 38.4 (Quasi-Linear Case Revisited). Let us consider the quasi-linear
PDE in Eq. (37.39),

A(x, z) ·∇xu(x)− c(x, u(x)) = 0. (38.16)

in light of Theorem 38.3. This may be written in the form of Eq. (38.1) by
setting

F (x, z, p) = A(x, z) · p− c(x, z).

The characteristic equations (38.5) for this F are

x0 = Fp = A

z0 = p · Fp = p ·A
p0 = −Fx − Fzp = − (Ax · p− cx)− (Az · p− cz) p.
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Recalling that p(s) = ∇u(s, x), the z equation above may expressed, by using
Eq. (38.16) as

z0 = p ·A = c.

Therefore the equations for (x(s), z(s)) may be written as

x0(s) = A(x, z) and z0 = c(x, z)

and these equations may be solved without regard for the p — equation. This
is what makes the quasi-linear PDE simpler than the fully non-linear PDE.

38.1 An Introduction to Hamilton Jacobi Equations

A Hamilton Jacobi Equation is a first order PDE of the form

∂S

∂t
(t, x) +H(x,∇xS(t, x)) = 0 with S(0, x) = g(x) (38.17)

where H : Rn × Rn → R and g : Rn → R are given functions. In this section
we are going to study the connections of this equation to the Euler Lagrange
equations of classical mechanics.

38.1.1 Solving the Hamilton Jacobi Equation (38.17) by
characteristics

Now let us solve the Hamilton Jacobi Equation (38.17) using the method of
characteristics. In order to do this let

(p0, p) = (
∂S

∂t
,∇xS(t, x)) and F (t, x, z, p) := p0 +H(x, p).

Then Eq. (38.17) becomes

0 = F (t, x, S,
∂S

∂t
,∇xS).

Hence the characteristic equations are given by

d

ds
(t(s), x(s)) = F(p0,p) = (1,∇pH(x(s), p(s))

d

ds
(p0, p)(s) = −F(t,x) − Fz(p0, p) = −F(t,x) = (0,−∇xH(x(s), p(s)))

and
z0(s) = (p0, p) · F(p0,p) = p0(s) + p(s) ·∇pH(x(s), p(s)).

Solving the t equation with t(0) = 0 gives t = s and so we identify t and s
and our equations become
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ẋ(t) = ∇pH(x(t), p(t)) (38.18)

ṗ(t) = −∇xH(x(t), p(t)) (38.19)

d

dt

·
∂S

∂t
(t, x(t))

¸
=

d

dt
p0(t) = 0 and

d

dt
[S(t, x(t))] =

d

dt
z(t) =

∂S

∂t
(t, x(t)) + p(t) ·∇pH(x(t), p(t))

= −H(x(t), p(t)) + p(t) ·∇pH(x(t), p(t)).

Hence we have proved the following proposition.

Proposition 38.5. If S solves the Hamilton Jacobi Equation Eq. 38.17 and
(x(t), p(t)) are solutions to the Hamilton Equations (38.18) and (38.19) (see
also Eq. (38.29) below) with p(0) = (∇xg) (x(0)) then

S(T, x(T )) = g(x(0)) +

Z T

0

[p(t) ·∇pH(x(t), p(t))−H(x(t), p(t))] dt.

In particular if (T, x) ∈ R×Rn then

S(T, x) = g(x(0)) +

Z T

0

[p(t) ·∇pH(x(t), p(t))−H(x(t), p(t))] dt. (38.20)

provided (x, p) is a solution to Hamilton Equations (38.18) and (38.19) sat-
isfying the boundary condition x(T ) = x and p(0) = (∇xg) (x(0)).

Remark 38.6. Let X(t, x0, p0) = x(t) and P (t, x0, p0) = p(t) where (x(t), p(t))
satisfies Hamilton Equations (38.18) and (38.19) with (x(0), p(0)) = (x0, p0)
and let Ψ(t, x) := (t,X(t, x,∇g(x)). Then Ψ(0, x) = (0, x) so

∂vΨ(0, 0) = (0, v) and ∂tΨ(0, 0) = (1,∇pH(x,∇g(x)))

from which it follows that Ψ 0(0, 0) is invertible. Therefore given a ∈ Rn, the
exists � > 0 such that Ψ−1(t, x) is well defined for |t| < � and |x − a| < �.
Writing Ψ−1(T, x) = (T, x0(T, x)) we then have that

(x(t), p(t)) := (X(t, x0(T, x),∇g(x0(T, x)), P (t, x0,∇g(x0(T, x)))

solves Hamilton Equations (38.18) and (38.19) satisfies the boundary condi-
tion x(T ) = x and p(0) = (∇xg) (x(0)).

38.1.2 The connection with the Euler Lagrange Equations

Our next goal is to express the solution S(T, x) in Eq. (38.20) solely in terms
of the path x(t). For this we digress a bit to Lagrangian mechanics and the
notion of the “classical action.”
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Definition 38.7. Let T > 0, L : Rn × Rn −→ R be a smooth “Lagrangian”
and g : Rn → R be a smooth function. The g — weighted action IgT (q) of a
function q ∈ C2([0, T ],Rn) is defined to be

IgT (q) = g(q(0)) +

Z T

0

L(q(t), q̇(t))dt.

When g = 0 we will simply write IT for I0,T .

We are now going to study the function S(T, x) of “least action,”

S(T, x) := inf
©
IgT (q) : q ∈ C2([0, T ]) with q(T ) = x

ª
(38.21)

= inf

(
g(q(0)) +

Z T

0

L(q(t), q̇(t))dt : q ∈ C2([0, T ]) with q(T ) = x

)
.

The next proposition records the differential of IgT (q).

Proposition 38.8. Let L ∈ C∞(Rn × Rn,R) be a smooth Lagrangian, then
for q ∈ C2([0, T ],Rn) and h ∈ C1([0, T ],Rn)

DIgT (q)h = [(∇g(q)−D2L(q, q̇)) · h]t=0 + [D2L(q, q̇) · h]t=T
+

Z T

0

(D1L(q, q̇)− d

dt
D2L(q, q̇))h dt (38.22)

Proof. By differentiating past the integral,

∂hIT (q) =
d

ds
|0IT (q + sh) =

Z T

0

d

ds
|0L(q(t) + sh(t), q̇(t) + sḣ(t))dt

=

Z T

0

(D1L(q, q̇)h+D2L(q, q̇)ḣ)dt

=

Z T

0

(D1L(q, q̇)− d

dt
D2L(q, q̇))h dt+D2L(q, q̇)h

¯̄̄T
0
.

This completes the proof since IgT (q) = g(q(0)) + IT (q) and ∂h [g(q(0))] =
∇g(q(0)) · h(0).
Definition 38.9. A function q ∈ C2([0, T ],Rn) is said to solve the Euler
Lagrange equation for L if q solves

D1L(q, q̇)− d

dt
[D2L(q, q̇)] = 0. (38.23)

This is equivalently to q satisfying DIT (q)h = 0 for all h ∈ C1([0, T ],Rn)
which vanish on ∂[0, T ] = {0, T} .
Let us note that the Euler Lagrange equations may be written as:

D1L(q, q̇) = D1D2L(q, q̇)q̇ +D2
2L(q, q̇)q̈.
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Corollary 38.10. Any minimizer q (or more generally critical point) of IgT (·)
must satisfy the Euler Lagrange Eq. (38.23) with the boundary conditions

q(T ) = x and ∇g(q(0)) = ∇q̇L(q(0), q(0)) = D2L(q(0), q(0)). (38.24)

Proof. The corollary is a consequence Proposition 38.8 and the first deriv-
ative test which implies DIgT (q)h = 0 for all h ∈ C1([0, T ],Rn) such that
h(T ) = 0.

Example 38.11. Let U ∈ C∞(Rn,R), m > 0 and L(q, v) = 1
2m |v|2 − U(q).

Then
D1L(q, v) = −∇U(q) and D2L(q, v) = mv

and the Euler Lagrange equations become

−∇U(q) = d

dt
[mq̇] = mq̈

which are Newton’s equations of motion for a particle of mass m subject to a
force −∇U. In particular if U = 0, then q(t) = q(0) + tq̇(0).

The following assumption on L will be assumed for the rest of this section.

Assumption 1 We assume
£
D2
2L(q, v)

¤−1
exists for all (q, v) ∈ Rn×Rn and

v → D2L(q, v) is invertible for all q∈Rn.
Notation 38.12 For q, p ∈ Rn let

V (q, p) := [D2L(q, ·)]−1 (p). (38.25)

Equivalently, V (q, p) is the unique element of Rn such that

D2L(q, V (q, p)) = p. (38.26)

Remark 38.13. The function V : Rn × Rn → Rn is smooth in (q, p). This
is a consequence of the implicit function theorem applied to Ψ(q, v) :=
(q,D2L(q, v)).

Under Assumption 1, Eq. (38.23) may be written as

q̈ = F (q, q̇) (38.27)

where
F (q, q̇) = D2

2L(q, q̇)
−1{D1L(q, q̇)−D(D2L(q, q̇)q̇}.

Definition 38.14 (Legendre Transform). Let L ∈ C∞(Rn × Rn,R) be a
function satisfying Assumption 1. The Legendre transform L∗ ∈ C∞(Rn ×
Rn,R) is defined by

L∗(x, p) := p · v − L(x, v) where p = ∇vL(x, v),

i.e.
L∗(x, p) = p · V (x, p)− L(x, V (x, p)). (38.28)
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Proposition 38.15. Let H(x, p) := L∗(x, p), q ∈ C2([0, T ],Rn) and p(t) :=
Lv(q(t), q̇(t)). Then

1. H ∈ C∞(Rn ×Rn,R) and

Hx(x, p) = −Lx(x, V (x, p)) and Hp(x, p) = V (x, p)..

2. H satisfies Assumption 1 and H∗ = L, i.e. (L∗)∗ = L.
3. The path q ∈ C2([0, T ],Rn) solves the Euler Lagrange Eq. (38.23) then
(q(t), p(t)) satisfies Hamilton’s Equations:

q̇(t) = Hp(q(t), p(t))

ṗ(t) = −Hx(q(t), p(t)). (38.29)

4. Conversely if (q, p) solves Hamilton’s equations (38.29) then q solves the
Euler Lagrange Eq. (38.23) and

d

dt
H(q(t), p(t)) = 0. (38.30)

Proof. The smoothness of H follows by Remark 38.13.

1. Using Eq. (38.28) and Eq. (38.26)

Hx(x, p) = p · Vx(x, p)− Lx(x, V (x, p))− Lv(x, V (x, p))Vx(x, p)

= p · Vx(x, p)− Lx(x, V (x, p))− p · Vx(x, p)
= −Lx(x, V (x, p)).

and similarly,

Hp(x, p) = V (x, p) + p · Vp(x, p)− Lv(x, V (x, p))Vp(x, p)

= V (x, p) + p · Vp(x, p)− p · Vp(x, p) = V (x, p).

2. Since Hp(x, p) = V (x, p) = [Lv(x, ·)]−1 (p) and by Remark 38.13, p →
V (x, p) is smooth with a smooth inverse Lv(x, ·), it follows that H satisfies
Assumption 1. Letting p = Lv(x, v) in Eq. (38.28) shows

H(x,Lv(x, v)) = Lv(x, v) · V (x,Lv(x, v))− L(x, V (x,Lv(x, v)))

= Lv(x, v) · v − L(x, v)

and using this and the definition of H∗ we find

H∗(x, v) = v · [Hp(x, ·)]−1 (v)−H(x, [Hp(x, ·)]−1 (v))
= v · Lv(x, v)−H(x,Lv(x, v)) = L(x, v).
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3. Now suppose that q solves the Euler Lagrange Eq. (38.23) and p(t) =
Lv(q(t), q̇(t)), then

ṗ =
d

dt
Lv(q, q̇) = Lq(q, q̇) = Lq(q, V (q, p)) = −Hq(q, p)

and
q̇ = [Lv(q, ·)]−1 (p) = V (q, p) = Hp(q, p).

4. Conversely if (q, p) solves Eq. (38.29), then

q̇ = Hp(q, p) = V (q, p).

Therefore
Lv(q, q̇) = Lv(q, V (q, p)) = p

and
d

dt
Lv(q, q̇) = ṗ = −Hq(q, p) = Lq(q, V (q, p)) = Lq(q, q̇).

Equation (38.30) is easily verified as well:

d

dt
H(q, p) = Hq(q, p) · q̇ +Hp(q, p) · ṗ

= Hq(q, p) ·Hp(q, p)−Hp(q, p) ·Hq(q, p) = 0.

Example 38.16. Letting L(q, v) = 1
2m |v|2 − U(q) as in Example 38.11, L sat-

isfies Assumption 1,

V (x, p) = [∇vL(x, ·)]−1 (p) = p/m

H(x, p) = L∗(x, p) = p · p
m
− L(x, p/m)) =

1

2m
|p|2 + U(q)

which is the conserved energy for this classical mechanical system. Hamilton’s
equations for this system are,

q̇ = p/m and ṗ = −∇U(q).
Notation 38.17 Let φt(x, v) = q(t) where q is the unique maximal solution
to Eq. (38.27) (or equivalently 38.23)) with q(0) = x and q̇(0) = v.

Theorem 38.18. Suppose L ∈ C∞(Rn × Rn,R) satisfies Assumption 1 and
let H = L∗ denote the Legendre transform of L. Assume there exists an open
interval J ⊂ R with 0 ∈ J and U ⊂o Rn such that there exists a smooth
function x0 : J × U → Rn such that

φT (x0(T, x), V (x0(T, x),∇g(x0(T, x))) = x. (38.31)

Let
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qx,T (t) := φt(x0(T, x), V (x0(T, x),∇g(x0(T, x))) (38.32)

so that qx,T solves the Euler Lagrange equations, qx,T (T ) = x, qx,T (0) =
x0(T, x) and q̇x,T (0) = V (x0(T, x),∇g(x0(T, x)) or equivalently

∂vL(qx,T (0), q̇x,T (0)) = ∇g(x0(T, x)).
Then the function

S(T, x) := IgT (qx,T ) = g(qx,T (0)) +

Z T

0

L(qx,T (t), q̇x,T (t))dt. (38.33)

solves the Hamilton Jacobi Equation (38.17).

Conjecture 38.19. For general g and L convex in v, the function

S(t, x) = inf
q∈C2([0,t],Rn)

{g(q(0)) +
Z t

0

L(q(τ), q̇(τ))dτ : q(t) = x}

is a distributional solution to the Hamilton Jacobi Equation Eq. 38.17. See
Evans to learn more about this conjecture.

Proof. We will give two proofs of this Theorem.
First Proof. One need only observe that the theorem is a consequence of

Definition 38.14 and Proposition 38.15 and 38.5.
Second Direct Proof. By the fundamental theorem of calculus and dif-

ferentiating past the integral,

∂S(T, x)

∂T
= ∇g(x0(T, x)) · ∂

∂T
x0(T, x) + L(qx,T (T ), q̇x,T (T ))

+

Z T

0

∂

∂T
L(qx,T (t), q̇x,T (t)))dt

= ∇g(x0(T, x)) · ∂

∂T
x0(T, x) + L(qx,T (T ), q̇x,T (T ))

+DIT (qx,T )

·
∂

∂T
qx,T

¸
= L(qx,T (T ), q̇x,T (T )) +DIgT (qx,T )

·
∂

∂T
qx,T

¸
. (38.34)

Using Proposition 38.8 and the fact that qx,T satisfies the Euler Lagrange
equations and the boundary conditions in Corollary 38.10 we find

DIgT (qx,T )

·
∂

∂T
qx,T

¸
=

µ
D2L(qx,T (t), q̇x,T (t))

∂

∂T
qx,T (t)

¶ ¯̄̄
t=T

. (38.35)

Furthermore differentiating the identity, qx,T (T ) = x, in T implies

0 =
d

dT
x =

d

dT
qx,T (T ) = q̇x,T (T ) +

d

dT
qx,T (t)|t=T (38.36)
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Combining Eqs. (38.34) — (38.36) gives

∂S(T, x)

∂T
= L(x, q̇x,T (T )))−D2L(x, q̇x,T (T ))q̇x,T (T ). (38.37)

Similarly for v ∈ Rn,

∂vS(T, x) = ∂vI
g
T (qx,T ) = DIgT ((qx,T )) [∂vqx,T ]

= D2L(qx,T (T ), q̇x,T (T ))∂vqx,T (T ) = D2L(x, q̇x,T (T ))v

wherein the last equality we have use qx,T (T ) = x. This last equation is
equivalent to

D2L(x, q̇x,T (T )) = ∇xS(T, x)

from which it follows that

q̇x,T (T ) = V (x,∇xS(T, x)). (38.38)

Combining Eqs. (38.37) and (38.38) and the definition of H, shows

∂S(T, x)

∂T
= L(x, V (x,∇xS(T, x)))−D2L(x, q̇x,T (T ))V (x,∇xS(T, x))

= −H(x,∇xS(T, x)).

Remark 38.20. The hypothesis of Theorem 38.18 may always be satisfied lo-
cally, for let ψ : R×Rn → R×Rn be given by ψ(t, y) := (t, φt(y, V (y,∇g(y)).
Then ψ(0, y) := (0, y) and so

ψ̇(0, y) = (1, ∗) and ψy(0, y) = idRn

from which it follows that ψ0(0, y)−1 exists for all y ∈ Rn. So the inverse
function theorem guarantees for each a ∈ Rn that there exists an open interval
J ⊂ R with 0 ∈ J and a ∈ U ⊂o Rn and a smooth function x0 : J × U → Rn
such that

ψ(T, x0(T, x)) = (T, x0(T, x)) for T ∈ J and x ∈ U,

i.e.
φT (x0(T, x), V (x0(T, x),∇g(x0(T, x))) = x.

38.2 Geometric meaning of the Legendre Transform

Let V be a finite dimensional real vector space and f : V → R be a strictly
convex function. Then the function f∗ : V ∗ → R defined by
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f∗(α) = sup
v∈V

(α(v)− f(v)) (38.39)

is called the Legendre transform of f. Now suppose the supremum on the
right side of Eq. (38.39) is obtained at a point v ∈ V, see Figure 38.2 below.
Eq. (38.39) may be rewritten as f∗(α) ≥ α(·) − f(·) with equality at v or
equivalently that

−f∗(α) + α(·) ≤ f(·) with equality at some point v ∈ V.

Geometrically, the graph of α ∈ V ∗ defines a hyperplane which if translate
by −f∗(α) just touches the graph of f at one point, say v, see Figure 38.2.
At the point of contact, v, α and f must have the same tangent plane and

Fig. 38.2. Legendre Transform of f.

since α is linear this means that f 0(v) = α. Therefore the Legendre transform
f∗ : V ∗ → R of f may be given explicitly by

f∗(α) = α(v)− f(v) with v such that f 0(v) = α.
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Cauchy — Kovalevskaya Theorem

As a warm up we will start with the corresponding result for ordinary differ-
ential equations.

Theorem 39.1 (ODE Version of Cauchy — Kovalevskaya, I.). Suppose
a > 0 and f : (−a, a)→ R is real analytic near 0 and u(t) is the unique solution
to the ODE

u̇(t) = f(u(t)) with u(0) = 0. (39.1)

Then u is also real analytic near 0.

We will give four proofs. However it is the last proof that the reader should
focus on for understanding the PDE version of Theorem 39.1.
Proof. (First Proof.)If f(0) = 0, then u(t) = 0 for all t is the unique

solution to Eq. (39.1) which is clearly analytic. So we may now assume that
f(0) 6= 0. Let G(z) := R z

0
1

f(u)du, another real analytic function near 0. Then
as usual we have

d

dt
G(u(t)) =

1

f(u(t))
u̇(t) = 1

and hence G(u(t)) = t. We then have u(t) = G−1(t) which is real analytic
near t = 0 since G0(0) = 1

f(0) 6= 0.
Proof. (Second Proof.) For z ∈ C let uz(t) denote the solution to the

ODE
u̇z(t) = zf(uz(t)) with uz(0) = 0. (39.2)

Notice that if u(t) is analytic, then t → u(tz) satisfies the same equation as
uz. Since G(z, u) = zf(u) is holomorphic in z and u, it follows that uz in Eq.
(39.2) depends holomorphically on z as can be seen by showing ∂̄zuz = 0, i.e.
showing z → uz satisfies the Cauchy Riemann equations. Therefore if � > 0 is
chosen small enough such that Eq. (39.2) has a solution for |t| < � and |z| < 2,
then

u(t) = u1(t) =
∞X
n=0

1n

n!
∂nz uz(t)|z=0. (39.3)
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Now when z ∈ R, uz(t) = u(tz) and therefore

∂nz uz(t)|z=0 = ∂nz u(tz)|z=0 = u(n)(0)tn.

Putting this back in Eq. (39.3) shows

u(t) =
∞X
n=0

1

n!
u(n)(0)tn

which shows u(t) is analytic for t near 0.
Proof. (Third Proof.) Go back to the original proof of existence of so-

lutions, but now replace t by z ∈ C and
R t
0
f(u(τ))dτ by

R z
0
f(u(ξ))dξ =R 1

0
f(u(tz))zdt. Then the usual Picard iterates proof work in the class of holo-

morphic functions to give a holomorphic function u(z) solving Eq. (39.1).
Proof. (Fourth Proof: Method of Majorants) Suppose for the moment we

have an analytic solution to Eq. (39.1). Then by repeatedly differentiating Eq.
(39.1) we learn

ü(t) = f 0(u(t))u̇(t) = f 0(u(t))f(u(t))

u(3)(t) = f 00(u(t))f2(u(t)) + [f 0(u(t))]2 f(u(t))
...

u(n)(t) = pn

³
f(u(t)), . . . , f (n−1)(u(t))

´
where pn is a polynomial in n variables with all non-negative integer coeffi-
cients. The first few polynomials are p1(x) = x, p2(x, y) = xy, p3(x, y, z) =
x2z + xy2. Notice that these polynomials are universal, i.e. are independent
of the function f and¯̄̄

u(n)(0)
¯̄̄
=
¯̄̄
pn

³
f(0), . . . , f (n−1)(0)

´¯̄̄
≤ pn

³
|f(0)| , . . . ,

¯̄̄
f (n−1)(0)

¯̄̄´
≤ pn

³
g(0), . . . , g(n−1)(0)

´
where g is any analytic function such that

¯̄
f (k)(0)

¯̄ ≤ g(k)(0) for all k ∈ Z+.
(We will abbreviate this last condition as f ¿ g.) Now suppose that v(t) is a
solution to

v̇(t) = g(v(t)) with v(0) = 0, (39.4)

then we know from above that

v(n)(0) = pn

³
g(0), . . . , g(n−1)(0)

´
≥
¯̄̄
u(n)(0)

¯̄̄
for all n.

Hence if knew that v were analytic with radius of convergence larger that
some ρ > 0, then by comparison we would find



39 Cauchy — Kovalevskaya Theorem 835

∞X
n=0

1

n!

¯̄̄
u(n)(0)

¯̄̄
ρn ≤

∞X
n=0

1

n!
v(n)(0)ρn <∞

and this would show

u(t) :=
∞X
n=0

1

n!
pn

³
f(0), . . . , f (n−1)(0)

´
tn

is a well defined analytic function for |t| < ρ.
I now claim that u(t) solves Eq. (39.1). Indeed, both sides of Eq. (39.1) are

analytic in t, so it suffices to show the derivatives of each side of Eq. (39.1)
agree at t = 0. For example u̇(0) = f(0), ü(0) = d

dt |0f(u(t)), etc. However
this is the case by the very definition of u(n)(0) for all n.
So to finish the proof, it suffices to find an analytic function g such that¯̄

f (k)(0)
¯̄ ≤ g(k)(0) for all k ∈ Z+ and for which we know the solution to Eq.

(39.4) is analytic about t = 0. To this end, suppose that the power series
expansion for f(t) at t = 0 has radius of convergence larger than r > 0, thenP∞

n=0
1
n!f

(n)(0)rn is convergent and in particular,

C := max
n

¯̄̄̄
1

n!
f (n)(0)rn

¯̄̄̄
<∞

from which we conclude

max
n

¯̄̄̄
1

n!
f (n)(0)

¯̄̄̄
≤ Cr−n.

Let

g(u) :=
∞X
n=0

Cr−nun = C
1

1− u/r
= C

r

r − u
.

Then clearly f ¿ g. To conclude the proof, we will explicitly solve Eq. (39.4)
with this function g(t),

v̇(t) = C
r

r − v(t)
with v(0) = 0.

By the usual separation of variables methods we find rv(t) − 1
2v
2(t) = Crt,

i.e.
2Crt− 2rv(t) + v2(t) = 0

which has solutions, v(t) = r ±√r2 − 2Crt. We must take the negative sign
to get the correct initial condition, so that

v(t) = r −
p
r2 − 2Crt = r − r

p
1− 2Ct/r (39.5)

which is real analytic for |t| < ρ := r/C.
Let us now Jazz up this theorem to that case of a system of ordinary

differential equations. For this we will need the following lemma.



836 39 Cauchy — Kovalevskaya Theorem

Lemma 39.2. Suppose h : (−a, a)d→ Rd is real analytic near 0 ∈ (−a, a)d,
then

h¿ Cr

r − z1 − · · ·− zd

for some constants C and r.

Proof. By definition, there exists ρ > 0 such that

h(z) =
X
α

hαz
α for |z| < ρ

where hα = 1
α!∂

αh(0). Taking z = r(1, 1, . . . , 1) with r < ρ implies there exists
C <∞ such that |hα| r|α| ≤ C for all α, i.e.

|hα| ≤ Cr−|α| ≤ C
|α|!
α!

r−|α|.

This completes the proof since

X
α

C
|α|!
α!

r−|α|zα = C
∞X
n=0

X
|α|=n

|α|!
α!

³z
r

´α
= C

∞X
n=0

µ
z1 + · · ·+ zd

r

¶n
= C

1

1− ¡ z1+···+zdr

¢ = Cr

r − z1 − · · ·− zd

all of which is valid provided |z| := |z1|+ · · ·+ |zd| < r.

Theorem 39.3 (ODE Version of Cauchy — Kovalevskaya, II.). Suppose
a > 0 and f : (−a, a)d→ Rd be real analytic near 0 ∈ (−a, a)d and u(t) is the
unique solution to the ODE

u̇(t) = f(u(t)) with u(0) = 0. (39.6)

Then u is also real analytic near 0.

Proof. All but the first proof of Theorem 39.1 may be adapted to the
cover this case. The only proof which perhaps needs a little more comment is
the fourth proof. By Lemma 39.2, we can find C, r > 0 such that

fj(z)¿ gj(z) :=
Cr

r − z1 − · · ·− zd

for all j. Let v(t) denote the solution to the ODE,

v̇(t) = g(v(t)) =
Cr

r − v1(t)− · · ·− vd(t)
(1, 1, . . . , 1) (39.7)

with v(0) = 0. By symmetry, vj(t) = v1(t) =: w(t) for each j so Eq. (39.7)
implies
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ẇ(t) =
Cr

r − dw(t)
=

C (r/d)

(r/d)− w(t)
with w(0) = 0.

We have already solved this equation (see Eq. (39.5) with r replaced by r/d)
to find

w(t) = r/d−
p
r2/d2 − 2Crt/d = r/d

³
1−

p
1− 2Cdt/r

´
. (39.8)

Thus v(t) = w(t)(1, 1, . . . , 1) is a real analytic function which is convergent
for |t| < r/(2Cd).
Now suppose that u is a real analytic solution to Eq. (39.6). Then by

repeatedly differentiating Eq. (39.6) we learn

üj(t) = ∂ifj(u(t))u̇i(t) = ∂ifj(u(t))fi(u(t))

u
(3)
j (t) = ∂k∂ifj(u(t))u̇k(t)u̇i(t) + ∂ifj(u(t))üi(t)

...

u
(n)
j (t) = pn

µ
{∂αfj(u(t))}|α|<n ,

n
u
(k)
i (t)

o
k<n,1≤i≤d

¶
(39.9)

where pn is a polynomial with all non-negative integer coefficients. We now
define u(n)j (0) inductively so that

u
(n)
j (0) = pn

µ
{∂αfj(u(0))}|α|<n ,

n
u
(k)
i (0)

o
k<n,1≤i≤d

¶
for all n and j and we will attempt to define

u(t) =
∞X
n=0

1

n!
u(n)(0)tn. (39.10)

To see this sum is convergent we make use of the fact that the polynomials
pn are universal i.e. are independent of the function fj) and have non-negative
coefficients so that by induction¯̄̄

u
(n)
j (0)

¯̄̄
≤ pn

µ
{|∂αfj(u(0))|}|α|<n ,

n¯̄̄
u
(k)
i (0)

¯̄̄o
k<n,1≤i≤d

¶
≤ pn

µ
{∂αgj(u(0))}|α|<n ,

n
v
(k)
i (0)

o
k<n,1≤i≤d

¶
= v

(n)
j (0).

Notice the when n = 0 that |uj(0)| = 0 = vj(0).
1 Thus we have shown

u ¿ v and so by comparison the sum in Eq. (39.10) is convergent for t near
0. As before u(t) solves Eq. (39.6) since both functions u̇(t) and f(u(t)) are
analytic functions of t which have common values for all derivatives in t at
t = 0.

1 The argument shows that v(n)j (0) ≥ 0 for all n. This is also easily seen directly
by induction using Eq. (39.9) with f replaced by g and the fact that ∂αgj(0) ≥ 0
for all α.
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39.1 PDE Cauchy Kovalevskaya Theorem

In this section we will consider the following general quasi-linear system of
partial differential equationsX

|α|=k
aα(x, J

k−1u)∂αxu(x) + c(x, Jk−1u) = 0 (39.11)

where
J lu(x) = (u(x),Du(x),D2u(x), . . . ,Dlu(x))

is the “l — jet” of u. Here u : Rn → Rm and aα(Jk−1u, x) is an m×m matrix.
As usual we will want to give boundary data on some hypersurface Σ ⊂ Rn.
Let ν denote a smooth vector field along Σ such that v(x) /∈ TxΣ (TxΣ is
the tangent space to Σ at x) for x ∈ Σ. For example we might take ν(x)
to be orthogonal to TxΣ for all x ∈ Σ. To hope to get a unique solution to
Eq. (39.11) we will further assume there are smooth functions gl on Σ for
l = 0, . . . , k − 1 and we will require

Dlu(x)(v(x), . . . , v(x)) = gl(x) for x ∈ Σ and l = 0, . . . , k − 1. (39.12)

Proposition 39.4. Given a smooth function u on a neighborhood of Σ satis-
fying Eq. (39.12), we may calculate Dlu(x) for x ∈ Σ and l < k in terms of
the functions gl and there tangential derivatives.

Proof. Let us begin by choosing a coordinate system y on Rn such that
Σ∩D(y) = {yn = 0} and let us extend ν to a neighborhood of Σ by requiring
∂ν
∂yn

= 0. To complete the proof, we are going to show by induction on k that
we may compute µ

∂

∂y

¶α
u(x) for all x ∈ Σ and |α| < k

from Eq. (39.12).
The claim is clear when k = 1, since u = g0 on Σ. Now suppose that k = 2

and let νi = νi(y1, . . . , yn−1) such that

ν =
nX
i=1

νi
∂

∂yi
in a neighborhood of Σ.

Then

g1 = (Du) ν = νu =
nX
i=1

νi
∂u

∂yi
=
X
i<n

νi
∂g0
∂yi

+ νn
∂u

∂yn
.

Since ν is not tangential to Σ = {yn = 0} , it follows that νn 6= 0 and hence

∂u

∂yn
=
1

νn

Ã
g1 −

X
i<n

νi
∂g0
∂yi

!
on Σ. (39.13)



39.1 PDE Cauchy Kovalevskaya Theorem 839

For k = 3, first observe from the equality u = g0 on Σ and Eq. (39.13) we may
compute all derivatives of u of the form ∂αu

∂yα on Σ provided αn ≤ 1. From Eq.
(39.12) for l = 2, we have

g2 =
¡
D2u

¢
(v, v) = v2u+ l.o.ts.

=
X

νj
∂

∂yj

µ
νi
∂u

∂yi

¶
+ l.o.ts. = ν2n

∂2u

∂y2n
+ l.o.ts.

where l.o.ts. denotes terms involving ∂αu
∂yα with αn ≤ 1. From this result, it

follows that we may compute ∂2u
∂y2n

in terms of derivatives of g0, g1 and g2. The
reader is asked to finish the full inductive argument of the proof.

Remark 39.5. The above argument shows that from Eq. (39.12) we may com-
pute ∂αu

∂yα for any α such that αn < k.

To study Eq. (39.11) in more detail, let us rewrite Eq. (39.11) in the y —
coordinates. Using the product and the chain rule repeatedly Eq. (39.11) may
be written as X

|α|=k
bα(y, J

k−1u)∂αy u(y) + c(y, Jk−1u) = 0 (39.14)

where
J lu(y) = (u(y),Du(y),D2u(y), . . . ,Dlu(y)).

We will be especially concerned with the b(0,0,...,0,k) coefficient which can be
determined as follows:

X
|α|=k

aα

µ
∂

∂x

¶α
=
X
|α|=k

aα

 nX
j=1

∂yj
∂x

∂

∂yj

α

=
X
|α|=k

aα

µ
∂yn
∂x

∂

∂yn

¶α
+ l.o.ts.

=
X
|α|=k

aα

µ
∂yn
∂x

¶αµ
∂

∂yn

¶k
+ l.o.ts.

where l.o.ts. now denotes terms involving ∂αu
∂yα with αn < k. From this equation

we learn that

b(0,0,...,0,k)(y, J
k−1u) =

X
|α|=k

aα

µ
∂yn
∂x

¶α
=
X
|α|=k

aα

µ
dyn

µ
∂

∂x

¶¶α
.

Definition 39.6.We will say that boundary data (Σ, g0, . . . , gk−1) is non-
characteristic for Eq. (39.11) at x ∈ Σ if

b(0,0,...,0,k)(y, J
k−1u) =

X
|α|=k

aα(x, J
k−1u(x))

µ
dyn

µ
∂

∂x

¶¶α
is invertible at x.
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Notice that this condition is independent of the choice of coordinate system
y. To see this, for ξ ∈ (Rn)∗ let

σ(ξ) =
X
|α|=k

aα(x, J
k−1u(x))

µ
ξ

µ
∂

∂x

¶¶α
which is k — linear form on (Rn)∗ . This form is coordinate independent since
if f is a smooth function such that f(x) = 0 and dfx = ξ, then

σ(ξ) =
1

k!

X
|α|=k

aα(x, J
k−1u(x))

µ
∂

∂x

¶α
fk|x.

Noting that
b(0,0,...,0,k)(y, J

k−1u) = σ(dyn)

our non-characteristic condition becomes, σ(dyn) is invertible. Finally dyn is
the unique element ξ of (Rn)∗ \ {0} up to scaling such that ξ|TxΣ ≡ 0. So the
non-characteristic condition may be written invariantly as σ(ξ) is invertible
for all (or any) ξ ∈ (Rn)∗ \ {0} such that ξ|TxΣ ≡ 0.
Assuming the given boundary data is non-characteristic, Eq. (39.11) may

be put into “standard form,”X
|α|=k

bα(y, J
k−1u)∂αy u(y) + c(y, Jk−1u) = 0 (39.15)

with
∂lu

∂yln
= gl on yn = 0 for l < k

where b(0,0,...,0,k)(y, Jk−1u) = Id - matrix and

J lu(y) = (u(y),Du(y),D2u(y), . . . ,Dlu(y)).

By adding new dependent variables and possible a new independent vari-
able for yn one may reduce the problem to solving the system in Eq. (39.20)
below. The resulting theorem may be stated as follows.

Theorem 39.7 (Cauchy Kovalevskaya). Suppose all the coefficients in Eq.
(39.11) are real analytic and the boundary data in Eq. (39.12) are also real
analytic and non-characteristic near some point a ∈ Σ. Then there is a unique
real analytic solution to Eqs. (39.11) and (39.12). (The boundary data in Eq.
(39.12) is said to be real analytic if there exists coordinates y as above which
are real analytic and the functions ν and gl for l = 0, . . . , k−1 are real analytic
functions in the y — coordinate system.)

Example 39.8. Suppose a, b, C, r are positive constants. We wish to show the
solution to the quasi-linear PDE
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wt =
Cr

r − y − aw
[bwy + 1] with w(0, y) = 0 (39.16)

is real analytic near (t, y) = (0, 0). To do this we will solve the equation using
the method of characteristics. Let g(y, z) := Cr

r−y−az , then the characteristic
equations are

t0 = 0 with t(0) = 0

y0 = −bg(y, z) with y(0) = y0 and

z0 = g(y, z) with z(0) = 0.

From these equations we see that we may identify t with s and that y+bz = y0.
Thus z(t) = w(t, y(t)) satisfies

ż = g(y0 − bz, z) =
Cr

r − y0 + bz − az

=
Cr

r − y0 + (b− a) z
with z(0) = 0.

Integrating this equation gives

Crt =

Z t

0

(r − y0 + (b− a) z(τ)) ż(τ)dτ = (r − y0) z − 1
2
(a− b) z2

= (r − y − bz) z − 1
2
(a− b) z2 = (r − y) z − 1

2
(a+ b) z2,

i.e.
1

2
(a+ b) z2 − (r − y) z + Crt = 0.

The quadratic formula gives

w(t, y) =
1

a+ b

h
(r − y)±

p
(r − y)2 − 2 (a+ b)Crt

i
and using w(0, y) = 0 we conclude

w(t, y) =
1

a+ b

h
(r − y)−

p
(r − y)2 − 2 (a+ b)Crt

i
. (39.17)

Notice the w is real analytic for (t, y) near (0, 0).

In general we could use the method of characteristics and ODE properties
(as in Example 39.8) to show

ut = a(x, u)ux + b(x, u) with u(0, x) = g(x)

has local real analytic solutions if a, b and g are real analytic. The method
would also work for the fully non-linear case as well. However, the method of
characteristics fails for systems while the method we will present here works
in this generality.
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Exercise 39.9. Verify w in Eq. (39.17) solves Eq. (39.16).

Solution 39.10 (39.9). Let ρ :=
p
(r − y)2 − 2 (a+ b)Crt, then

w(t, y) =
1

a+ b
[r − y − ρ] =

r − y

a+ b
− 1

a+ b
ρ,

wt = Cr/ρ, ρ = r − y − (a+ b)w and

bwy + 1 =
b

a+ b
[−1 + (r − y) /ρ] + 1 =

1

a+ b
[a+ b (r − y) /ρ] .

Hence

bwy + 1

wt
=

1

(a+ b)Cr
[ρa+ b (r − y)]

=
1

(a+ b)Cr
[(r − y − (a+ b)w) a+ b (r − y)]

=
1

Cr
[r − y − aw]

as desired.

Example 39.11. Now let us solve for

v(t, x) =
¡
v1, . . . , vm

¢
(t, x1, . . . , xn)

where v satisfies

vjt =
Cr

r − x1 − · · ·− xn −
Pm

k=1 v
k

"
1 +

nX
i=1

mX
k=1

∂iv
k

#
with v(0, x) = 0.

By symmetry, vj = v1 =: w(t, y) for all j where y = x1 + · · · + xn. Since
∂iv

j = wy, the above equations all may be written as

wt =
Cr

r − y −mw
[mnwy + 1] with w(0, y) = 0.

Therefore from Example 39.8 with a = m and b = mn, we find

w(t, y) =
1

m(n+ 1)

h
(r − y)−

p
(r − y)2 − 2m(n+ 1)Crt

i
. (39.18)

and hence that

v(t, x) = w(t, x1 + · · ·+ xn) (1, 1, 1, . . . , 1) ∈ Rm. (39.19)
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39.2 Proof of Theorem 39.7

As is outlined in Evans, Theorem 39.7 may be reduced to the following theo-
rem.

Theorem 39.12. Let (t, x, z) = (t, x1, . . . , xn, z1, . . . , zm) ∈ R×Rn × Rm
and assume (t, x, z) → Bj(t, x, z) ∈ {m×m — matrices} (for j = 1, . . . , n)
and (t, x, z) → c(t, x, z) ∈ Rm are real analytic functions near (0, 0, 0) ∈
R×Rn × Rm and x → f(x) ∈ Rm is real analytic near 0 ∈ Rn. Then there
exists, in a neighborhood of (t, x) = (0, 0) ∈ R × Rn, a unique real analytic
solution u(t, x) ∈ Rm to the quasi-linear system

ut(t, x) =
nX
j=1

Bj(t, x, u(t, x))∂ju(t, x) + c(t, x, u(t, x)) with u(0, x) = f(x).

(39.20)

Proof. (Sketch.)
Step 0. By replacing u(t, x) by u(t, x)− f(x), we may assume f ≡ 0. By

letting um+1(t, x) = t if necessary, we may assume Bj and c do not depend
on t. With these reductions we are left to solve

ut(t, x) =
nX
j=1

Bj(x, u(t, x))∂ju(t, x) + c(x, u(t, x)) with u(0, x) = 0. (39.21)

Step 1. Let

g(x, z) :=
Cr

r − x1 − · · ·− xn − z1 − · · ·− zm

where C and r are positive constants such that

(Bj)kl ¿ g and ck ¿ g

for all k, l, j. For this choice of C and r, let v denote the solution constructed
in Example 39.11 above.
Step 2. By repeatedly differentiating Eq. (39.20), show that if u solves

Eq. (39.20) then ∂αx ∂
k
t u

j(0, 0) is a universal polynomial in the derivatives©
∂lt∂

α
x

ª
α,l<k

of the entries of Bj and c and u with all coefficients being non-
negative. Use this fact and induction to conclude¯̄

∂αx ∂
k
t u

j(0, 0)
¯̄ ≤ ∂αx ∂

k
t v

j(0, 0) for all α, k and l.

Step 3. Use the computation in Step 2. to define ∂αx ∂
k
t u

j(0, 0) for all α
and k and then defined

u(t, x) :=
X
α,k

∂αx ∂
k
t u(0, 0)

α!k!
tkxα. (39.22)
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Because of step 2. and Example 39.11, this series is convergent for (t, x) suf-
ficiently close to zero.
Step 4. The function u defined in Step 3. solves Eq. (39.20) because both

ut(t, x) and
nX
j=1

Bj(x, u(t, x))∂ju(t, x) + c(x, u(t, x))

are both real analytic functions in (t, x) each having, by construction, the
same derivatives at (0, 0).

39.3 Examples

Corollary 39.13 (Isothermal Coordinates). Suppose that we are given
a metric ds2 = Edx2 + 2Fdxdy + Gdy2 on R2 such that G/E and F/E
are real analytic near (0, 0). Then there exists a complex function u and a
positive function ρ such that Du(0, 0) is invertible and ds2 = ρ |du|2 where
du = uxdx+ uydy.

Proof. Working out |du|2 gives

|du|2 = |ux|2 dx2 + 2Re(uxūy)dxdy + |uy|2 dy2.
Writing uy = λux, the previous equation becomes

|du|2 = |ux|2
³
dx2 + 2Re(λ)dxdy + |λ|2 dy2

´
.

Hence we must have

E = ρ |ux|2 , F = ρ |ux|2Reλ and G = ρ |ux|2 |λ|2

or equivalently
F/E = Reλ and G/E = |λ|2 .

Writing λ = a+ ib, we find a = F/E and a2 + b2 = G/E so that

λ =
F

E
± i

q
G/E − (F/E)2 = 1

E

³
F ± i

p
GE − F 2

´
.

We make a choice of the sign above, then we are looking for u(x, y) ∈ C such
that uy = λux. Letting u = α+ iβ, the equation uy = λux may be written as
the system of real equations

αy = Re [(a+ ib) (αx + iβx)] = aαx − bβx and

βy = Im [(a+ ib) (αx + iβx)] = aβx + bαx

which is equivalent to
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α
β

¶
y

=

µ
a −b
b a

¶µ
α
β

¶
x

.

So we may apply the Cauchy Kovalevskaya theorem 39.12 with t = y to find a
real analytic solution to this equation with (say) u(x, 0) = x, i.e. α(x, 0) = x
and β(x, 0) = 0. (We could take u(x, 0) = f(x) for any real analytic function
f such that f 0(0) 6= 0.) The only thing that remains to check is that Du(0, 0)
is invertible. But

Du(0, 0) =

µ
Reux Reuy
Imux Imuy

¶
=

µ
αx αy
βx βy

¶
=

µ
αx aαx − bβx
βx aβx + bαx

¶
so that

det [Du] = b
¡
α2x + β2x

¢
= Imλ |ux|2 .

Thus

det [Du(0, 0)] = Imλ(0, 0) = ±
q
G/E − (F/E)2|(0,0) 6= 0.

Example 39.14. Consider the linear PDE,

uy = ux with u(x, 0) = f(x) (39.23)

where f(x) =
P∞

m=0 amx
m as real analytic function near x = 0 with radius

of convergence ρ. (So for any r < ρ, |am| ≤ Cr−n.) Formally the solution to
Eq. (39.23) should be given by

u(x, y) =
∞X
n=0

1

n!
∂ny u(x, y)|y=0yn.

Now using the PDE (39.23),

∂ny u(x, y)|y=0 = ∂nxu(x, 0) = f (n)(x).

Thus we get

u(x, y) =
∞X
n=0

1

n!
f (n)(x)yn. (39.24)

By the Cauchy estimates, ¯̄̄
f (n)(x)

¯̄̄
≤ n!ρ

(ρ− |x|)n+1

and so ∞X
n=0

1

n!

¯̄̄
f (n)(x)yn

¯̄̄
≤ ρ

∞X
n=0

|y|n
(ρ− |x|)n+1
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which is finite provided |y| < ρ− |x| , i.e. |x|+ |y| < ρ. This of course makes
sense because we know the solution to Eq. (39.23) is given by

u(x, y) = f(x+ y).

Now we can expand Eq. (39.24) out to find

u(x, y) =
∞X
n=0

1

n!

X
m≥n

m(m− 1) . . . (m− n+ 1)amx
m−n

 yn

=
X

m≥n≥0

µ
m

n

¶
amx

m−nyn. (39.25)

Since X
m≥n≥0

µ
m

n

¶ ¯̄
amx

m−nyn
¯̄ ≤ C

X
m≥n≥0

µ
m

n

¶ ¯̄
r−mxm−nyn

¯̄
= C

X
m≥0

r−m (|x|+ |y|)m <∞

provided |x|+ |y| < r. Since r < ρ was arbitrary, it follows that Eq. (39.25) is
convergent for |x|+ |y| < ρ.

Let us redo this example. By the PDE in Eq. (39.23), ∂my ∂nxu(x, y) =
∂n+mx u(x, y) and hence

∂my ∂nxu(0, 0) = f (m+n)(0).

Written another way
Dαu(0, 0) = f (|α|)(0)

and so the power series expansion for u must be given by

u(x, y) =
X
α

f (|α|)(0)
α!

(x, y)α. (39.26)

Using f (m)(0)/m! ≤ Cr−m we learnX
α

¯̄̄̄
f (|α|)(0)

α!
(x, y)α

¯̄̄̄
≤ C

X
α

¯̄
f (|α|)(0)

¯̄
α!

|x|α1 |y|α2 = C
∞X

m=0

¯̄
f (|α|)(0)

¯̄
m!

X
|α|=m

m!

α!
|x|α1 |y|α2

≤ C
∞X

m=0

r−m (|x|+ |y|)m = C
r

r − (|x|+ |y|) <∞

if |x| + |y| < r. Since r < ρ was arbitrary, it follows that the series in Eq.
(39.26) converges for |x|+ |y| < ρ.
Now it is easy to check directly that Eq. (39.26) solves the PDE. However

this is necessary since by construction Dαuy(0, 0) = Dαux(0, 0) for all α. This
implies, because uy and ux are both real analytic, that ux = uy.
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Elliptic ODE





40

A very short introduction to generalized
functions

Let U be an open subset of Rn and

C∞c (U) = ∪K@@UC∞(K) (40.1)

denote the set of smooth functions on U with compact support in U.

Definition 40.1. A sequence {φk}∞k=1 ⊂ D(U) converges to φ ∈ D(U), iff
there is a compact set K @@ U such that supp(φk) ⊂ K for all k and φk → φ
in C∞(K).

Definition 40.2 (Distributions on U ⊂o Rn). A generalized function T on
U ⊂o Rn is a continuous linear functional on D(U), i.e. T : D(U) → C is
linear and limn→∞hT, φki = 0 for all {φk} ⊂ D(U) such that φk → 0 in D(U).
Here we have written hT, φi for T (φ). We denote the space of generalized
functions by D0(U).
Example 40.3. Here are a couple of examples of distributions.

1. For f ∈ L1loc(U) define Tf ∈ D0(U) by hTf , φi =
R
U
φfdm for all φ ∈ D(U).

This is called the distribution associated to f.
2. More generally let µ be a complex measure on U, then hµ, φi := R

U
φdµ is

a distribution. For example if x ∈ U, and µ = δx then hδx, φi = φ(x) for
all φ ∈ D.

Lemma 40.4. Let aα ∈ C∞(U) and L =
P
|α|≤m aα∂

α — a mth order linear
differential operator on D(U). Then for f ∈ Cm(U) and φ ∈ D(U),

hLf, φi := hTLf , φi = hT,L†
φi

where L
†
is the formal adjoint of L defined by

L
†
φ =

X
|α|≤m

(−1)|α| ∂α [aαφ] .
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Proof. This is simply repeated integration by parts. No boundary terms
arise since φ has compact support.

Definition 40.5 (Multiplication by smooth functions). Suppose that
g ∈ C∞(U) and T ∈ D0(U) then we define gT ∈ D0(U) by

hgT, φi = hT, gφi for all φ ∈ D(U).
It is easily checked that gT is continuous.

Definition 40.6 (Differentiation). For T ∈ D0(U) and i ∈ {1, 2, . . . , n} let
∂iT ∈ D0(U) be the distribution defined by

h∂iT, φi = −hT, ∂iφi for all φ ∈ D(U).
Again it is easy to check that ∂iT is a distribution.

Definition 40.7. More generally if L is as in Lemma 40.4 and T ∈ D0 we
define LT ∈ D0 by

hLT, φi = hT,L†
φi.

Example 40.8. Suppose that f ∈ L1loc and g ∈ C∞(U), then gTf = Tgf . If
further f ∈ C1(U), then ∂iTf = T∂if . More generally if f ∈ Cm(U) then, by
Lemma 40.4, LTf = TLf .

Because of Definition 40.7 we may now talk about distributional or gener-
alized solutions T to PDEs of the form LT = S where S ∈ D0.
Example 40.9. For the moment let us also assume that U = R. hTf , φi =R
U
φfdm. Then we have

1. limM→∞ TsinMx = 0
2. limM→∞ TM−1 sinMx = πδ0 where δ0 is the point measure at 0.
3. If f ∈ L1(Rn, dm) with

R
Rn fdm = 1 and f�(x) = �−nf(x/�), then

lim�↓0 Tf� = δ0. Indeed,

lim
�↓0
hTf� , φi = lim

�↓0

Z
Rn

�−nf(x/�)φ(x)dx

= lim
�↓0

Z
Rn

f(x)φ(�x)dx
D.C.T.
=

Z
Rn

f(x) lim
�↓0

φ(�x)dx

= φ(0)

Z
Rn

f(x)dx = φ(0) = hδ0, φi.

As a concrete example we have

lim
�↓0

�

π(x2 + �2)
= δ0 on R,

i.e.
lim
�↓0

T �
π(x2+�2)

= δ0.
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Example 40.10. Suppose that a ∈ U, then

h∂iδa, φi = −∂iφ(a)

and more generally we have

hLδa, φi =
³
L
†
φ
´
(a).

Lemma 40.11. Suppose f ∈ C1([a, b]) and g ∈ PC1([a, b]), i.e. g ∈
C1 ([a, b] \ Λ) where Λ is a finite subset of (a, b) and g(α+), g(α−) exists
for α ∈ Λ. ThenZ b

a

f 0(x)g(x)dx = [f 0(x)g(x)] |ba −
Z b

a

f(x)g0(x)dx

−
X
α∈Λ

f(α) (g(α+)− g(α−)) . (40.2)

In particular
d

dx
Tg = Tg0 +

X
α∈Λ

(g(α+)− g(α−)) δα

Proof. Write Λ ∪ {a, b} as {a = α0 < α1 < · · · < αn = b} , thenZ b

a

f 0(x)g(x)dx =
n−1X
k=0

Z αk+1

αk

f 0(x)g(x)dx

=
n−1X
k=0

·
[f(x)g(x)] |αk+1−αk+

−
Z αk+1

αk

f(x)g0(x)dx
¸

= [f 0(x)g(x)] |ba −
Z b

a

f(x)g0(x)dx−
n−1X
k=1

[f(x)g(x)] |αk+αk−

which is the same as Eq. (40.2).
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Elliptic Ordinary Differential Operators

Let Ω ⊂o Rn be a bounded connected open region. A function u ∈ C2(Ω) is
said to satisfy Laplace’s equation if

4u = 0 in Ω.

More generally if f ∈ C(Ω) is given we say u solves the Poisson equation if

−4u = f in Ω.

In order to get a unique solution to either of these equations it is necessary
to impose “boundary" conditions on u.

Example 41.1. ForDirichlet boundary conditions we impose u = g on ∂Ω
and for Neumann boundary conditions we impose ∂u

∂ν = g on ∂Ω, where
g : ∂Ω → R is a given function.

Lemma 41.2. Suppose f : Ω C0

−→ R, ∂Ω is C2 and g : ∂Ω → R is continuous.
Then if there exists a solution to −4u = f with u = g on ∂Ω such that
u ∈ C2(Ωo) ∩C1(Ω) then the solution is unique.
Definition 41.3. Given an open set Ω ⊂ Rn we say u ∈ C1(Ω) if u ∈
C1(Ω) ∩C(Ω) and ∇u extends to a continuous function on Ω.

Proof. If eu is another solution then v = eu − u solves 4v = 0, v = 0 on
∂Ω. By the divergence theorem,

0 =

Z
Ω

4v · vdm = −
Z
Ω

|∇v|2dm+

Z
∂Ω

v∇v · ndσ = −
Z
Ω

|∇v|2dm,

where the boundary terms are zero since v = 0 on ∂Ω. This identity impliesR
Ω

|∇u|2dx = 0 which then shows ∇v ≡ 0 and since Ω is connected we learn v

is constant on Ω. Because v is zero on ∂Ω we conclude v ≡ 0, that is u = ũ.

For the rest of this section we will now restrict to n = 1. However we will
allow for more general operators than ∆ in this case.
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41.1 Symmetric Elliptic ODE

Let a ∈ C1 ([0, 1], (0,∞)) and

Lf = −(af 0)0 = −af 00 − a0f 0 for f ∈ C2 ([0, 1]) . (41.1)

In the following theorem we will impose Dirichlet boundary conditions on L
by restricting the domain of L to

D(L) := {f ∈ C2([0, 1],R) : f(0) = f(1) = 0}.

Theorem 41.4. The linear operator L : D(L)→ C([0, 1],R) is invertible and
L−1 : C([0, 1],R)→ D(L) ⊂ C2([0, 1],R) is a bounded operator.

Proof.

1. (Uniqueness) If f, g ∈ D(L) then by integration by parts

(Lf, g) :=

Z 1

0

(Lf)(x)g(x)dx =

Z 1

0

a(x)f 0(x)g0(x) dx. (41.2)

Therefore if Lf = 0 then

0 = (Lf, f) =

Z 1

0

a(x)f 0(x)2 dx

and hence f 0 ≡ 0 and since f(0) = 0, f ≡ 0. This shows L is injective.
2. (Existence) Given g ∈ C([0, 1],R) we are looking for f ∈ D(L) such that

Lf = g, i.e. (af 0)0 = g. Integrating this equation implies

−a(x)f 0(x) = −C +
Z x

0

g(y)dy.

Therefore

f 0(z) =
C

a(z)
−
Z
1y≤z

1

a(z)
g(y)dy

which upon integration and using f(0) = 0 gives

f(x) =

Z x

0

C

a(z)
dz −

Z
1y≤z≤x

1

a(z)
g(y) dz dy.

If we let

α(x) :=

Z x

0

1

a(z)
dz (41.3)

the last equation may be written as

f(x) = Cα(x)−
Z x

0

(α(x)− α(y))g(y) dy. (41.4)
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It is a simple matter to work backwards to show the function f defined
in Eq. (41.4) satisfies Lf = g and f(0) = 0 for any constant C. So it only
remains to choose C so that

0 = f(1) = C α(1)−
Z 1

0

(α(1)− α(y))g(y)dy.

Solving for C gives C =
R 1
0

³
1− α(y)

α(1)

´
g(y) dy and the resulting function

f may be written as

f(x) =

Z 1

0

·µ
1− α(y)

α(1)

¶
α(x)− 1y≤x(α(x)− α(y))

¸
g(y) dy

=

Z 1

0

G(x, y)g(y)dy

where

G(x, y) =

α(x)
³
1− α(y)

α(1)

´
if x ≤ y

α(y)
³
1− α(x)

α(1)

´
if y ≤ x.

(41.5)

For example when a ≡ 1,

G(x, y) =

½
x (1− y) if x ≤ y
y (1− x) if y ≤ x

.

Definition 41.5. The function G defined in Eq. (41.5) is called the Green’s
function for the operator L : D(L)→ C([0, 1],R).

Remarks 41.6 The proof of Theorem 41.4 shows¡
L−1g

¢
(x) :=

Z 1

0

G(x, y)g(y)dy (41.6)

where G is defined in Eq. (41.5). The Green’s function G has the following
properties:

1. Since L is invertible and G is a right inverse, G is also a left inverse, i.e.
GLf = f for all f ∈ D(L).

2. G is continuous.
3. G is symmetric, G(y, x) = G(x, y). (This reflects the symmetry in L,
(Lf, g) = (f, Lg) for all f, g ∈ D(L), which follows from Eq. (41.2).)

4. G may be written as

G(x, y) =

½
u(x)v(y) if x ≤ y
u(y)v(x) if y ≤ x.

where u and v are L — harmonic functions (i.e. and Lu = Lv = 0) with
u(0) = 0 and v(1) = 0. In particular LxG(x, y) = 0 = LyG(x, y) for all
y 6= x.
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5. The first order derivatives of the Green’s function have a jump disconti-
nuity on the diagonal. Explicitly,

Gy(x, x+)−Gy(x, x−) = − 1

a(x)

which follows directly from

Gy(x, y) =
1

a(y)

( −α(x)
α(1) if x < y³

1− α(x)
α(1)

´
if y < x.

(41.7)

By symmetry we also have

Gx(y+, y)−Gx(y−, y) = − 1

a(y)
.

6. By Items 4. and 5. and Lemma 40.11 it follows that

LyG(x, y) := LyTG(x,y) =
d

dy
(a(y)Gy(x, y)) = δ(y − x)

and similarly that

LxTG(x,y) = LxG(x, y) = δ(x− y).

As a consequence of the above remarks we have the following representa-
tion theorem for function f ∈ C2([0, 1]).

Theorem 41.7 (Representation Theorem). For any f ∈ C2([0, 1]),

f(x) = (GLf)(x)−Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

. (41.8)

Moreover if we are given h : ∂[0, 1] → R and g ∈ C ([0, 1]) , then the unique
solution to

Lf = g with f = h on ∂[0, 1]

is

f(x) = (Gg)(x)−Gy(x, y)a(y)h(y)
¯̄̄y=1
y=0

. (41.9)

Proof. By repeated use of Lemma 40.11,

(GLf)(x) = −
Z 1

0

G(x, y)
d

dy
(a(y)f 0(y))dy

=

Z 1

0

Gy(x, y)a(y)f
0(y)dy

= Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

+

Z 1

0

LyG(x, y)f(y)dy

= Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

+

Z 1

0

δ(x− y)f(y)dy

= Gy(x, y)a(y)f(y)
¯̄̄y=1
y=0

+ f(x)
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which proves Eq. (41.8). There are no boundary terms in the second equality
above since G(x, 0) = G(x, 1) = 0.
Now suppose that f is defined as in Eq. (41.9). Observe from Eq. (41.7)

that
lim
x↑1

a(1)Gy(x, 1) = −1 and lim
x↓0

a(0)Gy(x, 0) = 1

and also notice that Gy(x, 1) and Gy(x, 0) are Lx — harmonic functions. There-
fore by these remarks and Eq. (41.6), f = h on ∂[0, 1] and

Lf(x) = g(x)− LxGy(x, y)a(y)h(y)
¯̄̄y=1
y=0

= g(x)

as desired.

41.2 General Regular 2nd order elliptic ODE

Let J = [r, s] be a closed bounded interval in R.

Definition 41.8. A second order linear operator of the form

Lf = −af 00 + bf 0 + cf (41.10)

with a ∈ C2 (J) , b ∈ C1 (J) and c ∈ C2 (J) is said to be elliptic if a > 0,
(more generally if a is invertible if we are allowing for vector valued functions).

For this section L will denote an elliptic ordinary differential operator. We
will now consider the Dirichlet boundary valued problem for f ∈ C2 ([r, s]) ,

Lf = −af 00 + bf 0 + cf = 0 with f = 0 on ∂J. (41.11)

Lemma 41.9. Let u, v ∈ C2 (J) be two L — harmonic functions, i.e. Lu =
0 = Lv and let

W := det

·
u v
u0 v0

¸
= uv0 − vu0

be the Wronskian of u and v. Then W satisfies

W 0 =
b

a
W,

d

dx

1

W
= − b

a

1

W
and

W (x) =W (r)e
R x
r

b
a (t)dt.

Proof. By direct computation

aW 0 = a (uv00 − vu00) = u (bv0 + cv)− v (bu0 + cu) = bW.
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Definition 41.10. Let Hk(J) denote those f ∈ Ck−1(J) such that f (k−1) is
absolutely continuous and f (k) ∈ L2(J).We also let H2

0 (J) =
©
f ∈ H2(J) : f |∂J = 0

ª
.

We make Hk(J) into a Hilbert space using the following inner product

(u, v)Hk :=
kX

j=0

¡
Dju,Djv

¢
L2

.

Theorem 41.11. As above, let D(L) =
©
f ∈ C2 (J) : f = 0 on ∂J

ª
. If the

Nul(L) ∩D(L) = {0} , i.e. if the only solution f ∈ D(L) to Lf = 0 is f = 0,
then L : D(L) → C (J) is an invertible. Moreover there exists a continuous
function G on J × J (called the Dirichlet Green’s function for L) such that¡

L−1g
¢
(x) =

Z
J

G(x, y)g(y)dy for all g ∈ C (J) . (41.12)

Moreover if g ∈ L2(J) then Gg ∈ H2
0 (J) and L(G g) = g a.e. and more

generally if g ∈ Hk(J) then Gg ∈ Hk+2
0 (J)

Proof. To prove the surjectivity of L : D(L) → C (J) , (i.e. existence of
solutions f ∈ D(L) to Lf = g with g ∈ C(J)) we are going to construct the
Green’s function G.

1. Formal requirements on the Greens function. Assuming Eq. (41.12)
holds and working formally we should have

g(x) = Lx

Z
J

G(x, y)g(y)dy =

Z
J

LxG(x, y)g(y)dy (41.13)

for all g ∈ C(J). Hence, again formally, this implies

LxG(x, y) = δ(y − x) with G(r, y) = G(s, y) = 0. (41.14)

This can be made more convincing by as follows. Let φ ∈ D := D(r, s),
then multiplying

g(x) = Lx

Z
J

G(x, y)g(y)dy

by φ, integrating the result and then using integration by parts and Fu-
bini’s theorem givesZ

J

g(x)φ(x)dx =

Z
J

dxφ(x)Lx

Z
J

dyG(x, y)g(y)

=

Z
J

dxLxφ(x)

Z
J

dyG(x, y)g(y)

=

Z
J

dyg(y)

Z
J

dx Lxφ(x)G(x, y) for all g ∈ C(J).

From this we conclude
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J

Lxφ(x)G(x, y)dx = φ(y),

i.e. LxTG(x,y) = δ(x− y).
2. Constructing G. In order to construct a solution to Eq. (41.14), let u, v
be two non-zero L — harmonic functions chosen so that u(r) = 0 = v(s)
and u0(r) = 1 = v0(s) and let W be the Wronskian of u and v. By
Lemma 41.9, either W is never zero or is identically zero. If W = 0,
then (u(r), u0(r)) = λ(v(r), v0(r)) for some λ ∈ R and by uniqueness of
solutions to ODE it would follow that u ≡ λv. In this case u(r) = 0
and u(s) = λv(s) = 0, and hence u ∈ D(L) with Lu = 0. However by
assumption, this implies u = 0 which is impossible since u0(0) = 1. Thus
W is never 0.
By Eq. (41.14) we should require LxG(x, y) = 0 for x 6= y and G(r, y) =
G(s, y) = 0 which implies that

G(x, y) =

½
u(x)φ(y) if x < y
v(x)ψ(y) if x > y

for some functions φ and ψ. We now want to choose φ and ψ so that G is
continuous and LxG(x, y) = δ(x− y). Using

Gx(x, y) =

½
u0(x)φ(y) if x < y
v0(x)ψ(y) if x > y

Lemma 41.9, we are led to require

0 = G(y+, y)−G(y−, y) = u(y)φ(y)− v(y)ψ(y)

1 = − [a(x)Gx(x, y)] |x=y+x=y− = −a(y) [v0(y)ψ(y)− u0(y)φ(y)] .

Solving these equations for φ and ψ givesµ
φ
ψ

¶
= − 1

aW

µ
v
u

¶
and hence

G(x, y) = − 1

a(y)W (y)

½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y.

(41.15)

3. With this G, Eq. (41.12) holds. Given g ∈ C(J), then f in Eq. (41.12)
may be written as

f(x) =

Z
J

G(x, y)g(y)dy

= −v(x)
Z x

r

u(y)

a(y)W (y)
g(y)dy − u(x)

Z s

x

v(y)

a(y)W (y)
g(y)dy. (41.16)

Differentiating this equation twice gives
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f 0(x) = −v0(x)
Z x

r

u(y)

a(y)W (y)
g(y)dy−u0(x)

Z s

x

v(y)

a(y)W (y)
g(y)dy (41.17)

and

f 00(x) = −v00(x)
Z x

r

u(y)

a(y)W (y)
g(y)dy − u00(x)

Z s

x

v(y)

a(y)W (y)
g(y)dy

− v0(x)
u(x)

a(x)W (x)
g(x) + u0(x)

v(x)

a(x)W (x)
g(x). (41.18)

Using Lv = 0 = Lu, the definition of W and the last two equations we
find

−a(x)f 00(x) = [b(x)v0(x) + c(x)v(x)]

Z x

r

u(y)

a(y)W (y)
g(y)dy

+ [b(x)u0(x) + c(x)u(x)]

Z s

x

v(y)

a(y)W (y)
g(y)dy + g(x)

= −b(x)f 0(x)− c(x)f(x) + g(x),

i.e. Lf = g.

Hence we have proved L : D(L) → C(J) is surjective and L−1 : C(J) →
D(L) is given by Eq. (41.12).
Now suppose g ∈ L2(J), we will show that f ∈ C1(J) and Eq. (41.17) is

still valid. The difficulty here is that it is clear that f is differentiable almost
everywhere and Eq. (41.17) holds for almost every x. However this is not
good enough, we need Eq. (41.17) to hold for all x. To remedy this, choose
gn ∈ C(J) such that gn → g in L2(J) and let fn := Ggn. Then by what we
have just proved,

f 0n(x) =
Z
J

Gx(x, y)gn(y)dy

Now by the Cauchy-Schwarz inequality,¯̄̄̄Z
J

Gx(x, y) [g(y)− gn(y)] dy

¯̄̄̄2
≤ kg − gnk2L2(J)

Z
J

|Gx(x, y)|2 dy

≤ C kg − gnk2L2(J)
where C := supx∈J

R
J
|Gx(x, y)|2 dy < ∞. From this inequality it follows

that f 0n(x) converges uniformly to
R
J
Gx(x, y)g(y)dy as n → ∞ and hence

f ∈ C1(J) and

f 0(x) =
Z
J

Gx(x, y)g(y)dy for all x ∈ J,

i.e. Eq. (41.17) is valid for all x ∈ J. It now follows from Eq. (41.17) that
f ∈ H2(J) and Eq. (41.18) holds for almost every x. Working as before we
may conclude Lf = g a.e. Finally if g ∈ Hk(J) for k ≥ 1, the reader may
easily show f ∈ Hk+2

0 (J) by examining Eqs. (41.17) and (41.18).
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Remark 41.12.When L is given as in Eq. (41.1), b = −a0 and by Lemma 41.9

W (x) =W (0)e−
R x
0

a0
a (t)dt =W (0)e− ln(a(x)/a(0)) =

W (0)a(0)

a(x)
.

So in this case

G(x, y) = − 1

W (0)a(0)

½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

where we may take

u(x) = α(x) :=

Z x

0

1

a(z)
dz and v(x) =

µ
1− α(x)

α(1)

¶
.

Finally for this choice of u and v we have

W (0) = u(0)v0(0)− u0(0)v(0) = − 1

a(0)

giving

G(x, y) =

½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

which agrees with Eq. (41.5) above.

Lemma 41.13. Let L∗f := −(af)00− (bf)0+ cf be the formal adjoint of L.
Then

(Lf, g) = (f,L∗g) for all f, g ∈ D(L) (41.19)

where (f, g) :=
R
J
f(x)g(x)dx. Moreover if nul(L) = {0} then nul(L∗) = {0}

and the Greens function for L∗ is G∗ defined by G∗(x, y) = G(y, x), where G
is the Green’s function in Eq. (41.15). Consequently L∗yG(x, y) = δ(x− y).

Proof. First observe that G∗ has been defined so that (G∗g, f) = (g,Gf)
for all f ∈ L2(J).Eq. (41.19) follows by two integration by parts after observ-
ing the boundary terms are zero because f = g = 0 on ∂J. If g ∈ nul(L∗) and
f ∈ D(L), we find

0 = (L∗g, f) = (g, Lf) for all f ∈ D(L).

By Theorem 41.11, if nul(L) = {0} then L : D(L)→ C(J) is invertible so the
above equation implies nul(L∗) = {0} . Another application of Theorem 41.11
then shows L∗ : D(L)→ C(J) is invertible and has a Green’s function which
we call G̃(x, y). We will now complete the proof by showing G̃ = G∗. To do
this observe that

(f, g) = (L∗G̃f, g) = (G̃f, Lg) = (f, G̃∗Lg) for all f, g ∈ D(L)
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and this then implies G̃∗L = IdD(L) = GL. Cancelling the L from this equa-
tion, show G̃∗ = G or equivalently that G̃ = G∗. The remaining assertions of
the Lemma follows from this observation.
Here is an alternate proof that L∗yG(x, y) = δ(x − y), also see Using

GL = ID(L), we learn for u ∈ D(L) and v ∈ C (J) that

(v, u) = (v,GLu) = (L∗G∗v, u)

which then implies L∗G∗v = v for all v ∈ C(J). This implies

f(x) =

Z
J

G(x, y)Lf(y)dy = hTG(x,·), Lfi = hL∗TG(x,·), fi for all f ∈ D(L)

from which it follows that L∗yTG(x,y) = δ(x− y).

Definition 41.14. A Green’s function for L is a function G(x, y) as de-
fined as in Eq. (41.15) where u and v are any two linearly independent L —
harmonic functions.1

The following theorem in is a generalization of Theorem 41.7.

Theorem 41.15 (Representation Theorem). Suppose and G is a Green’s
function for L then

1. LxTG(x,y) = δ(x− y) and LG = I on L2(J). (However Gg and G∗g may
no longer satisfy the given Dirichlet boundary conditions.)

2. L∗yTG(x,y) = δ(x− y). More precisely we have the following representation
formula. For any f ∈ H2(J),

f(x) = (GLf)(x) +
n
G(x, y)a(y)f 0(y)− [a(y)G(x, y)]y f(y)

o ¯̄̄y=s
y=r

.

(41.20)
3. Let us now assume nul(L) = {0} and G is the Dirichlet Green’s function
for L. The Eq. (41.20) specializes to

f(x) = (GLf)(x)− [a(y)G(x, y)]y f(y)
¯̄̄y=s
y=r

.

Moreover if we are given h : ∂J → R and g ∈ L2 (J) , then the unique
solution f ∈ H2(J) to

Lf = g a.e. with f = h on ∂J

is
f(x) = (Gg)(x) +H(x) (41.21)

where, for x ∈ J0,

H(x) := − [a(y)G(x, y)]y h(y)
¯̄̄y=s
y=r

(41.22)

and H(r) := H(r+) and H(s) := H(s−).
1 For example choose u, v so that Lu = 0 = Lv and u(α) = v0(α) = 0 and u0(α) =
v(α) = 1.
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Proof. 1. The first item follows from the proof of Theorem 41.11 with out
any modification.
2. Using Lemma 41.9,

L∗
³ u

aW

´
= −( u

W
)00 − ( bu

aW
)0 +

cu

aW

= −( u
0

W
− b

a

1

W
u)0 − ( bu

aW
)0 +

cu

aW

= −( u
0

W
)0 +

cu

aW
= −(u

00

W
− b

a

1

W
u) +

cu

aW

=
1

a
Lu = 0.

Similarly L∗( v
aW ) = 0 and therefore L

∗
yG(x, y) = 0 for y 6= x. Since

Gy(x, y) = −
µ

d

dy

1

a(y)W (y)

¶½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

− 1

a(y)W (y)

½
u(x)v0(y) if x ≤ y
v(x)u0(y) if x ≥ y

(41.23)

we find

Gy(x, x+)−Gy(x, x−) = 1

a(x)W (x)
{v(x)u0(x)− u(x)v0(x)}

= − 1

a(x)
.

Finally since

L∗y = −a
d2

dy2
+ lower order terms

we may conclude form Lemma 40.11 that L∗yG(x, y) = δ(x − y).Using inte-
gration by parts for absolutely continuous functions and Lemma 41.13, for
f ∈ H2(J),

(GLf)(x) =

Z
J

G(x, y)Lf(y)dy

=

Z
J

G(x, y)

µ
−a(y) d

2

dy2
+ b(y)

d

dy
+ c(y)

¶
f(y)dy

=

Z
J

"
d
dy [a(y)G(x, y)] f

0(y)

+
³
− d

dy [b(y)G(x, y)] f + c(y)
´
f(y)

#
dy

−G(x, y)a(y)f 0(y)|y=sy=r

= −G(x, y)a(y)f 0(y)|y=sy=r + [a(y)G(x, y)]y f(y)|y=sy=r

+ hL∗yG(x, y), f(y)i
= [a(y)G(x, y)]y f(y)|y=sy=r −G(x, y)a(y)f 0(y)|y=sy=r + f(x).
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This proves Eq. (41.20).
3. Now suppose G is the Dirichlet Green’s function for L. By Eq. (41.15),

[−a(y)G(x, y)]y =
µ

d

dy

1

W (y)

¶½
u(x)v(y) if x ≤ y
v(x)u(y) if x ≥ y

+
1

W (y)

½
u(x)v0(y) if x ≤ y
v(x)u0(y) if x ≥ y

and hence the function H defined in Eq. (41.22) is more explicitly given by

H(x) =
1

W (s)
(u(x)v0(s))h(s)− 1

W (r)
(v(x)u0(r))h(r). (41.24)

From this equation or the fact that LxG(x, r) = 0 = LxG(x, s), H is is L —
harmonic on J0. Moreover, from Eq. (41.24),

H(r) = − 1

W (r)
(v(r)u0(r))h(r)

=
1

W (r)
(u(r)v0(r)− v(r)u0(r))h(r) = h(r)

and

H(s) =
1

W (s)
(u(s)v0(s))h(s)

=
1

W (s)
(u(s)v0(s)− v(s)u0(s))h(s) = h(s).

Therefore if f is defined by Eq. (41.21),

Lf = LGg − LH = g a.e. on J0

because LG = I on L2(J) and

f |∂J = (Gg) |∂J +H|∂J = H|∂J = h

since Gg ∈ H2
0 (J).

Corollary 41.16 (Elliptic Regularity I). Suppose −∞ ≤ r0 < s0 ≤ ∞,
J0 := (r0, s0) and L is as in Eq. (41.11) with the further assumption that
a, b, c ∈ C∞(R). If f ∈ C2 (J0) is a function such that g := Lf ∈ Ck (J0) for
some k ≥ 0, then f ∈ Ck+2 (J0) .

Proof. Let r < s be chosen so that J := [r, s] is a bounded subinterval of J0
and let G be a Green’s function as in Definition 41.14. Since a, b, c are smooth,
it follows from our general theory of ODE that G(x, y) ∈ C∞ (J × J \∆)
where ∆ = {(x, x) : x ∈ J} is the diagonal in J × J. Now by Theorem 41.15,
for x ∈ J0,
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f(x) = (Gg)(x) +
n
G(x, y)a(y)f 0(y)− [a(y)G(x, y)]y f(y)

o ¯̄̄y=s
y=r

.

Since

x→
n
G(x, y)a(y)f 0(y)− [a(y)G(x, y)]y f(y)

o ¯̄̄y=s
y=r
∈ C∞(J0)

it suffices to show Gg ∈ Ck+2(J0). But this follows by examining the formula
for (Gg)00 given on the right side of Eq. (41.18).
In fact we have the following rather striking version of this result.

Theorem 41.17 (Hypoellipticity). Suppose −∞ ≤ r0 < s0 ≤ ∞, J0 :=
(r0, s0) and L is as in Eq. (41.11) with the further assumption that a, b, c ∈
C∞(R). If u ∈ D0 (J0) is a generalized function such that v := Lu ∈ C∞(J0),
then u ∈ C∞(J0).

Proof. As in the proof of Corollary 41.16 let r < s be chosen so that
J := [r, s] is a bounded subinterval of J0 and let G be the Green’s function
constructed above.2 Further suppose ξ ∈ J0, θ ∈ C∞c (J0, [0, 1]) such that
θ = 1 in a neighborhood U of ξ and α ∈ C∞c (V, [0, 1]) such that α = 1 in a
neighborhood V of ξ, see Figure 41.1. Finally suppose that φ ∈ C∞c (V ), then

Fig. 41.1. Constructing the cutoff functions, θ and α.

φ = θφ = θL∗G∗φ = θL∗ (Mα +M1−α)G∗φ
= L∗MαG

∗φ+ θL∗M1−αG∗φ

and hence
2 Actually we can simply define G∗ to be a Green’s function for L∗. It is not
necessary to know G∗(x, y) = G(y, x) where G is a Green’s function for L.
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hu, φi = hu,L∗MαG
∗φ+ θL∗M1−αG∗φi

= hLu,MαG
∗φi+ hu, θL∗M1−αG∗φi.

Now
hLu,MαG

∗φi = hv,MαG
∗φi = hGMαv, φi

and writing u = DnTh for some continuous function h (which is always pos-
sible locally) we find

hu,θL∗M1−αG∗φi
= (−1)n hu,DnMθL

∗M1−αG∗φi
= (−1)n

Z
J×J

h(x)Dn
x [θ(x)L

∗
x(1− α(x))G(y, x)]φ(y)dydx

=

Z
J

ψ(y)φ(y)dy

where

ψ(y) :=

Z
J

h(x)Dn
x [θ(x)L

∗
x(1− α(x))G(y, x)] dx

which is smooth for y ∈ V because 1−α(x) = 0 on V and so (1− α(x))G(y, x)
is smooth for (x, y) ∈ J × V. Putting this altogether shows

hu, φi = hGMαv + ψ, φi for all φ ∈ C∞c (V ).

That is to say u = GMαv+ψ on V which proves the theorem sinceGMαv+ψ ∈
C∞(V ).

Example 41.18. Let L = ∂2

∂y2 − ∂2

∂x2 be the wave operator on R
2 which is not

elliptic. Given f ∈ C2(R) we have already seen that Lf(y−x) = 0 ∈ C∞(R2).
Clearly since f was arbitrary, it does not follow that F (x, y) := f(y − x) ∈
C∞(R2). Moreover, if f is merely continuous and F (x, y) := f(y − x), then
LTF = 0 with F /∈ C2(R2). To check LTF = 0 we first observe

−h(∂x + ∂y)TF , φi = hTF , (∂x + ∂y)φi
=

Z
R2

f(y − x) (∂x + ∂y)φ(x, y)dxdy

=

Z
R2

f(y) [φx(x, y + x) + φy(x, y + x)] dxdy

=

Z
R2

f(y)
∂

∂x
[φ(x, y + x)] dxdy = 0.

Therefore LTF = (∂x − ∂y) (∂x + ∂y)TF = 0 as well.

Corollary 41.19. Suppose a, b, c are smooth and u ∈ D0(J0) is an eigenvector
for L, i.e. Lu = λu for some λ ∈ C. Then u ∈ C∞(J).

Proof. Since L − λ is an elliptic ordinary differential operator and
(L− λ)u = 0 ∈ C∞(J0), it follows by Theorem 41.17 that u ∈ C∞(J0).
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41.3 Elementary Sobolev Inequalities

Notation 41.20 Let
R
J
fdm := 1

|J|
R
J
fdm denote the average of f over J =

[r, s].

Proposition 41.21. For f ∈ H1(J),

|f(x)| ≤
¯̄̄̄Z
J

fdm

¯̄̄̄
+ kf 0kL1(J)

≤
¯̄̄̄Z
J

fdm

¯̄̄̄
+
p
|J |
µZ

J

|f 0(y)|2 dy
¶1/2

≤ C (|J |) kfkH1(J) .

where C (|J |) = max
µ

1√
|J| ,

p|J |¶ .

Proof. By the fundamental theorem of calculus for absolutely continuous
functions

f(x) = f(a) +

Z x

a

f 0(y)dy

for any a, x ∈ J. Integrating this equation on a and then dividing by |J | := s−r
implies

f(x) =

Z
J

fdm+

Z
J

da

Z x

a

f 0(y)dy

and hence

|f(x)| ≤
¯̄̄̄Z
J

fdm

¯̄̄̄
+

Z
J

da

¯̄̄̄Z x

a

|f 0(y)| dy
¯̄̄̄

≤
¯̄̄̄Z
J

fdm

¯̄̄̄
+

Z
J

|f 0(y)| dy

≤
¯̄̄̄Z
J

fdm

¯̄̄̄
+
p
|J |
µZ

J

|f 0(y)|2 dy
¶1/2

≤ 1p|J |
µZ

J

|f |2 dm
¶1/2

+
p
|J |
µZ

J

|f 0(y)|2 dy
¶1/2

.

Notation 41.22 For the remainder of this section, suppose Lf = − 1ρD (ρaf 0)+
cf. is an elliptic ordinary differential operator on J = [r, s], ρ ∈ C2(J, (0,∞))
is a positive weight and

(f, g)ρ :=

Z
J

f(x)g(x)ρ(x)dx.

We will also take D(L) = H2
0 (J), so that we are imposing Dirichlet boundary

conditions on L. Finally let
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E(f, g) :=
Z
J

[af 0g0 + cfg] ρdm for f, g ∈ H1(J).

Lemma 41.23. For f, g ∈ D(L),

(Lf, g)ρ = E(f, g) = (f, Lg)ρ. (41.25)

Moreover
E(f, f) ≥ a0 kf 0k22 + c0 kfk22 for all f ∈ H1(J)

where c0 := minJ c and a0 = minJ a. If λ0 ∈ R with λ0 + c0 > 0 then

kfk2H1(J) ≤ K
h
E(f, f) + λ0 kfk22

i
(41.26)

where K = [min(a0, c0 + λ0)]
−1

.

Proof. Eq. (41.25) is a simple consequence of integration by parts. By
elementary estimates

E(f, f) ≥ a0 kf 0k22 + c0 kfk22
and

E(f, f) + λ0 kfk22 ≥ a0 kf 0k22 + (c0 + λ0) kfk22 ≥ min(a0, c0 + λ0) kfk2H1(J)

which proves Eq. (41.26).

Corollary 41.24. Suppose λ0 + c0 > 0 then Nul(L + λ0) ∩ D(L) = 0 and
hence

(L+ λ0) : H
2
0 (J)→ L2(J)

is invertible and the resolvent (L+ λ0)
−1 has a continuous integral kernel

G(x, y), i.e.

(L+ λ0)
−1

u(x) =

Z
J

G(x, y)u(y)dy.

Moreover if we define D(Lk) inductively by

D(Lk) :=
©
u ∈ D(Lk−1) : Lk−1u ∈ D(L)

ª
we have D(Lk) = H2k

0 (J).

Proof. By Lemma 41.23, for all u ∈ D(L),

kuk2H1(J) ≤ K
³
(Lu, u) + λ0 kuk22

´
= K (((L+ λ0)u, u))

so that if (L+ λ0)u = 0, then kuk2H1(J) = 0 and hence u = 0. The remaining
assertions except for D(Lk) = Hk

0 (J) now follow directly from Theorem 41.11
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applied with L replaced by L + λ0. Finally if u ∈ D(L) then (L+ λ0)u =
Lu+ λ0u ∈ L2(J) and therefore

u = (L+ λ0)
−1 (Lu+ λ0u) ∈ H2

0 (J).

Now suppose we have shown, D(Lk) = H2k
0 (J) and u ∈ D

¡
Lk+1

¢
, then

(L+ λ0)u = Lu+ λ0u ∈ D(Lk) +D(Lk+1) ⊂ D(Lk) = H2k
0 (J)

and so by Theorem 41.11, u ∈ (L+ λ0)
−1H2k

0 (J) ⊂ H2k+2
0 (J).

Corollary 41.25. There exists an orthonormal basis {φn}∞n=0 for L2(J, ρdm)
of eigenfunctions of L with eigenvalues λn ∈ R such that −c0 ≤ λ0 < λ1 <
λ2 < . . . ..

Proof. Let λ0 > −c0 and letG := (L+ λ0)
−1
: L2(J)→ H2

0 (J) = D(L) ⊂
L2(J). From the theory of compact operators to be developed later, G is a
compact symmetric positive definite operator on L2(J) and hence there exists
an orthonormal basis {φn}∞n=0 for L2(J, ρdm) of eigenfunctions of G with
eigenvalues µn > 0 such that µ0 ≥ µ1 ≥ µ2 ≥ . . . → 0.3 Since

µnφn = Gφn = (L+ λ0)
−1

φn,

it follows that µn (L+ λ0)φn = φn for all n and therefore Lφn = λnφn with
λn = (µ

−
n 1− λ0) ↑ ∞. Finally since L is a second order ordinary differential

equation there can be at most one linearly independent eigenvector for a given
eigenvalue λn and hence λn < λn + 1 for all n.

Example 41.26. Let J = [0, π], ρ = 1 and L = −D2 on H2
0 (J). Then Lφ = λφ

implies φ00 + λφ = 0. Since L is positive, we need only consider the case

where λ ≥ 0 in which case φ(x) = a cos
³√

λx
´
+ b sin

³√
λx
´
. The boundary

conditions for f imply a = 0 and 0 = sin
³√

λπ
´
, i.e.

√
λ ∈ N+. Therefore in

this example

φk(x) =

r
2

π
sin (kx) with λk = k2.

The collection of functions {φk}∞k=1 is an orthonormal basis for L2(J).
Theorem 41.27. Let J = [r, s] and ρ, a ∈ C2(J, (0,∞)), c ∈ C2(J) and L be
defined by

Lf = −1
ρ
D (ρaf 0) + cf.

3 In fact G is “Hilbert Schmidt” which then implies

∞X
n=0

µ2n <∞.
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and for λ ∈ R let
Eλ :=

©
φ ∈ H2

0 (J) : Lφ = αφ for some α < λ
ª
.

Then there are constants d1, d2 > 0 such that

dim(Eλ) ≤ d1λ+ d2. (41.27)

Proof. For λ ∈ R let Eλ :=
©
φ ∈ H2

0 (J) : Lφ = λφ
ª
. By Corollary 41.24,

Eλ = {0} if λ < c0 and since (Lf, g)ρ = (f, Lg)ρ for all f, g ∈ H2
0 (J) it follows

that Eλ ⊥ Eβ for all λ 6= β. Indeed, if f ∈ Eλ and g ∈ Eβ, then

(β − λ) (f, g)ρ = (f, Lg)ρ − (Lf, g)ρ = 0.
Thus it follow that any finite dimensional subspace W ⊂ Eλ has an orthonor-
mal basis (relative to (·, ·)ρ — inner product) of eigenvectors {φk}nk=1 ⊂ Eλ of
L, say Lφk = λkφk. Let u =

Pn
k=1 ukφk where uk ∈ R. By Proposition 41.21

and Lemma 41.23,

kuk2u ≤ C kuk2H1(J) ≤ C ((L+ λ0)u, u)ρ = C

Ã
nX

k=1

uk (λk + λ0)φk, u

!
ρ

(where C is a constant varying from place to place but independent of u) and
hence for any x ∈ J,¯̄̄̄

¯
nX

k=1

ukφk(x)

¯̄̄̄
¯
2

≤ kuk2u ≤ C (λ+ λ0)
nX

k=1

|uk|2 .

Now choose uk = φk(x) in this equation to find¯̄̄̄
¯
nX

k=1

|φk(x)|2
¯̄̄̄
¯
2

≤ C (λ+ λ0)
nX

k=1

|φk(x)|2

or equivalently that
nX

k=1

|φk(x)|2 ≤ C (λ+ λ0) .

Multiplying this equation by ρ and then integrating shows

dim(W ) = n =
nX

k=1

(φk, φk)ρ ≤ C (λ+ λ0)

Z
J

ρdm = C0 (λ+ λ0) .

Since W ⊂ Eλ is arbitrary, it follows that

dim(Eλ) ≤ C 0 (λ+ λ0) .
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Remarks 41.28 Notice that for all λ ∈ R, dim(Eλ) ≤ 1 because if u, v ∈ Eλ

then by uniqueness of solutions to ODE, u = [u0(r)/v0(r)] v. Let {φk}∞k=1 ⊂
H2
0 (J) ∩ C∞(J) be the eigenvectors of L ordered so that the corresponding

eigenvalues are increasing. With this ordering we have k = dim(Eλk) ≤ d1λk+
d2 and therefore,

λk ≥ d−11 (k − d2). (41.28)

The estimates in Eqs. (41.27) and (41.28) are not particularly good as Exam-
ple 41.26 illustrates.

41.4 Associated Heat and Wave Equations

Lemma 41.29. L is a closed operator, i.e. if sn ∈ D(L) and sn → s and
Lsn → g in L2, then s ∈ D(L) and Ls = g. In particular if fk ∈ D(L) andP∞

k=1 fk and
P∞

k=1 Lfk exists in L2, then
P∞

k=1 fk ∈ D(L) and

L
∞X
k=1

fk =
∞X
k=1

Lfk.

Proof. Let λ0 + c0 > 0 and G = (L+ λ0)
−1 . Then by assumption

(L+ λ0) sn → g + λ0s and so

s← sn = G (L+ λ0) sn → G (g + λ0s) as n→∞
showing s = Gg ∈ D(L+ λ0) = D(L) and

(L+ λ0) s = (L+ λ0)G (g + λ0s) = g + λ0s

and hence Ls = g as desired. The assertions about the sums follow by applying
the sequence results to sn =

Pn
k=1 fk.

Theorem 41.30. Given f ∈ L2, let

u(t) = e−tLf =
∞X
n=0

(f, φn)e
−tλnφn. (41.29)

Then for t > 0, u(t, x) is smooth in (t, x) and solves the heat equation

ut(t, x) = −Lu(t, x), u(t, x) = 0 for x ∈ ∂J (41.30)

and f = L2 − lim
t↓0

u(t) (41.31)

Moreover, u(t, x) =
R
J
pt(x, y)f(y)ρ(y)dy where

pt(x, y) :=
∞X
n=0

e−tλnφn(x)φn(y) (41.32)

is a smooth function in t > 0 and x, y ∈ J. The function pt is called the
Diurichlet Heat Kernel for L.
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Proof. (Sketch.) For any t > 0 and k ∈ N, supn
¡
e−tλnλkn

¢
< ∞ and so

by Lemma 41.29, for t > 0, u(t) ∈ D
¡
Lk
¢
= H2k

0 (J)
4 (Corollary 41.24) and

Lku(t) =
∞X
n=0

(f, φn)e
−tλnλknφn.

Also we have Lku(m)(t) exists in L2 for all k,m ∈ N and

Lku(m)(t) = (−1)m
∞X
n=0

(f, φn)e
−tλnλk+mn φn.

By Sobolev inequalities and elliptic estimates such as Proposition 41.21 and
Lemma 41.23, one concludes that u ∈ C∞((0,∞),Hk

0 (J)) for all k and then
that u ∈ C∞((0,∞) × J,R). Eq. (41.30) is now relatively easy to prove and
Eq. (41.31) follows from the following computation

kf − u(t)k22 =
∞X
n=1

|(f, φn)|2
¯̄
1− e−tλn

¯̄2
which goes to 0 as t ↓ 0 by the D.C.T. for sums.
Finally from Eq. (41.29)

u(t, x) =
∞X
n=0

Z
J

f(y)φ(y)ρ(y)dye−tλnφn(x)

=

Z
J

∞X
n=0

e−tλnφn(x)φ(y)f(y)ρ(y)dy

where the interchange of the sum and the integral is permissible since

Z
J

∞X
n=0

e−tλn |φn(x)φ(y)f(y)| ρ(y)dy

≤ C

Z
J

∞X
n=0

e−tλn (λ0 + λn)
2 |f(y)| ρ(y)dy <∞

since
P∞

n=0 e
−tλn (λ0 + λn)

2 < ∞ because λn grows linearly in n. Moreover
one similarly showsµ

∂

∂t

¶j
∂2k−1x ∂2l−1y pt(x, y) =

∞X
n=0

(−λn)j e−tλn∂2k−1x φn(x)∂
2l−1
y φ(y)

where the above operations are permissible since

4 Basically, if Lku = g ∈ L2(J) then u = Gkg ∈ H2k
0 (J).
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°°°
u
≤ C kφnkH2k

0 (J) ≤ C
°°°(L+ λ0)

k φn

°°°
2
= C (λn + λ0)

k

and therefore
∞X
n=0

¯̄̄
(−λn)j e−tλn∂2k−1x φn(x)∂

2l−1
y φ(y)

¯̄̄
≤ C

∞X
n=0

|λn|j (λn + λ0)
k+l

e−tλn <∞.

Again we use λn grows linearly with n. From this one may conclude that
pt(x, y) is smooth for t > 0 and x, y ∈ J. (We will do this in more detail when
we work out the higher dimensional analogue.)

Remark 41.31 (Wave Equation). Suppose f ∈ D(Lk), then

|(f, φn)| =
¯̄̄̄
1

λkn
(f, Lkφn)

¯̄̄̄
=

¯̄̄̄
1

λkn
(Lkf, φn)

¯̄̄̄
≤ 1

|λkn|
°°Lkf°°

2

and therefore

cos
³
t
√
L
´
f :=

∞X
n=0

cos
³
t
p
λn

´
(f, φn)φn

will be convergent in L2 but moreover

Lk cos
³
t
√
L
´
f =

∞X
n=0

cos
³
t
p
λn

´
(f, φn)λ

k
nφn

=
∞X
n=0

cos
³
t
p
λn

´
(Lkf, φn)φn

will also be convergent. Therefore if we let

u(t) = cos
³
t
√
L
´
f +

sin
³
t
√
L
´

√
L

g

where f, g ∈ D(Lk) for all k. Then we will get a solution to the wave equation

utt(t, x) + Lu(t, x) = 0 with u(0) = f and u̇(0) = g.

More on all of this later.

41.5 Extensions to Other Boundary Conditions

In this section, we will assume ρ ∈ C2(J, (0,∞)),
Lu = −ρ−1(ρau0)0 + bu0 + cu (41.33)

is an elliptic ODE on L2(J) with smooth coefficients and

(u, v) = (u, v)ρ =

Z
J

u(x)v(x)ρ(x)dx. (41.34)
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Theorem 41.32. For v ∈ H2(J) let

L∗v = −ρ−1(ρav0)0 − bv0 +
£
c− ρ−1(ρb)0

¤
v. (41.35)

Then for u, v ∈ H2(J),

(Lu, v) = (u,L∗v) + B(u, v)|∂J (41.36)

where

B(u, v) = ρa

½
(u0, u) · (−v, v0 + b

a
v)

¾
. (41.37)

Proof. This is an exercise in integration by parts,

(Lu, v) =

Z
J

³
− (ρau0)0 + ρbu0 + ρcu

´
vdm

=

Z
J

¡
ρau0v0 − (ρbv)0 u+ ρcu

¢
dm+ [ρbuv − ρau0v] |∂J

=

Z
J

³
−u (ρav0)0 − (ρbv)0 u+ ρcvu

´
dm

+ [ρbuv + ρauv0 − ρau0v] |∂J
=

Z
J

³
−uρ−1 (ρav0)0 − ρ−1 (ρbv)0 u+ cvu

´
ρdm

+

·
ρa

µ
b

a
uv + uv0 − vu0

¶¸
|∂J

= (u,L∗v) +
·
ρa(u0, u) · (−v, v0 + b

a
v)

¸
|∂J .

Notation 41.33 Given (α, β) : ∂J → R2 \ {0} and u, v ∈ H2(J) let

Bu = αu0 + βu = (α, β) · (u0, u) on ∂J

and

B∗v = αv0 +
µ
β +

b

a
α

¶
v = αv0 + β̃v on ∂J

where β̃ :=
¡
β + b

aα
¢
.

Remarks 41.34 The function (α, β̃) : ∂J → R2 also takes values in R2 \{0}
because (α, β̃) = 0 iff (α, β) = 0. Furthermore if α = 0 then β̃ = β.

Proposition 41.35. Let B and B∗ be as defined in Notation 41.33 and define

D(L) =
©
u ∈ H2(J) : Bu = 0 on ∂J

ª
.

D(L∗) =
©
u ∈ H2(J) : B∗u = 0 on ∂J

ª
,
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Then v ∈ H2(J) satisfies

(Lu, v) = (u,L∗v) for all u ∈ D(L) (41.38)

iff v ∈ D(L∗). (This result will be substantially improved on in Theorem 41.41
below.)

Proof. We have to check that B(u, v) appearing in Eq. (41.36) is 0. (Ac-
tually we must check that B(u, v)|∂J = 0 which we might arrange by using
something like “periodic boundary conditions.” I am not considering this type
of condition at the moment. Since u may be chosen to be zero near r or s we
must require B(u, v) = 0 on ∂J.) Now B(u, v) = 0 iff

(u0, u) ·
µ
−v, v0 + b

a
v

¶
= 0 (41.39)

which happens iff (u0, u) is parallel to
¡
v0 + b

av, v
¢
. The boundary condition

Bu = 0 may be rewritten as saying (u0, u) · (α, β) = 0 or equivalently that
(u0, u) is parallel to (−β, α) on ∂J. Therefore the condition in Eq. (41.39) is
equivalent to (−β, α) is parallel to ¡v0 + b

av, v
¢
or equivalently that

0 = (α, β) ·
µ
v0 +

b

a
v, v

¶
= B∗v.

Corollary 41.36. The formulas for L and L∗ agree iff b = 0 in which case

Lu = −ρ−1D (aρu0) + cu,

B = B∗, D(L) = D(L∗) and

(Lu, v) = (u,Lv) for all u, v ∈ D(L). (41.40)

(In fact L is a “self-adjoint operator,” as we will see later by showing
(L+ λ0)

−1 exists for λ0 sufficiently large. Eq. (41.40) then may be used to
deduce (L+ λ0)

−1 is a bounded self-adjoint operator with a symmetric Green’s
functions G.)

41.5.1 Dirichlet Forms Associated to (L,D(L))

For the rest of this section let a, b1, b2, c0, ρ ∈ C2(J), with a > 0 and ρ > 0 on
J and for u, v ∈ H1(J), let

E(u, v) :=
Z
J

(au0v0 + b1uv
0 + b2u

0v + c0uv) ρdm and (41.41)

kukH1(J) :=
³
ku0k2 + kuk2

´1/2
where kuk2 = (u, u)ρ as defined in Eq. (41.34).
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Lemma 41.37 (A Coercive inequality for E). There is a constant K <∞
such that

|E(u, v)| ≤ K kukH1(J) kvkH1(J) for u, v ∈ H1(J). (41.42)

Let a0 = minJ a, c̄ = minJ c0 and B := maxJ |b1 + b2| , then for u ∈ H1(J),

E(u, u) ≥ a0
2
ku0k2 +

µ
c̄− B2

2a0

¶
kuk2 . (41.43)

Proof. Let A = maxJ a, Bi = maxJ |bi| and C0 := maxJ |c0| , then

|E(u, v)| ≤
Z
J

(a |u0| |v0|+ |b1| |u| |v0|+ |b2| |u0| |v|+ |c0| |u| |v|) ρdm
≤ A ku0k kv0k+B1 kuk kv0k+B2 ku0k kvk+ C0 kuk kvk

≤ K
³
ku0k2 + kuk2

´1/2 ³
kv0k2 + kvk2

´1/2
.

Let a0 = minJ a, c̄ = minJ c and B := maxJ |b1 + b2| , then for any δ > 0,

E(u, u) =
Z
J

³
a |u0|2 + (b1 + b2)uu

0 + c0 |u|2
´
ρdm

≥ a0 ku0k2 + c̄ kuk2 −B

Z
J

|u| |u0| ρdm

≥ a0 ku0k2 + c̄ kuk2 − B

2

³
δ ku0k2 + δ−1 kuk2

´
=

µ
a0 − Bδ

2

¶
ku0k2 +

µ
c̄− B

2
δ−1

¶
kuk2 .

Taking δ = a0/B in this equation proves Eq. (41.43).

Theorem 41.38. Let

b = (b2 − b1) , c := c0 − ρ−1 (ρb1)
0 , (41.44)

Lu = −ρ−1 (aρu0)0 + bu0 + cu and

Bu = (ρau0 + ρb1u) |∂J .

Then for u ∈ H2(J) and v ∈ H1(J)

E(u, v) = (Lu, v) + [(Bu) v]∂J
and for u ∈ H1(J) and v ∈ H2(J),

E(u, v) = (u,L∗v) + [(B∗v)u]∂J .

Here (as in Eq. (41.35)
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L∗v = −ρ−1 (aρu0)0 − ρ−1 [ρbu]0 + cu

and (as in Notation 41.33)

B∗v = ρav0 +
µ
ρb1 +

b

a
ρa

¶
v = ρav0 + ρb2v.

Proof. Let u ∈ H2(J) and v ∈ H1(J) and integrating Eq. (41.41) by parts
to find

E(u, v) =
Z
J

³
−ρ−1 (aρu0)0 v − ρ−1 (ρb1u)

0 v + b2u
0v + c0uv

´
ρdm

+ [ρau0v + ρb1uv]∂J
= (Lu, v) + [Bu · v]∂J (41.45)

where

Lu = −ρ−1 (aρu0)0 − ρ−1 (ρb1u)
0 + b2u

0 + c0u

= −ρ−1 (aρu0)0 + (b2 − b1)u
0 +
£
c0 − ρ−1 (ρb1)

0¤u
= −ρ−1 (aρu0)0 + bu0 + cu

and
Bu = ρau0 + ρb1u.

Similarly

E(u, v) =
Z
J

³
−uρ−1 (aρv0)0 + b1uv

0 − uρ−1 (ρb2v)
0
+ c0uv

´
ρdm

+ [(ρauv0 + ρb2uv)]∂J

= (u,L
†
v) +

£
B†v · u¤

∂J

where

L†v = −ρ−1 (aρv0)0 + b1v
0 − ρ−1 (ρb2v)

0
+ c0v

= −ρ−1 (aρv0)0 + (b1 − b2) v
0 +
£
c0 − ρ−1 (ρb2)

0¤
v

= −ρ−1 (aρv0)0 − bv0 +
h
c+ ρ−1 (ρ(b1 − b2))

−1i
v

= −ρ−1 (aρv0)0 − bv0 +
£
c− ρ−1 (ρb)0

¤
v = L∗v.

and
B†v = (ρav0 + ρb2v) = B∗v.

Remark 41.39. As a consequence of Theorem 41.38, the mapping

(a, b1, b2, c0)→
·

(u, v)→
E(u, v) = R

J
(au0v0 + b1uv

0 + b2u
0v + c0uv) ρdm

¸
is highly non-injective. In fact E depends only on a, b = b2 − b1 and c :=
c0 − ρ−1 (ρb1)

0 on J and b1 on ∂J.
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Corollary 41.40. As above let (α, β) : ∂J → R2 \ {0} and let
D(L) =

©
u ∈ H2(J) : Bu = αu0 + βu = 0 on ∂J

ª
and

Lu = −ρ−1 (aρu0)0 + bu0 + cu.

Given λ0 > 0 sufficiently large, (L+ λ0) : D(L) → L2(J) and (L∗ + λ0) :
D(L∗ ) → L2(J) are invertible and there is a continuous Green’s function
G(x, y) such that

(L+ λ0)
−1f(x) =

Z
J

G(x, y)f(y)dy.

Proof. Let us normalize α so that α = a whenever α 6= 0. The boundary
term in Eq. (41.45) will be zero whenever

au0 + b1u = 0 when v 6= 0 on ∂J.

This suggests that we define a subspace χ of H1(J) by

χ :=
©
u ∈ H1(J) : u = 0 on ∂J where α = 0 on ∂J

ª
.

Hence χ is eitherH1
0 (J), H

1(J),
©
u ∈ H1(J) : u(r) = 0

ª
or
©
u ∈ H1(J) : u(s) = 0

ª
.

Now choose a function b1 ∈ C2(J) such that b1 = β on ∂J, then set b2 := b+b1
and c0 = c+ ρ−1 (ρb1)

0
, then

D(L) = χ ∩ ©u ∈ H2(J) : Bu = au0 + b1u = 0 on ∂J
ª

and
(Lu, v) = E(u, v) for all u ∈ D(L) and v ∈ χ.

Using this observation, it follows from Eq. (41.43) of Lemma 41.37, for λ0
sufficiently large and any u ∈ D(L), that

((L+ λ0)u, u) = E(u, u) + λ0(u, u)

≥ a0
2
ku0k2 +

µ
c̄− B2

2a0
+ λ0

¶
kuk2 ≥ a0

2
kuk2H1(J) .

As usual this equation shows Nul(L+ λ0) = {0} . Similarly on shows
(u,L∗v) = E(u, v) for all v ∈ D(L∗) and u ∈ χ

and working as above we conclude that Nul(L∗ + λ0) = {0} . The remaining
assertions are now proved as in the proof of Corollary 41.24.
With this result in hand we may now improve on Proposition 41.35.

Theorem 41.41. Let L, B, D(L), L∗, B∗ and D(L∗) be as in Proposition
41.35 and v ∈ L2(J). Then there exists g ∈ L2(J) such that

(Lu, v) = (u, g) for all u ∈ D(L) (41.46)

iff v ∈ D(L∗) and in which case g = L∗v.
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Proof. Choose λ0 > 0 so that L0 := (L+ λ0I) : D(L)→ L2(J) is invert-
ible. Then Eq. (41.46) is equivalent to

(L0u, v) = (u, g + λ0v) for all u ∈ D(L). (41.47)

Taking u = L−10 w with w ∈ L2(J) in this equation implies

(w, v) = (L−10 w, g + λ0v) = (w,
¡
L−10

¢∗
(g + λ0v)) for all w ∈ L2(J)

which shows
v =

¡
L−10

¢∗
(g + λ0v) . (41.48)

Since (L0u, v) = (u,L∗0v) for all u ∈ D(L) and v ∈ D(L∗), by replacing u by
L−10 u and v by (L∗0)

−1 v in this equation we learn³
u, (L∗0)

−1 v
´
= (L−10 u, v) for all u, v ∈ L2(J).

From this equation it follows that (L∗0)
−1

=
¡
L−10

¢∗
and hence from Eq.

(41.48) it follows that v ∈ D (L∗0) = D(L∗).





Part XIII

Constant Coefficient Equations





42

Convolutions, Test Functions and Partitions of
Unity

42.1 Convolution and Young’s Inequalities

Letting δx denote the “delta—function” at x, we wish to define a product (∗)
on functions on Rn such that δx ∗ δy = δx+y. Now formally any function f on
Rn is of the form

f =

Z
Rn

f(x)δxdx

so we should have

f ∗ g =
Z
Rn×Rn

f(x)g(y)δx ∗ δydxdy =
Z
Rn×Rn

f(x)g(y)δx+ydxdy

=

Z
Rn×Rn

f(x− y)g(y)δxdxdy

=

Z
Rn

·Z
Rn

f(x− y)g(y)dy

¸
δxdx

which suggests we make the following definition.

Definition 42.1. Let f, g : Rn → C be measurable functions. We define

f ∗ g(x) =
Z
Rn

f(x− y)g(y)dy

whenever the integral is defined, i.e. either f(x− ·)g(·) ∈ L1(Rn,m) or f(x−
·)g(·) ≥ 0. Notice that the condition that f(x−·)g(·) ∈ L1(Rn,m) is equivalent
to writing |f | ∗ |g| (x) <∞.

Notation 42.2 Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn,

xα :=
nY
j=1

x
αj
j , and ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
.



884 42 Convolutions, Test Functions and Partitions of Unity

Remark 42.3 (The Significance of Convolution). Suppose that L =
P

|α|≤k aα∂
α

is a constant coefficient differential operator and suppose that we can solve
(uniquely) the equation Lu = g in the form

u(x) = Kg(x) :=

Z
Rn

k(x, y)g(y)dy

where k(x, y) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the inverse
operation to differentiation.) Since τzL = Lτz for all z ∈ Rn, (this is another
way to characterize constant coefficient differential operators) and L−1 = K
we should have τzK = Kτz. Writing out this equation then saysZ

Rn
k(x− z, y)g(y)dy = (Kg) (x− z) = τzKg(x) = (Kτzg) (x)

=

Z
Rn

k(x, y)g(y − z)dy =

Z
Rn

k(x, y + z)g(y)dy.

Since g is arbitrary we conclude that k(x− z, y) = k(x, y + z). Taking y = 0
then gives

k(x, z) = k(x− z, 0) =: ρ(x− z).

We thus find that Kg = ρ ∗ g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equa-
tions. More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality
for integrals.

Proposition 42.4. Suppose q ∈ [1,∞], f ∈ L1 and g ∈ Lq, then f ∗ g(x)
exists for almost every x, f ∗ g ∈ Lq and

kf ∗ gkp ≤ kfk1 kgkp .

For z ∈ Rn and f : Rn → C, let τzf : Rn → C be defined by τzf(x) =
f(x− z).

Proposition 42.5. Suppose that p ∈ [1,∞), then τz : L
p → Lp is an isomet-

ric isomorphism and for f ∈ Lp, z ∈ Rn → τzf ∈ Lp is continuous.

Proof. The assertion that τz : L
p → Lp is an isometric isomorphism

follows from translation invariance of Lebesgue measure and the fact that
τ−z ◦ τz = id. For the continuity assertion, observe that

kτzf − τyfkp = kτ−y (τzf − τyf)kp = kτz−yf − fkp
from which it follows that it is enough to show τzf → f in Lp as z → 0 ∈ Rn.
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When f ∈ Cc(Rn), τzf → f uniformly and since theK := ∪|z|≤1supp(τzf)
is compact, it follows by the dominated convergence theorem that τzf → f in
Lp as z → 0 ∈ Rn. For general g ∈ Lp and f ∈ Cc(Rn),

kτzg − gkp ≤ kτzg − τzfkp + kτzf − fkp + kf − gkp
= kτzf − fkp + 2 kf − gkp

and thus

lim sup
z→0

kτzg − gkp ≤ lim sup
z→0

kτzf − fkp + 2 kf − gkp = 2 kf − gkp .

Because Cc(Rn) is dense in Lp, the term kf − gkp may be made as small as
we please.

Definition 42.6. Suppose that (X, τ) is a topological space and µ is a measure
on BX = σ(τ). For a measurable function f : X → C we define the essential
support of f by

suppµ(f) = {x ∈ U : µ({y ∈ V : f(y) 6= 0}) > 0 ∀τ 3 V 3 x} . (42.1)

Lemma 42.7. Suppose (X, τ) is second countable and f : X → C is a mea-
surable function and µ is a measure on BX . Then X := U \ suppµ(f) may
be described as the largest open set W such that f1W (x) = 0 for µ — a.e. x.
Equivalently put, C := suppµ(f) is the smallest closed subset of X such that
f = f1C a.e.

Proof. To verify that the two descriptions of suppµ(f) are equivalent,
suppose suppµ(f) is defined as in Eq. (42.1) and W := X \ suppµ(f). Then

W =

½
x ∈ X : µ({y ∈ V : f(y) 6= 0}) = 0
for some neighborhood V of x

¾
= ∪ {V ⊂o X : µ (f1V 6= 0) = 0}
= ∪ {V ⊂o X : f1V = 0 for µ — a.e.} .

So to finish the argument it suffices to show µ (f1W 6= 0) = 0. To to this let
U be a countable base for τ and set

Uf := {V ∈ U : f1V = 0 a.e.}.
Then it is easily seen thatW = ∪Uf and since Uf is countable µ (f1W 6= 0) ≤P

V ∈Uf µ (f1V 6= 0) = 0.
Lemma 42.8. Suppose f, g, h : Rn → C are measurable functions and assume
that x is a point in Rn such that |f | ∗ |g| (x) <∞ and |f | ∗ (|g| ∗ |h|) (x) <∞,
then

1. f ∗ g(x) = g ∗ f(x)
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2. f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x)
3. If z ∈ Rn and τz(|f | ∗ |g|)(x) = |f | ∗ |g| (x− z) <∞, then

τz(f ∗ g)(x) = τzf ∗ g(x) = f ∗ τzg(x)
4. If x /∈ suppm(f)+suppm(g) then f ∗g(x) = 0 and in particular, suppm(f ∗

g) ⊂ suppm(f) + suppm(g) where in defining suppm(f ∗g) we will use the
convention that “f ∗ g(x) 6= 0” when |f | ∗ |g| (x) =∞.

Proof. For item 1.,

|f | ∗ |g| (x) =
Z
Rn
|f | (x− y) |g| (y)dy =

Z
Rn
|f | (y) |g| (y − x)dy = |g| ∗ |f | (x)

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation y → x− y. Similar computations prove all
of the remaining assertions of the first three items of the lemma.
Item 4. Since f∗g(x) = f̃∗g̃(x) if f = f̃ and g = g̃ a.e. we may, by replacing

f by f1suppm(f) and g by g1suppm(g) if necessary, assume that {f 6= 0} ⊂
suppm(f) and {g 6= 0} ⊂ suppm(g). So if x /∈ (suppm(f) + suppm(g)) then
x /∈ ({f 6= 0}+ {g 6= 0}) and for all y ∈ Rn, either x − y /∈ {f 6= 0} or y /∈
{g 6= 0} . That is to say either x − y ∈ {f = 0} or y ∈ {g = 0} and hence
f(x−y)g(y) = 0 for all y and therefore f ∗g(x) = 0. This shows that f ∗g = 0
on Rn \

³
suppm(f) + suppm(g)

´
and therefore

Rn \
³
suppm(f) + suppm(g)

´
⊂ Rn \ suppm(f ∗ g),

i.e. suppm(f ∗ g) ⊂ suppm(f) + suppm(g).
Remark 42.9. Let A,B be closed sets of Rn, it is not necessarily true that
A+B is still closed. For example, take

A = {(x, y) : x > 0 and y ≥ 1/x} and B = {(x, y) : x < 0 and y ≥ 1/|x|} ,
then every point of A+B has a positive y - component and hence is not zero.
On the other hand, for x > 0 we have (x, 1/x)+(−x, 1/x) = (0, 2/x) ∈ A+B
for all x and hence 0 ∈ A+B showing A + B is not closed. Nevertheless if
one of the sets A or B is compact, then A+B is closed again. Indeed, if A is
compact and xn = an + bn ∈ A+ B and xn → x ∈ Rn, then by passing to a
subsequence if necessary we may assume limn→∞ an = a ∈ A exists. In this
case

lim
n→∞ bn = lim

n→∞ (xn − an) = x− a ∈ B

exists as well, showing x = a+ b ∈ A+B.

Proposition 42.10. Suppose that p, q ∈ [1,∞] and p and q are conjugate
exponents, f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(Rn), kf ∗ gku ≤ kfkp kgkq
and if p, q ∈ (1,∞) then f ∗ g ∈ C0(Rn).
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Proof. The existence of f∗g(x) and the estimate |f ∗ g| (x) ≤ kfkp kgkq for
all x ∈ Rn is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows kf ∗ gku ≤ kfkp kgkq .
By relabeling p and q if necessary we may assume that p ∈ [1,∞). Since

kτz (f ∗ g)− f ∗ gku = kτzf ∗ g − f ∗ gku
≤ kτzf − fkp kgkq → 0 as z → 0

it follows that f ∗ g is uniformly continuous. Finally if p, q ∈ (1,∞), we learn
from Lemma 42.8 and what we have just proved that fm ∗gm ∈ Cc(Rn) where
fm = f1|f|≤m and gm = g1|g|≤m. Moreover,

kf ∗ g − fm ∗ gmku ≤ kf ∗ g − fm ∗ gku + kfm ∗ g − fm ∗ gmku
≤ kf − fmkp kgkq + kfmkp kg − gmkq
≤ kf − fmkp kgkq + kfkp kg − gmkq → 0 as m→∞

showing f ∗ g ∈ C0(Rn).

Theorem 42.11 (Young’s Inequality). Let p, q, r ∈ [1,∞] satisfy
1

p
+
1

q
= 1 +

1

r
. (42.2)

If f ∈ Lp and g ∈ Lq then |f | ∗ |g| (x) <∞ for m — a.e. x and

kf ∗ gkr ≤ kfkp kgkq . (42.3)

In particular L1 is closed under convolution. (The space (L1, ∗) is an example
of a “Banach algebra” without unit.)

Remark 42.12. Before going to the formal proof, let us first understand Eq.
(42.2) by the following scaling argument. For λ > 0, let fλ(x) := f(λx), then
after a few simple change of variables we find

kfλkp = λ−1/p kfk and (f ∗ g)λ = λfλ ∗ gλ.

Therefore if Eq. (42.3) holds for some p, q, r ∈ [1,∞], we would also have

kf ∗ gkr = λ1/r k(f ∗ g)λkr ≤ λ1/rλ kfλkp kgλkq
= λ(1+1/r−1/p−1/q) kfkp kgkq

for all λ > 0. This is only possible if Eq. (42.2) holds.

Proof. Let α, β ∈ [0, 1] and p1, p2 ∈ [0,∞] satisfy p−11 + p−12 + r−1 = 1.
Then by Hölder’s inequality,
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|f ∗ g(x)| =
¯̄̄̄Z

f(x− y)g(y)dy

¯̄̄̄
≤
Z
|f(x− y)|(1−α) |g(y)|(1−β) |f(x− y)|α |g(y)|β dy

≤
µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶1/r µZ

|f(x− y)|αp1 dy
¶1/p1

×µZ
|g(y)|βp2 dy

¶1/p2
=

µZ
|f(x− y)|(1−α)r |g(y)|(1−β)r dy

¶1/r
kfkααp1 kgk

β
βp2

.

Taking the rth power of this equation and integrating on x gives

kf ∗ gkrr ≤
Z µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶
dx · kfkααp1 kgk

β
βp2

= kfk(1−α)r(1−α)r kgk(1−β)r(1−β)r kfkαrαp1 kgk
βr
βp2

. (42.4)

Let us now suppose, (1 − α)r = αp1 and (1 − β)r = βp2, in which case Eq.
(42.4) becomes,

kf ∗ gkrr ≤ kfkrαp1 kgk
r
βp2

which is Eq. (42.3) with

p := (1− α)r = αp1 and q := (1− β)r = βp2. (42.5)

So to finish the proof, it suffices to show p and q are arbitrary indices in [1,∞]
satisfying p−1 + q−1 = 1 + r−1.
If α, β, p1, p2 satisfy the relations above, then

α =
r

r + p1
and β =

r

r + p2

and
1

p
+
1

q
=
1

p1

r + p1
r

+
1

p2

r + p2
r

=
1

p1
+
1

p2
+
2

r
= 1 +

1

r
.

Conversely, if p, q, r satisfy Eq. (42.2), then let α and β satisfy p = (1 − α)r
and q = (1− β)r, i.e.

α :=
r − p

r
= 1− p

r
≤ 1 and β =

r − q

r
= 1− q

r
≤ 1.

From Eq. (42.2), α = p(1− 1
q ) ≥ 0 and β = q(1− 1

p) ≥ 0, so that α, β ∈ [0, 1].
We then define p1 := p/α and p2 := q/β, then

1

p1
+
1

p2
+
1

r
= β

1

q
+ α

1

p
+
1

r
=
1

q
− 1

r
+
1

p
− 1

r
+
1

r
= 1

as desired.
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Theorem 42.13 (Approximate δ — functions). Let p ∈ [1,∞], φ ∈
L1(Rn), a :=

R
Rn f(x)dx, and for t > 0 let φt(x) = t−nφ(x/t). Then

1. If f ∈ Lp with p <∞ then φt ∗ f → af in Lp as t ↓ 0.
2. If f ∈ BC(Rn) and f is uniformly continuous then kφt ∗ f − fk∞ → 0 as

t ↓ 0.
3. If f ∈ L∞ and f is continuous on U ⊂o Rn then φt ∗ f → af uniformly
on compact subsets of U as t ↓ 0.
See Theorem 8.15 if Folland for a statement about almost everywhere con-

vergence.

Proof. Making the change of variables y = tz implies

φt ∗ f(x) =
Z
Rn

f(x− y)φt(y)dy =

Z
Rn

f(x− tz)φ(z)dz

so that

φt ∗ f(x)− af(x) =

Z
Rn
[f(x− tz)− f(x)]φ(z)dz

=

Z
Rn
[τtzf(x)− f(x)]φ(z)dz. (42.6)

Hence by Minkowski’s inequality for integrals, Proposition 42.5 and the dom-
inated convergence theorem,

kφt ∗ f − afkp ≤
Z
Rn
kτtzf − fkp |φ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (42.6)

kφt ∗ f − afk∞ ≤
Z
Rn
kτtzf − fk∞ |φ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 kτtzf − fk∞ = 0 uniformly in z by the uniform continuity of f.
Item 3. Let BR = B(0, R) be a large ball in Rn and K @@ U, then
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sup
x∈K

|φt ∗ f(x)− af(x)| ≤
¯̄̄̄Z
BR

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
+

¯̄̄̄
¯
Z
Bc
R

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
¯

≤
Z
BR

|φ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|

+ 2 kfk∞
Z
Bc
R

|φ(z)| dz

≤ kφk1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|

+ 2 kfk∞
Z
|z|>R

|φ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K

|φt ∗ f(x)− af(x)| ≤ 2 kfk∞
Z
|z|>R

|φ(z)| dz → 0 as R→∞.

Remark 42.14 (Another Proof of part of Theorem 42.13). By definition of the
convolution and Hölder’s or Jensen’s inequality we haveZ

Rn
|v ∗ φt(x)|pdx ≤

Z
Rn

µZ
Rn
(v(x− y))|φt(y)|dy

¶p
dx

≤
Z
Rn×Rn

|v(x− y)|pφt(y)dy dx = kvkpLp .

Therefore kv ∗ φtkLp ≤ kvkLp which implies v ∗ φt ∈ Lp. If φt ∈ C∞c (Rn), by
differentiating under the integral (see Theorem 42.18 below) it is easily seen
that v ∗ φt ∈ C∞. Finally for u ∈ Cc (Rn) ,

kv − v ∗ φtkLp ≤ kv − ukLp + ku− u ∗ φtkLp + ku ∗ φt − v ∗ φtkLp
≤ ku− u ∗ φtkLp + 2kv − ukLp

and hence
lim sup

t↓0
kv − v ∗ φtkLp ≤ 2kv − ukLp

which may be made arbitrarily small since Cc (Rn) is dense in Lp (Rn,m) .

Exercise 42.15. Let

f(t) =

½
e−1/t if t > 0
0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).
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Lemma 42.16. There exists φ ∈ C∞c (Rn, [0,∞)) such that φ(0) > 0,
supp(φ) ⊂ B̄(0, 1) and

R
Rn φ(x)dx = 1.

Proof. Define h(t) = f(1 − t)f(t + 1) where f is as in Exercise 42.15.
Then h ∈ C∞c (R, [0, 1]), supp(h) ⊂ [−1, 1] and h(0) = e−2 > 0. Define c =R
Rn h(|x|2)dx. Then φ(x) = c−1h(|x|2) is the desired function.
Definition 42.17. Let X ⊂ Rn be an open set. A Radon measure on BX is
a measure µ which is finite on compact subsets of X. For a Radon measure
µ, we let L1loc(µ) consists of those measurable functions f : X → C such thatR
K
|f | dµ <∞ for all compact subsets K ⊂ X.

Theorem 42.18 (Differentiation under integral sign). Let Ω ⊂ Rn and
f : Rm ×Ω → R be given. Assume:

1. x→ f(x, y) is differentiable for all y ∈ Ω.

2.
¯̄̄
∂f
∂xi (x, y)

¯̄̄
≤ g(y) for some g such that

R
Ω

|g(y)|dy <∞.

3.
R |f(x, y)|dy <∞.

Then ∂
∂xi

R
Ω

f(x, y)dy =
R
Ω

∂f
∂xi (x, y)dy and moreover if x → ∂f

∂xi (x, y) is

continuous then so is x→ R
∂f
∂xi (x, y)dy.

The reader asked to use Theorem 42.18 to verify the following proposition.

Proposition 42.19. Suppose that f ∈ L1loc(Rn,m) and φ ∈ C1c (Rn), then
f ∗ φ ∈ C1(Rn) and ∂i(f ∗ φ) = f ∗ ∂iφ. Moreover if φ ∈ C∞c (Rn) then
f ∗ φ ∈ C∞(Rn).

Corollary 42.20 (C∞ — Uryhson’s Lemma). Given K @@ U ⊂o Rn,
there exists f ∈ C∞c (Rn, [0, 1]) such that supp(f) ⊂ U and f = 1 on K.

Proof. Let φ be as in Lemma 42.16, φt(x) = t−nφ(x/t) be as in Theorem
42.13, d be the standard metric on Rn and � = d(K,Uc). Since K is compact
and Uc is closed, � > 0. Let Vδ = {x ∈ Rn : d(x,K) < δ} and f = φ�/3 ∗ 1V�/3 ,
then

supp(f) ⊂ supp(φ�/3) + V�/3 ⊂ V̄2�/3 ⊂ U.

Since V̄2�/3 is closed and bounded, f ∈ C∞c (U) and for x ∈ K,

f(x) =

Z
Rn
1d(y,K)<�/3 · φ�/3(x− y)dy =

Z
Rn

φ�/3(x− y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 ≤ f ≤ 1.
Here is an application of this corollary whose proof is left to the reader.
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Lemma 42.21 (Integration by Parts). Suppose f and g are measur-
able functions on Rn such that t → f(x1, . . . , xi−1, t, xi+1, . . . , xn) and t →
g(x1, . . . , xi−1, t, xi+1, . . . , xn) are continuously differentiable functions on R
for each fixed x = (x1, . . . , xn) ∈ Rn. Moreover assume f · g, ∂f

∂xi
· g and

f · ∂g
∂xi

are in L1(Rn,m). ThenZ
Rn

∂f

∂xi
· gdm = −

Z
Rn

f · ∂g
∂xi

dm.

Exercise 42.22 (Integration by Parts). Suppose that (x, y) ∈ R×Rn−1 →
f(x, y) ∈ C and (x, y) ∈ R×Rn−1 → g(x, y) ∈ C are measurable functions
such that for each fixed y ∈ Rn−1, x → f(x, y) and x → g(x, y) are continu-
ously differentiable. Also assume f ·g, ∂xf ·g and f ·∂xg are integrable relative
to Lebesgue measure on R×Rn−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. ShowZ
R×Rn−1

∂xf(x, y) · g(x, y)dxdy = −
Z
R×Rn−1

f(x, y) · ∂xg(x, y)dxdy. (42.7)

(Note: this result and Fubini’s theorem proves Lemma 42.21.)
Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of

0 ∈ R and set ψ�(x) = ψ(�x). First verify Eq. (42.7) with f(x, y) replaced by
ψ�(x)f(x, y) by doing the x — integral first. Then use the dominated conver-
gence theorem to prove Eq. (42.7) by passing to the limit, � ↓ 0.
Solution 42.23 (42.22). By assumption, ∂x [ψ�(x)f(x, y)] · g(x, y) and
ψ�(x)f(x, y)∂xg(x, y) are in L1(Rn), so we may use Fubini’s theorem and
follow the hint to learnZ

Rn−1
dy

Z
R
∂x [ψ�(x)f(x, y)] · g(x, y)dx

= −
Z
Rn−1

dy

Z
R
[ψ�(x)f(x, y)] · ∂xg(x, y)dx, (42.8)

wherein we have done and integration by parts. (There are no boundary terms
because ψ� is compactly supported.) Now

∂x [ψ�(x)f(x, y)] = ∂xψ�(x) · f(x, y) + ψ�(x)∂xf(x, y)

= �ψ0(�x)f(x, y) + ψ�(x)∂xf(x, y)

and by the dominated convergence theorem and the given assumptions we
have, as � ↓ 0, that¯̄̄̄Z

Rn
�ψ0(�x)f(x, y) · g(x, y)dxdy

¯̄̄̄
≤ C�

Z
Rn
|f(x, y) · g(x, y)| dxdy → 0Z

Rn
ψ�(x)∂xf(x, y) · g(x, y)dxdy →

Z
Rn

∂xf(x, y) · g(x, y)dxdy andZ
Rn

ψ�(x)f(x, y) · ∂xg(x, y)dxdy →
Z
Rn

f(x, y) · ∂xg(x, y)dxdy
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where C = supx∈R |ψ0(x)| . Combining the last three equations with Eq. (42.8)
showsZ

R×Rn−1
∂xf(x, y) · g(x, y)dxdy = −

Z
R×Rn−1

f(x, y) · ∂xg(x, y)dxdy

as desired.

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 42.24. For f ∈ L1(Rn,m) let

f̂(ξ) := (2π)−n/2
Z
Rn

f(x)e−iξ·xdm(x)

be the Fourier transform of f. Then f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ (2π)−n/2 kfk1 .

(The choice of the normalization factor, (2π)−n/2, in f̂ is for later conve-
nience.)

Proof. The fact that f̂ is continuous is a simple application of the domi-
nated convergence theorem. Moreover,¯̄̄

f̂(ξ)
¯̄̄
≤
Z
|f(x)| dm(x) ≤ (2π)−n/2 kfk1

so it only remains to see that f̂(ξ)→ 0 as |ξ|→∞.

First suppose that f ∈ C∞c (Rn) and let ∆ =
Pn

j=1
∂2

∂x2j
be the Laplacian

on Rn. Notice that ∂
∂xj

e−iξ·x = −iξje−iξ·x and ∆e−iξ·x = − |ξ|2 e−iξ·x. Using
Lemma 42.21 repeatedly,Z

∆kf(x)e−iξ·xdm(x) =
Z

f(x)∆k
xe
−iξ·xdm(x) = − |ξ|2k

Z
f(x)e−iξ·xdm(x)

= −(2π)n/2 |ξ|2k f̂(ξ)

for any k ∈ N. Hence (2π)n/2
¯̄̄
f̂(ξ)

¯̄̄
≤ |ξ|−2k °°∆kf

°°
1
→ 0 as |ξ| → ∞ and

f̂ ∈ C0(Rn). Suppose that f ∈ L1(m) and fk ∈ C∞c (Rn) is a sequence such
that limk→∞ kf − fkk1 = 0, then limk→∞

°°°f̂ − f̂k

°°°
u
= 0 and hence Hence

f̂ ∈ C0(Rn) because C0(Rn) is complete.

Corollary 42.25. Let X ⊂ Rn be an open set and µ be a Radon measure on
BX .
1. Then C∞c (X) is dense in Lp(µ) for all 1 ≤ p <∞.
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2. If h ∈ L1loc(µ) satisfiesZ
X

fhdµ = 0 for all f ∈ C∞c (X) (42.9)

then h(x) = 0 for µ — a.e. x.

Proof. Let f ∈ Cc(X), φ be as in Lemma 42.16, φt be as in Theorem
42.13 and set ψt := φt ∗ (f1X) . Then by Proposition 42.19 ψt ∈ C∞(X) and
by Lemma 42.8 there exists a compact set K ⊂ X such that supp(ψt) ⊂ K
for all t sufficiently small. By Theorem 42.13, ψt → f uniformly on X as t ↓ 0
1. The dominated convergence theorem (with dominating function being
kfk∞ 1K), shows ψt → f in Lp(µ) as t ↓ 0. This proves Item 1. because
of the measure theoretic fact that Cc(X) is dense in Lp(µ).

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being kfk∞ |h| 1K) implies

0 = lim
t↓0

Z
X

ψthdµ =

Z
X

lim
t↓0

ψthdµ =

Z
X

fhdµ.

Since this is true for all f ∈ Cc(X), it follows by measure theoretic argu-
ments that h = 0 a.e.

42.2 Smooth Partitions of Unity

Theorem 42.26. Let V1, . . . , Vk ⊂0 Rn and φ ∈ C∞c
¡∪ki=1Vi¢ . Then there

exists φj ∈ C∞c (Vj) such that φ =
kP
i
φj . If φ ≥ 0 one can choose φj ≥ 0.

Proof. The proof will be split into two steps.

1. There existsKj @@ Vj such that suppφ ⊂ ∪Kj. Indeed, for all x ∈ suppφ
there exists an open neighborhood Nx of x such that Nx ⊂ Vj for some
j and Nx is compact. Now {Nx}x∈suppφ covers K := suppφ and hence
there exists a finite set Λ ⊂⊂ K such that K ⊂ ∪x∈ΛNx.. Let Kj :=
∪©Nx : x ∈ Λ and Nx ⊂ Vj

ª
. Then each Kj is compact, Kj ⊂ Vj and

suppφ = K ⊂
kS

j=1
Kj .

2. By Corollary 42.20 there exists ψj ∈ C∞c (Vj , [0, 1]) such that ψj := 1 in
the neighborhood of Kj . Now define
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φ1 = φψ1

φ2 = (φ− φ1)ψ2 = φ(1− ψ1)ψ2

φ3 = (φ− φ1 − φ2)ψ3 = φ{(1− ψ1)− (1− ψ1)ψ2}ψ3
= φ(1− ψ1)(1− ψ2)ψ3

...

φk = (φ− φ1 − φ2 − · · ·− φk−1)ψk
= φ(1− ψ1)(1− ψ2) . . . (1− ψk−1)ψk

By the above computations one finds that (a) φi ≥ 0 if φ ≥ 0 and (b)

φ− φ1 − φ2 − · · ·− φk = φ(1− ψ1)(1− ψ2) . . . (1− ψk) = 0.

since either φ(x) = 0 or x /∈ suppφ = K and 1− ψi(x) = 0 for some i.

Corollary 42.27. Let V1, . . . , Vk ⊂0 Rn and K be a compact subset of ∪ki=1Vi.
Then there exists φi ∈ C∞c (Vi, [0, 1]) such

Pk
i=1 φi ≤ 1 with

Pk
i=1 φi = 1 on

a neighborhood of K.

Proof. By Corollary 42.20 there exists φ ∈ C∞c (∪ki=1Vi, [0, 1]) such that
φ = 1 on a neighborhood of K. Now let {φi}ki=1 be the functions constructed
in Theorem 42.26.





43

Poisson and Laplace’s Equation

For the majority of this section we will assume Ω ⊂ Rn is a compact manifold
with C2 — boundary. Let us record a few consequences of the divergence
theorem in Proposition 22.30 in this context. If u, v ∈ C2(Ωo) ∩ C1(Ω) andR
Ω

|4u|dx <∞ then

Z
Ω

4u · vdm = −
Z
Ω

∇u ·∇vdm+

Z
∂Ω

v
∂u

∂n
dσ (43.1)

and if further
R
Ω

{|4u|+ |4v|}dx <∞ then

Z
Ω

(4uv −4v u)dm =

Z
∂Ω

µ
v
∂u

∂n
− ∂v

∂n
u

¶
dσ. (43.2)

Lemma 43.1. Suppose u ∈ C2(Ωo) ∩ C1(Ω), ∆u = 0 on Ωo and u = 0 on
∂Ω. Then u ≡ 0. Similarly if ∆u = 0 on Ωo and ∂nu = 0 on ∂Ω, then u is
constant on each connected component of Ω.

Proof. Letting v = u in Eq. (43.1) shows in either case that

0 = −
Z
Ω

∇u ·∇udm+

Z
∂Ω

u
∂u

∂n
dσ = −

Z
Ω

|∇u|2 dm.

This then implies ∇u = 0 on Ωo and hence u is constant on the connected
component of Ωo. If u = 0 on ∂Ω, these constants must all be zero.

Proposition 43.2 (Laplacian on radial functions). Suppose f(x) =
F (|x|) , then

4f(x) =
1

rn−1
d

dr
(rn−1F 0(r))

¯̄̄̄
r=|x|

= F 00(|x|) + (n− 1)|x| F 0(|x|). (43.3)
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In particular ∆F (|x|) = 0 implies d
dr (r

n−1F 0(r)) = 0 and hence F 0(r) =
Ãr1−n. That is to say

F (r) =

½
Ar2−n +B if n 6= 2
A ln r +B if n = 2.

Proof. Since (∂vf)(x) = F 0(|x|) ∂v|x| = F 0(|x|)x̂ · v where x̂ = x
|x| ,

∇f(x) = F 0(|x|)x̂. Hence for g ∈ C1c (Rn),Z
Rn
4f(x)g(x)dx = −

Z
Rn
∇f(x) ·∇g(x) dx

= −
Z
Rn

F 0(r)x̂ ·∇g(rx̂) dx

= −
Z
Sn−1×[0,∞)

F 0(r)
d

dr
g(rω) rn−1dr dσ(ω)

=

Z
Sn−1×[0,∞)

d

dr
(rn−1F 0(r))g(rω)dr dσ(ω)

=

Z
Sn−1×[0,∞)

1

rn−1
d

dr
(rn−1F 0(r)) g(rω)rn−1 dr dσ(ω)

=

Z
Rn

1

rn−1
d

dr
(rn−1F 0(r))

¯̄̄̄
r=|x|

g(x) dx.

Since this is valid for all g ∈ C1c (Rn), Eq. (43.3) is valid. Alternatively, we
may simply compute directly as follows:

4f(x) = ∇ · [F 0(|x|)x̂] = ∇F 0(|x|) · x̂+ F 0(|x|)∇ · x̂
= F 00(|x|)x̂ · x̂+ F 0(|x|)∇ · x

|x|
= F 00(|x|) + F 0(|x|)

½
n

|x| −
x

|x|2 · x̂
¾

= F 00(|x|) + (n− 1)|x| F 0(|x|).

Notation 43.3 For t > 0, let

α(t) := αn(t) := cn

½
1

tn−2 if n 6= 2
ln t if n = 2,

(43.4)

where cn =
½ 1
(n−2)σ(Sn−1) if n 6= 2
− 1
2π if n = 2.

Also let

φ(y) = φn(y) := α (|y|) = cn

½ 1
|y|n−2 if n 6= 2
ln |y| if n = 2. (43.5)
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An important feature of α is that

α0(t) = cn

½−(n− 2) 1
tn−1 if n 6= 2

1
t if n = 2

= − 1

σ(Sn−1)
1

tn−1
(43.6)

for all n. This then implies, for all n, that

∇φ(x) = ∇ [α (|x|)] = α0(|x|)x̂ = − 1

σ(Sn−1)
1

|x|n−1 x̂ = −
1

σ(Sn−1)
1

|x|nx.
(43.7)

One more piece of notation will be useful in the sequel.

Notation 43.4 (Averaging operator) Suppose µ is a finite measure on
some space Ω, we will defineZ

−
Ω

fdµ :=
1

µ(Ω)

Z
Ω

fdµ.

For example if Ω is a compact manifold with C2 — boundary in Rn thenZ
−
Ω

f(x)dx =
1

m(Ω)

Z
Ω

f(x)dx =
1

Vol(Ω)

Z
Ω

f(x)dx

and Z
−
∂Ω

fdσ =
1

σ(∂Ω)

Z
∂Ω

f(x)dx =
1

Area(∂Ω)

Z
∂Ω

f(x)dx.

Theorem 43.5. Let Ω be a compact manifold with C2- boundary, u ∈
C2(Ωo) ∩C1(Ω) with R

Ω
|∆u(y)| dy <∞. Then for x ∈ Ω

u(x) =

Z
∂Ω

µ
φ(x− y)

∂u

∂n
(y)− u(y)

∂φ(x− y)

∂ny

¶
dσ −

Z
Ω

φ(x− y)4u(y)dy.

(43.8)

Proof. Let ψ(y) := φ(x − y) and � > 0 be small so that Bx(�) ⊂ Ω and
let Ω� := Ω \Bx(�), see Figure 43.1 below.
Let us begin by observingZ

|x−y|≤�

ψ(y) dy =

Z
|y|≤�

1

|y|n−2 dy = σ(Sn−1)
Z �

0

1

rn−2
rn−1 dr

= σ(Sn−1)
Z �

0

r dr = σ(Sn−1)
�2

2

when n 6= 2 and for n = 2 that
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Fig. 43.1. Removing the region where ψ is singular from Ω.

Z
|x−y|≤�

ψ(y) dy =

Z
|y|≤�

ln |y| dy = σ(S1)

Z �

0

r ln r dr

= 2π

·
1

2
r2 ln r − 1

4
r2
¸�
0

= π�2 [ln �− 1/2] .

This shows ψ ∈ L1loc(Ω) and hence that ψ∆u ∈ L1(Ω) and by dominated
convergence theorem,Z

Ω

ψ(y) 4u(y) dy = lim
�↓0

Z
Ω�

ψ(y)4u(y) dy.

Using Green’s identity (Eq. (43.2) and Proposition 43.2) and ∆ψ = 0 on Ω�,
we find Z

Ω�

4u(y)ψ(y) dy =

Z
Ω�

4ψ(y)u(y) dy +

Z
∂Ω�

µ
ψ
∂u

∂n
− ∂ψ

∂n
u

¶
dσ

=

Z
∂Ω

µ
ψ
∂u

∂n
− ∂ψ

∂n
u

¶
dσ

+

Z
∂Ω�\∂Ω

µ
ψ
∂u

∂n
− ∂ψ

∂n
u

¶
dσ. (43.9)

Working on the last term in Eq. (43.9) we have, for n 6= 2,
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∂B(x,�)

ψ(y)
∂u

∂n
(y) =

Z
|y|=�

ψ(x+ ω)
∂u

∂n
(x+ ω)dσ(ω)

=

Z
|ω|=1

ψ(x+ �ω)
∂u

∂n
(x+ �ω)�n−1dσ(ω)

=

Z
|ω|=1

1

�n−2
∂u

∂n
(x+ �ω)�n−1dσ(ω)

= �

Z
|ω|

∂u

∂n
(x+ �ω)dσ(ω)→ 0 as � ↓ 0.

Similarly when n = 2,Z
∂B(x,�)

ψ(y)
∂u

∂n
(y) = � ln �

Z
|ω|=1

∂u

∂n
(x+ �ω)dσ(ω)→ 0 as � ↓ 0.

Using Eq. (43.7) and n(y) = −\(y − x) as in Figure 43.2 we find

Fig. 43.2. The outward normal to Ω� is the inward normal to B(x, �).

∂ψ

∂n
(y) = ∇yφ(y − x) · n(y) = − 1

σ(Sn−1)
1

|y − x|n (y − x) ·
³
−\(y − x)

´
=

1

σ(Sn−1)
1

�n−1
(43.10)

and therefore

−
Z

∂Ω�\∂Ω

u
∂ψ

∂n
dσ(y) = − 1

σ(Sn−1)
1

�n−1

Z
∂B(x,�)

u(y)dσ(y)

= −
Z
−

|ω|=1

u(x+ �ω)dσ(ω)→ −u(x) as � ↓ 0
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by the dominated convergence theorem. So we may pass to the limit in Eq.
(43.9) to findZ

Ω

ψ(y) 4u(y)dy =

Z
∂Ω

µ
ψ(y)

∂u

∂n
− u

∂ψ

∂n

¶
dσ(y)− u(x)

which is equivalent to Eq. (43.8).
The following Corollary gives an easy but useful extension of Theorem

43.5It will be us

Corollary 43.6. Keeping the same notation as in Theorem 43.5. Further as-
sume that h ∈ C2(Ωo)∩C1(Ω) and ∆h = 0 and set G(y) := φ(x− y) + h(y).
Then we still have the representation formula

u(x) =

Z
∂Ω

µ
G(y)

∂u

∂n
(y)− u(y)

∂G(y)

∂n

¶
dσ −

Z
Ω

G(y)4u(y)dy. (43.11)

Proof. By Green’s identity (Proposition 22.30) with v = h,Z
Ω

4u hdm =

Z
Ω

(4uh−4h u)dm =

Z
∂Ω

µ
h
∂u

∂n
− ∂h

∂n
u

¶
dσ,

i.e.

0 = −
Z
Ω

4u h dm+

Z
∂Ω

µ
h
∂u

∂n
− ∂h

∂n
u

¶
dσ. (43.12)

Eq. (43.11) now follows by adding Eqs. (43.8) and (43.12).

Corollary 43.7. For all u ∈ C2c (Rn),

−
Z
Rn
4u(y)φ(y)dy = u(0). (43.13)

Proof. Let Ω = B(0, R) where R is chosen so large that supp(g) ⊂ Ω,
then by Theorem 43.5,

u(0) =

Z
∂Ω

µ
φ(y)

∂u

∂v
(y)− u(y)

∂φ(y)

∂vy

¶
dσ −

Z
Ω

φ(y)4u(y)dy

= −
Z
Ω

φ(y)4u(y)dy.

Remark 43.8.We summarize (43.13) by saying −4φ = δ.
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Formally we expect for reasonable functions ρ that

∆(φ ∗ ρ) = ∆φ ∗ ρ = −δ ∗ ρ = −ρ.

Theorem 43.9. Suppose Ω ⊂o Rn, ρ ∈ C2(Ω) ∩ L1(Ω) and

u(x) :=

Z
Ω

φ(x− y)ρ(y)dy = (φ ∗ 1Ωρ) (x),

then
−4u = ρ on Ω.

Proof. First assume that ρ ∈ C2c (Ω) in which case we may set ρ := 1Ωρ ∈
C2c (Rn). Therefore

u(x) =

Z
Rn

ρ(y)
1

|x− y|n−2 dy =
Z
Rn

ρ(x− y)
1

|y|n−2 dy

and so we may differentiate under the integral to find

4u(x) =

Z
Rn

4xρ(x− y)
1

|y|n−2 dy = −ρ(x)

where the last equality follows from Corollary 43.7.
For ρ ∈ C2(Ω)∩L1(Ω) and x0 ∈ Ω, choose α ∈ C∞c (Ω, [0, 1]) such that α =

1 in a neighborhood of x0 and let β := 1−α. Then u = (φ ∗ αρ)+ (φ ∗ β1Ωρ)
and so

∆u = ∆ (φ ∗ αρ) +∆ (φ ∗ β1Ωρ) . (43.14)

By what we have just proved

∆ (φ ∗ αρ) (x) = − (αρ) (x) = −ρ(x) for x near x0. (43.15)

Since β = 0 near x0 and

(φ ∗ β1Ωρ) (x) =
Z
Ω

φ(x− y)β(y)ρ(y)dy,

we may differentiate past the integral to learn

∆ (φ ∗ β1Ωρ) (x) =
Z
Ω

∆xφ(x− y)β(y)ρ(y)dy = 0 (43.16)

for x near x0. and this completes the proof. The combination of Eqs. (43.14
— 43.16) completes the proof.
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43.1 Harmonic and Subharmonic Functions

Definition 43.10 (HarmonicFunctions). Let Ω ⊂o Rn. A function u ∈
C2(Ω) is said to be harmonic (subharmonic) on Ω if ∆u = 0 (∆u ≥ 0)
on Ω.

Because of the Cauchy Riemann equations, the real and imaginary parts
of holomorphic functions are harmonic. For example z2 = (x2 − y2) + 2ixy
implies (x2 − y2) and xy are harmonic functions on the plane. Similarly,

ez = ex cos y + iex sin y and

ln(z) = ln r + iθ

implies
ex cos y, ex sin y, ln r, and θ(x, y)

are harmonic functions on their domains of definition.

Remark 43.11. If we can choose h in Corollary 43.6 so that G = 0 on ∂Ω,
then Eq. (43.11) gives

u(x) = −
Z
Ω

G(y)4u(y)dy −
Z
∂Ω

u
∂G(y)

∂v
dσ (43.17)

which shows how to recover u(x) from ∆u on Ω and u on ∂Ω. The next
theorem is a consequence of this remark.

Theorem 43.12 (Mean Value Property). If 4u = 0 on Ω and B(x, r) ⊂
Ω then

u(x) =
1

σ(∂B(x, r))

Z
∂B(x,r)

u(y) dσ(y) =:

Z
−

∂B(x,r)

u dσ (43.18)

More generally if ∆u ≥ 0 on Ω, then

u(x) ≤
Z
−

∂B(x,r)

u dσ (43.19)

Proof. For y ∈ B(x, r),

G(y) = φ(x− y)− α(r) = α (|x− y|)− α(r)

where α is defined as in Eq. (43.4). Then G(y) = 0 for y ∈ ∂B(x, r) and
G(y) > 0 for all y ∈ B(x, r) because α is decreasing as is seen from Eq. (43.6).
From Eq. (43.10) (using now that n is the outward normal to B(x, r)),

∂G

∂n
(x+ rω) = − 1

σ(Sn−1)rn−1
for |ω| = 1
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and so according to Eq. (43.17) we have

u(x) =
1

rn−1σ(Sn−1)

Z
∂B(x,r)

udσ −
Z

B(x,r)

G(y)4u(y)dy

=

Z
−

∂B(x,r)

u dσ −
Z

B(x,r)

G(y)4u(y)dy. (43.20)

This completes the proof since G(y) > 0 for all y ∈ B(x, r).

Remark 43.13 (Mean value theorem). Assuming B(x,R) ⊂ Ω and multiplying
Eq. (43.18) (Eq. (43.19)) by

σ(∂B(x, r)) = σ(Sn−1)rn−1

and then integrating on 0 ≤ r ≤ R, implies

u(x)m(B(x,R)) = (or ≤)
Z R

0

dr

Z
∂B(x,r)

u(y) dσ(y)

=

Z R

0

dr rn−1
Z

Sn−1

u(x+ rω) dσ(ω) =

Z
B(x,R)

udm.

Therefore if ∆u = 0 or ∆u ≥ 0 then

u(x) =

Z
−

B(x,R)

udm or u(x) ≤
Z
−

B(x,R)

udm respectively (43.21)

for all B(x,R) ⊂ Ω.

Proposition 43.14 (Converse of the mean value property). If u ∈
C(Ω) (or more generally measurable and locally bounded) and

u(x) =

Z
−

∂B(x,r)

u(y)dσ(y) (43.22)

for all x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω, then u ∈ C∞(Ω) and 4u = 0.
Similarly, if u ∈ C2(Ω) and x ∈ Ω and

u(x) ≤
Z
−

∂B(x,r)

u(y)dσ(y) (43.23)

for all r sufficiently small, then ∆u(x) ≥ 0.
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Proof. First assume u ∈ C(Ω) and Eq. (43.22) hold which implies

u(x) =

Z
−
S

u(x+ rω)dσ(ω) (43.24)

for all x ∈ Ω and r sufficiently small, where S = Sn−1 denotes the unit sphere
in Rn. Let η ∈ C∞c (Rn, [0,∞)) such that η(0) > 0 and

1 =

Z
Rn

η(|x|2)dx = σ(S)

Z ∞
0

η(r2)rn−1dr

and for � > 0 let η�(x) = �−nη
³
|x|2
�2

´
∈ C∞c (Rn) and u�(x) = η� ∗ u(x).

Then for any x0 ∈ Ω and � > 0 sufficiently small, u� is a well defined smooth
function near x0. Moreover for x near x0 we have

u�(x) =

Z
Rn

η�(x− y)u(y)dy =

Z ∞
0

dr rn−1
Z

|ω|=1

η�(rω)u(x+ rω)dσ(ω)

=

Z ∞
0

drrn−1
Z

|ω|=1

�−nη
µ
r2

�2

¶
u(x+ rω)dσ(ω)

= u(x)σ(S)

Z ∞
0

dr rn−1�−nη
µ
r2

�2

¶
= u(x)

which shows u is smooth near x0.
Now suppose that u ∈ C2, and u satisfies Eq. (43.23), x ∈ Ω and |r| < �

with � sufficiently small so that

f(r) :=

Z
−

∂B(x,r)

u dσ =

Z
−

Sn−1

u(x+ rω)dσ(ω)

is well defined. Clearly f ∈ C2 (−�, �) , f is an even function of r so f 0(0) = 0,
f(0) = u(x) and f(r) ≥ f(0). From these conditions it follows that f 00(0) ≥ 0
for otherwise we would find from Taylor’s theorem that f(r) < f(0) for 0 <
|r| < �. On the other hand

0 ≤ f 00(0) =
Z
−

Sn−1

¡
∂2ωu

¢
(x)dσ(ω)

=

Z
−

Sn−1

(∂i∂ju) (x)ωiωjdσ(ω)

= (∂i∂ju) (x)δij

Z
−

Sn−1

ω2i dσ(ω) =
1

n
∆u(x). (43.25)
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wherein we have used the symmetry of dσ on Sn−1 to concludeZ
−

Sn−1

ωiωjdσ(ω) = 0 if i 6= j

and Z
−

Sn−1

ω2i dσ(ω) =
1

n

nX
j=1

Z
−

Sn−1

ω2jdσ(ω)

=
1

n

Z
−

Sn−1

|ω|2 dσ(ω) = 1

n
∀ i.

Alternatively, by the divergence theorem,Z
−

Sn−1

ωiωjdσ(ω) =

Z
−

Sn−1

ωiej · n(ω)dσ(ω)

=
1

σ(Sn−1)

Z
B(0,1)

∇ · (xiej) dm

=
1

σ(Sn−1)
m(B(0, 1))δij =

1

n
δij .

This completes the proof since if u satisfies (43.22) then f is constant and it
follows from Eq. (43.25) that ∆u(x) = 0.
Second proof of the last statement. Now that we know u is C2 we

have by Eq. (43.20) thatZ
B(x,r)

G(y)4u(y)dy =

Z
−

∂B(x,r)

u dσ − u(x) ≥ 0

and since with α as in Eq. (43.4),Z
B(x,r)

G(y)4u(y)dy =

Z
B(0,r)

G(x+ y)4u(x+ y)dy

=

Z r

0

ρn−1dρ
Z
Sn

dωG(x+ ρω)4u(x+ ρω)

=

Z r

0

ρn−1dρ (α(ρ)− α(r))

Z
Sn

dω4u(x+ ρω)

∼= ∆u(x)σ(Sn−1)
Z r

0

ρn−1dρ (α(ρ)− α(r))

= ∆u(x)σ(Sn−1)cn

½
r2

2
− rn

nrn−2

¾
= bnr

2∆u(x)
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where bn is a positive constant. From this it follows that ∆u(x) ≥ 0.
Third proof of the last statement. If u ∈ C2(Ω) satisfies expand

u(x+ rω) in a Taylor series

u(x+ rω) = u(x) + r∇u(x) · ω + r2

2
∂2ωu(x) + o(r3),

and integrate on ω to findZ
−

∂B(x,r)

udσ =

Z
−

Sn−1

u(x+ rω)dσ(ω)

=

Z
−

Sn−1

·
u(x) + r∇u(x) · ω + r2

1

2
∂2ωu(x) + . . .

¸
dσ(ω)

= u(x) +
1

2
r2∆u(x) + o(r2).

Thus if u satisfies Eq. (43.22) Eq. (43.23) we conclude

u(x) = u(x) +
1

2
r2∆u(x) + o(r2) or

u(x) ≤ u(x) +
1

2
r2∆u(x) + o(r2)

from which we conclude ∆u(x) = 0 or ∆u(x) ≥ 0 respectively.
Fourth proof of the statement: If u satisfies Eq. (43.22) then ∆u = 0.

Since we already know u is smooth, it is permissible to differentiate Eq. (43.24)
in r to learn,

0 =

Z
−

Sn−1

∇u(x+ rω) · ω dσ(ω) =

Z
−

Sn−1

∂u

∂n
(x+ rω) dσ(ω)

=
1

σ(Sn−1)rn−1

Z
∂B(x,r)

∇u · n dσ =
1

σ(Sn−1)rn−1

Z
B(x,r)

4u dm.

Dividing this equation by r and letting r ↓ 0 shows ∆u(x) = 0.

Corollary 43.15 (Smoothness of Harmonic Functions). If u ∈ C2(Ω)
and 4u = 0 then u ∈ C∞(Ω). (Soon we will show u is real analytic, see
Theorem 43.16 of Corollary 43.34 below.)

Theorem 43.16 (Bounds on Harmonic functions). Suppose u is a Har-
monic function on Ω ⊂ Rn, x0 ∈ Ω, α is a multi-index with k := |α| and
0 < r < dist(xo, ∂Ω). Then

|Dαu(x0)| ≤ Ck

rn+k
kukL1(B(x0,r)) ≤

Ck

dist(xo, ∂Ω)n+k
kukL1(Ω) (43.26)

where Ck =
(2n+1n k)k

α(n) . In particular one shows that u is real analytic in Ω.
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Proof. Let η�(x) be constructed as in the proof of Proposition 43.14 so
that u(x) = u ∗ η�(x). Therefore, Dαu(x) = u∗Dαη�(x) and hence

|Dαu(x0)| ≤ kukL1(B(x0,�))kDαη�kL∞ .

Now
Dαη�(x) = �−n

1

�|α|
(Dαη)(

x

�
)

so that

|Dαη�(x)| = �−n
1

�|α|

¯̄̄
(Dαη)(

x

�
)
¯̄̄
≤ Cα

1

�|α|+n
∼= Cα

1

r|α|+n

where the last identity is gotten by taking � comparable to r. Putting this all
together then implies that

|Dαu(x0)| ≤ 1

rn+|α|
kDαηkL∞kukL1(B(x0,r))

which is an inequality of the form in Eq. (43.26). To get the desired constant
we will have to work harder. This is done in Theorem 7. on p. 29 of the book.
The idea is to use Dαu is harmonic for all α and therefore,

Dαu(x0) =

Z
−

B(x0,ρ)

Dαudm =

Z
−

B(x0,ρ)

∂iD
βudm

=
n

σ(Sn−1)ρn

Z
B(x0,ρ)

∂iD
βudm

=
n

σ(Sn−1)ρn

Z
∂B(x0,ρ)

Dβunidσ

so that
|Dαu(x0)| ≤ n

ρ

°°Dβu
°°
L∞(B(x0,ρ))

and for α = 0 and x ∈ B(x0, r/2) we have

|u(x)| ≤
Z
−

B(x,r/2)

|u| dm ≤ 1

|B(0, 1)|
µ
2

r

¶n
kukL1(B(x0,r) .

Using this and similar inequalities along with a tricky induction argument one
gets the desired constants. The details are in Theorem 7. p. 29 and Theorem
10 p.31 of the book. (See also Corollary 43.34 below for another proof of
analyticity of u.)

Corollary 43.17 (Liouville’s Theorem). Suppose u ∈ C2 (Rn) , ∆u = 0
on Rn and |u(x)| ≤ C(1 + |x|N ) for all x ∈ Rn. Then u is a polynomial of
degree at most N.
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Proof. We have seen there are constants C|α| <∞ such that

|Dαu(x0)| ≤ C|α|kukL1(B(x0,r))
1

rn+|α|

≤ eC|α|rnkukL∞(B(x0,r)) · 1

rn+|α|

∼= C
(1 + rN )

r|α|
→ 0 as r→∞

when if |α| > N. Therefore Dαu := 0 for all |α| > N and the the result follows
by Taylor’s Theorem with remainder,

u(x) =
X
|α|≤N

Dαu(x0)(x− x0)
α

α!
.

Corollary 43.18 (Compactness of Harmonic Functions). Suppose Ω ⊂o
Rn and un ∈ C2(Ω) is a sequence of harmonic functions such that for each
compact set K ⊂ Ω,

CK := sup

½Z
K

|un| dm : n ∈ N
¾
<∞.

Then there is a subsequence {vn} ⊂ {un} which converges, along with all of
its derivatives, uniformly on compact subsets of Ω to a harmonic function u.

Proof. An application of Theorem 43.16 shows that for each compact set
K ⊂ Ω, supn |∇un|L∞(K) <∞ and hence by the locally compact form of the
Arzela-Ascolli theorem, there is a subsequence {vn} ⊂ {un} which converges
uniformly on compact subsets ofΩ to a continuous function u ∈ C(Ω). Passing
to the limit in the mean value theorem for harmonic functions along with the
converse to the mean value theorem, Proposition 43.14, shows u is harmonic
on Ω. Since vm → u uniformly on compacts it follows for any K @@ Ω
that

R
K
|u− vn| dm → 0. Another application of Theorem 43.16 then shows

Dαvn → Dαu uniformly on compacts.
In light of Proposition 43.14, we will extend the notion of subharmonicity

as follows.

Definition 43.19 (Subharmonic Functions). A function u ∈ C(Ω) is said
to be subharmonic if for all x ∈ Ω and all r > 0 sufficiently small,

u(x) ≤
Z
−

∂B(x,r)

u dσ.

The reason for the name subharmonic should become apparent from Corollary
43.26 below.
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Remark 43.20. Suppose that u, v ∈ C(Ω) are subharmonic functions then so
is u+ v. Indeed,

u(x) + v(x) ≤
Z
−

∂B(x,r)

u dσ +

Z
−

∂B(x,r)

v dσ =

Z
−

∂B(x,r)

(u+ v) dσ.

Theorem 43.21 (Harnack’s Inequality). Let V be a precompact open and
connected subset of Ω. Then there exists C = C(V,Ω) such that

sup
V

u ≤ C inf
V

u (43.27)

for all non-negative harmonic functions, u, on Ω.

Proof. Let r = 1
4dist(V,Ω

c) and x ∈ V (as in Figure 43.3) and |y − x| ≤ r,

Fig. 43.3. A pre-compact region V ⊂ Ω.

then by the mean value equality in Eq. (43.21) of Remark 43.13,

u(x) =

Z
−

B(x,2r)

u(z)dz =
1

m(B(0, 1))(2r)n

Z
B(x,2r)

u(z)dz

≥ 1

m(B(0, 1))(2r)n

Z
B(y,r)

u(z)dz =
1

2n

Z
−

B(y,r)

u(z)dz =
1

2n
u(y),

see Figure 43.4. Therefore

u(x) ≥ 1

2n
u(y) for all x, y ∈ V with |x− y| ≤ r. (43.28)

Since V̄ is compact there exists a finite cover S := {Wi}Mi=1 of V̄ consisting of
balls with of radius r with centers xi ∈ V̄ .
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Fig. 43.4. Nested balls.

Claim: For all x, y ∈ V, there exists a chain {Bi}ki=1 ⊂ S of distinct balls
such that x ∈ B1, y ∈ Bk and Bi ∩Bi+1 6= φ for all i = 1, . . . , k − 1.
Indeed, by connectedness of V there exists γ ∈ C ([0, 1], V ) such that

γ(0) = x while γ(1) = y. For sake of contradiction, suppose

T := sup {t ∈ [0, 1] : ∃ a chain as above 3 γ(t) ∈ Bk} < 1.

Since there are only finitely many possible chains (at most
PM

k=1
M !

(M−k)! ) there

must be a chain {Bi}ki=1 ⊂ S such that γ(T ) ∈ B̄k. Let Bk+1 ∈ S such that
Bk+1 3 γ(T ). If Bk+1 = Bj with j ≤ k, then {Bi}ji=1 ⊂ S is a chain such that
γ(T ) ∈ Bj . Otherwise, since γ(T ) ∈ Bk+1 ∩ B̄k, it follows that Bk+1 ∩Bk 6= ∅
and {Bi}k+1i=1 ⊂ S is a chain such that γ(T ) ∈ Bk+1. In either case we will
have violated the definition of T and hence we must conclude T = 1. This
proves the claim, since again using the fact that there are only a finite number
of possible chains, there must be at least one chain for which γ(1) ∈ Bk.
To complete the proof, for any x, y ∈ V use a chain as in the above claim

to find a sequence of points {xj}Nj=1 ⊂ V with N ≤ 2M, x1 = x, xN = y and
|xi+1 − xi| < r for all i. Then by repeated use of Eq. (43.28) we may conclude

u(y) ≤ (2n)2M u(x).

Since x, y ∈ V are arbitrary, this equation implies Eq. (43.27) with C := 24M .

Remark 43.22. It is not sufficient to assume u is sub-harmonic in Theorem
43.21. For example if M > 0, then u(x) = Mx2 + 1 is sub-harmonic on R,
inf(−1,1) u = 1 while sup(−1,1) u = M + 1. Since M is arbitrary, this would
force C =∞.
Also it is important that Ω is connected. Indeed, if Ω = Ω1 ∪Ω2 with Ω1

and Ω2 being disjoint open sets, then let u ≡ 1 on Ω1 and u ≡ M on Ω2 for
any M > 0. This function is harmonic on Ω and hence C ≥M for all M > 0,
i.e. C =∞.
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Theorem 43.23 (Strong Maximum Principle). Let Ω ⊂ Rn be connected
and open and u ∈ C(Ω) be a subharmonic function (see Definition 43.19). If
M = sup

x∈Ω
u(x) is attained in Ω then u := M. (Notice that u ∈ C2(Ω) and

∆u = 0, then u is harmonic and hence in particular sub-harmonic.)

Proof. Suppose there exists x ∈ Ω such that M = u(x). If � > 0 is chosen
so that B(x, �) ⊂ Ω as in Figure 43.1 and u(y) < M for some y ∈ ∂B(x, �),
then by the mean value inequality,

M = u(x) ≤
Z
−

∂B(x,�)

u(y)dσ(y) < M

which is nonsense. Therefore u :=M on ∂B(x, �) and since � ∈ (0,dist(x, ∂Ω))
we concluded that u := M on B(x,R) provided B(x,R) ⊂ Ω. Therefore
{x ∈ Ω : u(x) = M} is both open and relatively closed in Ω and hence
{x ∈ Ω : u(x) =M} = Ω because Ω is connected.

Corollary 43.24. If Ω is bounded open set u ∈ C(Ω) is subharmonic, then

M := max
x∈Ω

u(x) = max
x∈bd(Ω)

u(x).

Again this corollary applies to u ∈ C(Ω) ∩ C2(Ω) such that ∆u = 0.

Proof. By Theorem 43.23, if x ∈ Ω is an interior maximum of u, then
u =M on the connected component Ωx of Ω which contains x. By continuity,
u is constant on Ω̄x and in particular u takes on the value M on bd(Ω).

Corollary 43.25. Given g ∈ C(bd(Ω)), f ∈ C(Ω) there exists at most one
function u ∈ C2(Ω) ∩ C(Ω) such that 4u = f on Ω and u = g on bd(Ω).

Proof. If v ∈ C2(Ω) ∩ C(Ω) is another such function then w := u− v ∈
C2(Ω)∩C(Ω) satisfies ∆w = 0 in Ω and w = 0 on bd(Ω). Therefore applying
Corollary 43.24 to w and −w implies

max
x∈Ω

w(x) = max
x∈bd(Ω)

w(x) = 0 and min
x∈Ω

w(x) = min
x∈bd(Ω)

w(x) = 0.

Corollary 43.26. Suppose g ∈ C(bd(Ω)) and u ∈ C2(Ω) ∩ C(Ω) such that
4u = 0 on Ω. Then w ≤ u for any subharmonic function w ∈ C(Ω̄) such
that w ≤ g on bd(Ω).

Proof. The function −u is subharmonic and so is v = w − u by Remark
43.20. Since v = w− g ≤ 0 on bd(Ω), it follows by Corollary 43.24 that v ≤ 0
on Ω, i.e. w ≤ g on Ω.
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43.2 Green’s Functions

Notation 43.27 Unless otherwise stated, for the rest of this section assume
Ω ⊂ Rn is a compact manifold with C2 — boundary.

For x ∈ Ω, suppose there exists h ∈ C2(Ωo) ∩ C1(Ω) which solves
4hx = 0 on Ω with hx(y) = φ(x− y) for y ∈ ∂Ω. (43.29)

Hence if we define
G(x, y) = φx(y)− hx(y) (43.30)

then by the representation formula (Eq. (43.11) also see Remark 43.11) implies

u(x) = −
Z
Ω

G(x, y)4u(y) dy −
Z
∂Ω

∂G

∂ny
(x, y) u(y) dσ(y) (43.31)

for all u ∈ C2(Ωo) ∩ C1(Ω).
Throughout the rest of this subsection we will make the following assump-

tion.

Assumption 2 (Solvability of Dirichlet Problem) We assume that for
each g ∈ C(∂Ω) there exists h = hg ∈ C2(Ωo) ∩ C1(Ω) such that

∆h = 0 on Ω with h = g on ∂Ω.

In this case we define G(x, y) as in Eq. (43.30). We will (almost) verify that
this assumption holds in Section 43.5 below. The full verification will come
later when we study Hilbert space methods.

Theorem 43.28. Let G(x, y) be given as in Eq (43.30). Then

1. G(x, y) is smooth on (Ωo ×Ωo)\4 where 4 = {(x, x) : x ∈ Ωo}.
2. G(x, y) = G(y, x) for all x, y ∈ Ω. In particular the function h(x, y) :=

hx(y) is symmetric in x, y and x ∈ Ωo → hx ∈ C(Ω) is a smooth mapping.
3. If Ω is connected, then G(x, y) > 0 for all (x, y) ∈ (Ωo ×Ωo)\4.

Proof. Let � > 0 be small and Ω� := Ω \ (B(x, �) ∪B(z, �)) as in Figure
43.5, then by Green’s theorem and the fact that ∆yG(x, y) = 0 if y 6= x,

0 =

Z
Ω�

4yG(x, y)G(z, y)dy

=

Z
∂Ω�

µ
∂

∂n
G(x, y)G(z, y)−G(x, y)

∂G

∂n
(z, y)

¶
dσ

+

Z
Ω�

G(x, y)4yG(z, y)dy

=

Z
∂Ω�

µ
∂

∂n
G(x, y)G(z, y)−G(x, y)

∂G

∂n
(z, y)

¶
dσ
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Fig. 43.5. Excising the singular region from Ω.

Since G(x, y) and G(z, y) = 0 for y ∈ ∂Ω, the previous equation implies,Z
∂(B(x,�)∪B(z,�)).

½
∂

∂ny
G(x, y)G(z, y)−G(z, y)

∂

∂ny
G(z, y)

¾
dσ = 0.

We now let � ↓ 0 in the above equations to find

lim
�↓0

Z
∂(B(x,�))

∂φ(x− y)

∂ny
G(z, y)dσ(y) = lim

�↓0

Z
∂B(z,�)

G(x, y)
∂

∂ny
φ(z − y) dσ.

(43.32)
Moreover as we have seen above,

lim
�↓0

Z
∂B(z,�)

G(x, y)
∂

∂ny
φ(z − y) dσ = G(x, z) and

lim
�↓0

Z
∂(B(x,�))

∂φ(x− y)

∂ny
G(z, y)dσ(y) = G(z, x)

and hence G(x, z) = G(z, x). Since G(x, y) = φ(x− y)−hx(y) and φ(x− y) =
φ(y − x) it follows that hx(y) = hy(x) =: h(x, y). Therefore y → hx(y) and
x → hx(y) are smooth functions. Now by the maximum principle (Theorem
43.23):

|hx(y)− hz(y)| ≤ max
y∈∂Ω

|hx(y)− hz(y)|
= max

y∈∂Ω
|φ(x− y)− φ(z − y)|→ 0 as x→ z.

Therefore the map x ∈ Ω → hx ∈ C(Ω) is continuous and in particular the
map (x, y) → h(x, y) is jointly continuous. Letting η be as in the proof of
Proposition 43.14, we find
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h(x, y) =

Z
Ω

h(ex, y)η(x− ex)dex
=

Z
Ω×Ω

h(ex, ey) η(y − ey) η(x− ex) dex dey
from which it follows that in fact h is smooth on Ω ×Ω.
It only remains to show x→ hx ∈ C(Ω) is smooth as well. Fix x ∈ Ω and

for v ∈ Rn, let Hv ∈ C2(Ωo) ∩ C1(Ω) denote the solution to
∆Hv = 0 on Ω with Hv(y) = v ·∇φ(x− y) for y ∈ ∂Ω.

Notice that v → Hv is linear and by the maximum principle,

khx+v − hx −HvkL∞(Ω) ≤ khx+v − hx −HvkL∞(∂Ω)
= kφ(x+ v − ·)− φ(x− ·)− v ·∇φ(x− ·)kL∞(∂Ω) .

Now,

φ(x+ v − y)− φ(x− y)− v ·∇φ(x− y)

=

Z 1

0

[∇φ(x+ tv − y)−∇φ(x− y)] · vdt

so that, by the dominated convergence theorem,

||φ(x+ v − ·)− φ(x− ·)− v ·∇φ(x− ·)||L∞(∂Ω)
≤ |v|

Z 1

0

k∇φ(x+ tv − ·)−∇φ(x− ·)kL∞(∂Ω) dt = o (|v|) .

This proves x→ hx is differentiable and that ∂vhx = Hv. Similarly one shows
that x→ hx has higher derivatives as well.
For the last item, let x ∈ Ωo and choose � > 0 sufficiently small so that

B(x, �) ⊂ Ωo \ {y} and G(x, z) > 0 for all z ∈ B(x, �). Then the function
u(y) := G(x, y) is Harmonic on Ω0 \B(x, �), u ∈ C(Ω \B(x, �)), u = 0 on ∂Ω
and u > 0 on ∂B(x, �). Hence by the maximum principle, 0 ≤ u on Ω \B(x, �)
and since u is not constant we must also have u > 0 on Ω0\B(x, �). Since � > 0
was any sufficiently small number, it follows G(x, y) > 0 for all y ∈ Ωo \ {x} .

Corollary 43.29. Keeping the above hypothesis and assuming ρ ∈ C2(Ωo) ∩
L1(Ω) and g ∈ C(∂Ω), then there is (a necessarily unique) solution u ∈
C2(Ωo) ∩C(Ω) to

∆u = −ρ with u = g on ∂Ω (43.33)

which is given by Eq. (43.31).

Proof. According to the remarks just before Eq. (43.31), if a solution to
Eq. (43.33) exists it must be given by
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u(x) =

Z
Ω

G(x, y)ρ(y) dy −
Z
∂Ω

∂G

∂ny
(x, y) g(y) dσ(y). (43.34)

From Assumption 2, there exists a solution v ∈ C2(Ω) ∩ C1(Ω̄) such that
∆v = 0 and v = g on ∂Ω. So replacing u by u − v if necessary, it suffices to
prove there is a solution u ∈ C2(Ωo)∩C(Ω) such that Eq. (43.33) holds with
g ≡ 0. To produce this solution, let

u(x) :=

Z
Ω

G(x, y)ρ(y) dy =

Z
Ω

φ(x− y)ρ(y) dy −H(x)

where

H(x) :=

Z
Ω

h(x, y)ρ(y)dy.

Using the result in Theorem 43.28, one easily shows H ∈ C∞(Ωo)∩C1(Ω)and
∆H = 0. By Theorem 43.9,

∆x

Z
Ω

φ(x− y)ρ(y) dy = −ρ(x) for x ∈ Ω

and therefore u ∈ C2(Ω) and ∆u = −ρ.
Remark 43.30. Because of the maximum principle, for any x ∈ Ω the map
g ∈ C(∂Ω) → hg(x) ∈ C(Ω̄) is a positive linear functional. So by the Riesz
representation theorem, there exists a unique positive probability measure σx
on ∂Ω such that

hg(x) =

Z
∂Ω

g(y)dσx(y) for all g ∈ C(∂Ω).

Evidently this measure is given by

dσx(y) = − ∂G

∂ny
(x, y)dσ(y)

and in particular − ∂G
∂ny

(x, y) ≥ 0 for all x ∈ Ω and y ∈ ∂Ω. It is in fact easy

to see that − ∂G
∂ny

(x, y) > 0 for all x ∈ Ω and y ∈ ∂Ω.

43.3 Explicit Green’s Functions and Poisson Kernels

In this section we will use the method of images to construct explicit formula
for the Green’s functions and Poisson Kernels for the half plane1, H̄n = {x ∈
1 We will do this again later using the Fourier transform.
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Rn : xn ≥ 0}and Balls B(0, a). For x = (x0, z) ∈ Rn−1 × (0,∞) = Hn let
Rx := (x0,−z). It is simple to verify |x− y| = |Rx− y| for all x ∈ Hn and
y ∈ ∂H̄n. Form this and the properties of φ, one concluded, for x ∈ Hn, that
hx(y) := φ(y − Rx) is Harmonic in y ∈ Hn and hx(y) = φ(x − y) for all
y ∈ ∂H̄n. These remarks give rise to the following theorem.

Theorem 43.31. For x, y ∈ H̄n, let

G(x, y) := φ(y − x)− φ(y −Rx) = φ(y − x)− φ(Ry − x).

Then G is the Greens function for ∆ on Hn and

K(x, y) := −∂G
∂n
(x, y) =

2xn
σ(Sn−1)

1

|x− y|n for x ∈ H
n and y ∈ ∂H̄n

is the Poisson kernel for Hn. Furthermore if ρ ∈ C2(Hn) ∩ L1(Hn) and f ∈
BC

¡
∂H̄n

¢
, then

u(x) =

Z
Hn

G(x, y)ρ(y)dy +

Z
∂H̄n

K(x, y)f(y)dσ(y)

solves the equation

∆u = −ρ on Hn with u = f on ∂H̄n.

Proof. First notice that

G(y, x) = φ(x− y)− φ(x−Ry) = φ(x− y)− φ(Rx−RRy) = G(x, y)

since φ is a function of |·| . Therefore, if

u(x) =

Z
Hn

G(x, y)ρ(y)dy =

Z
Hn

φ(x− y)ρ(y)dy −
Z
Hn

φ(x−Ry)ρ(y)dy,

we have from Theorem 43.9 that

∆u(x) = −ρ(x)−
Z
Hn

∆xφ(x−Ry)ρ(y)dy = −ρ(x).

Since G(x, y) = 0 for x ∈ ∂H̄n and so u(x) = 0 for x ∈ ∂H̄n. It is left to the
reader to show u is continuous on Hn.
For x ∈ Hn and y ∈ ∂H̄n, we find form Eq. (43.7),

K(x, y) := − ∂G

∂ny
(x, y) =

∂

∂yn
G(x, y)

=
∂

∂yn
[φ(y − x)− φ(y −Rx)]

= − 1

σ(Sn−1)
1

|y − x|n (y − x) · en

+
1

σ(Sn−1)
1

|y −Rx|n (y −Rx) · en

=
1

σ(Sn−1)
2xn

|y − x|n .
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Claim: For all x ∈ Hn, Z
∂H̄n

K(x, y)dy = 1.

It is possible to prove this by direct computation, since (writing x = (x0, xn)
as above)Z

∂H̄n
K(x, y)dy =

2

σ(Sn−1)

Z
Rn−1

xn

(|x0 − y|2 + x2n)
n/2

dy

=
2

σ(Sn−1)

Z
Rn−1

1

(|y|2 + 1)n/2
dy

=
2

σ(Sn−1)
σ(Sn−2)

Z ∞
0

rn−2
1

(r2 + 1)n/2
dr

where in the second equality we have made the change of variables y → xny
and in the last we passed to polar coordinates. When n = 2 we findZ ∞

0

rn−2
1

(r2 + 1)n/2
dr =

Z ∞
0

1

r2 + 1
dr = π/2

and for n = 3 we may let u = r2 to findZ ∞
0

rn−2
1

(r2 + 1)
n/2

dr =

Z ∞
0

r
1

(r2 + 1)
3/2

dr =
1

2

Z ∞
0

1

(u+ 1)
3/2

du = 1.

These results along withZ ∞
0

rn−2
1

(r2 + 1)n/2
dr =

Z ∞
0

¡
r2 + 1

¢−n/2
d
rn−1

n− 1

=
n/2

n− 1
Z ∞
0

¡
r2 + 1

¢−n/2−1
2r rn−1dr

=
n

n− 1
Z ∞
0

rn
1

(r2 + 1)
n+2
2

dr

allows one to compute
R∞
0

rn−2 1
(r2+1)n/2

dr inductively. I will not carry out
the details of this method here. Rather, it is more instructive to use Corollary
43.6 to prove the claim. In order to do this let u ∈ C∞c (B(0, 1), [0, 1]) such
that u(0) = 1, u(x) = U(|x|) and U(r) is decreasing as r decreases. Then by
Corollary 43.6, with u(x) = uM (x) := u(x/M),

uM (x) =

Z
∂H̄n

K(x, y)u(y/M)dσ(y)−M−2
Z
Hn

G(x, y) (4u) (y/M)dy. (43.35)

By the monotone convergence theorem,
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lim
M↑∞

Z
∂H̄n

K(x, y)u(y/M)dσ(y) =

Z
∂H̄n

K(x, y)dσ(y)

and therefore passing the limit in Eq. (43.35) gives

1 =

Z
∂H̄n

K(x, y)dσ(y)− lim
M↑∞

M−2 Z
Hn

G(x, y)4u(y/M)dy

 .
This latter limit is zero, since

M−2
Z
Hn

G(x, y)4u(y/M)dy

= cnM
−2
Z
Hn

"
1

|x− y|n−2 −
1

|Rx− y|n−2
#
(4u) (y/M)dy

= cnM
−2Mn

Z
Hn

"
1

|x−My|n−2 −
1

|Rx−My|n−2
#
4u(y)dy

= cn

Z
Hn

"
1

|x/M − y|n−2 −
1

|Rx/M − y|n−2
#
4u(y)dy.

This latter expression tends to zero and M → ∞ by the dominated conver-
gence and this proves the claim. (Alternatively, for y large,

1

|x− y|n−2 −
1

|Rx− y|n−2

=
1

|y|n−2

 1¯̄̄
x
|y| − ŷ

¯̄̄n−2 − 1¯̄̄
R x
|y| − ŷ

¯̄̄n−2


=
1

|y|n−2
·µ
1 + 2

x

|y| · ŷ + . . .

¶
−
µ
1 + 2

Rx

|y| · ŷ + . . .

¶¸
= O(

1

|y|n−1 )

and therefore

M−2
Z
Hn

"
1

|x− y|n−2 −
1

|Rx− y|n−2
#
(4u) (y/M)dy

= O

µ
M−2

1

Mn−1M
n

¶
= O (1/M)→ 0
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as M →∞.
Since G(x, y) is harmonic in x, it follows that K(x, y) = − ∂

∂ny
G(x, y) is

still Harmonic in x. and therefore

u(x) :=

Z
∂H̄n

K(x, y)f(y)dσ(y) =
2

σ(Sn−1)

Z
∂H̄n

xn
|x− y|n f(y)dσ(y)

is harmonic as well. Since

u(x) =
2

σ(Sn−1)

Z
∂H̄n

xn

(|x0 − y|2 + x2n)
n/2

f(y)dy (43.36)

=
2

σ(Sn−1)
1

xn−1n

Z
∂H̄n

1³
|x0−yxn

|2 + 1
´n/2 f(y)dy

it follows from Theorem 42.13 that u((x0, xn)) → f(x0) as xn ↓ 0 uniformly
for x0 in compact subsets of ∂H̄n.

43.4 Green’s function for Ball

Let r > 0 be fixed, we will construct the Green’s function for the ball B(0, r).
The idea for a given x ∈ B(0, r), we should find a mirror location, say ρx̂ and
a charge q so that

φ(x− y) = qφ (ρx̂− y) for all |y| = r.

Assuming for the moment that n ≥ 3 and writing q = β(2−n), this leads to
the equations

|x− y|2 = |βρx̂− βy|2 = β2 |ρx̂− y|2

or equivalently squaring out both sides and using |y| = r,

|x|2 − 2x · y + r2 = β2
¡
ρ2 − 2ρx̂ · y + r2

¢
.

Choosing y ⊥ x and y = rx̂ leads to the conditions

|x|2 + r2 = β2
¡
ρ2 + r2

¢
and

|x|2 − 2r |x|+ r2 = β2
¡
ρ2 − 2ρr + r2

¢
.

Subtracting these two equations implies −2r |x| = −2ρβ2r or equivalently
that ρ = |x|/β2. Putting this into the first equation above then implies

|x|2 + r2 =
|x|2
β2

+ β2r2

or equivalently that
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0 = r2β4 −
³
|x|2 + r2

´
β2 + |x|2 .

By the quadratic formula, this implies

β2 =

³
|x|2 + r2

´
±
r³

|x|2 + r2
´2
− 4r2 |x|2

2r2

=

³
|x|2 + r2

´
±
r³

|x|2 − r2
´2

2r2
=

³
|x|2 + r2

´
±
³
r2 − |x|2

´
2r2

= 1 or
|x|2
r2

.

Clearly the charge β = 1 will not work so we must take β = |x| /r in which
case, ρ = r2/ |x| and hence

qφ (ρx̂− y) = (|x| /r)(2−n) φ
µ
r2

x̂

|x| − y

¶
= φ

µ
rx̂− |x|

r
y

¶
.

Let us now verify that our guess has worked. Let us begin by noting the
following identities for x, y ∈ Rn,¯̄

rx̂− r−1 |x| y¯̄2 = ³r2 − 2x · y + r−2 |x|2 |y|2
´

(43.37)

and in particular when |y| = r this implies

|x̂r − |x|ŷ|2 = ¡r2 − 2x · y + |x|2¢ = |x− y|2

so that

|x− y| = |x̂r − |x|ŷ| =
¯̄̄̄
x

|x|r − |x|
y

r

¯̄̄̄
. (43.38)

Now the function

hx(y) = φ

µ
rx̂− |x|

r
y

¶
= φ

µ |x|
r

µ
y − r2

x

|x|2
¶¶

is harmonic in y and by Eq. (43.38),

hx(y) = φ
³
x̂r − |x| y

r

´
= φ (x̂r − |x| ŷ) = φ(x− y) when |y| = r.

Hence we should define the Green’s function for the ball to be given by

G(x, y) = φ(x− y)− hx(y) = φ(x− y)− φ
³
x̂r − |x|y

r

´
= φ(x− y)− φ

¡
x̂r − r−1|x| |y| ŷ¢

= φ(x− y)− φ

µ |x|
r

µ
y − r2

x̂

|x|
¶¶

.
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From Eq. (43.37), it follows that hx(y) = hy(x) and therefore G(x, y) is again
symmetric under the interchange of x and y.
For y ∈ ∂B(0, r), using Eq. (43.7) we find

−K(x, y) = ∂G

∂ny
(x, y) = ∂byG(x, y) = ∇yG(x, y) · ŷ

= ∇y

·
φ(x− y)− φ

µ |x|
r

µ
y − r2

x̂

|x|
¶¶¸

· ŷ

= − 1

σ(Sn−1)

 1

|y − x|n (y − x)− |x|
r

1³
|x|
r

´n ¯̄̄
y − r2 x̂

|x|
¯̄̄n |x|r

µ
y − r2

x̂

|x|
¶ · ŷ

= − 1

σ(Sn−1)

 1

|y − x|n (y − x)− |x|
r

1¯̄̄
|x|
r y − rx̂

¯̄̄n µ |x|r y − rx̂

¶ · ŷ
= − 1

σ(Sn−1)

·
1

|y − x|n (y − x)− |x|
r

1

|x− y|n (|x|ŷ − rx̂)

¸
· ŷ

= − 1

σ(Sn−1) |y − x|n
·
(y − x)−

µ |x|2
r

ŷ − x

¶¸
· ŷ

= − 1

σ(Sn−1) |y − x|n
·
y − |x|

2

r
ŷ

¸
· ŷ

= − 1

σ(Sn−1)r |y − x|n
£
r2 − |x|2¤ .

These computations lead to the following theorem.

Theorem 43.32. For x, y ∈ B(0, r), let

G(x, y) := φ(x− y)− φ
³
x̂r − |x|y

r

´
and if y ∈ ∂B(0, r), let

K(x, y) := −∂G
∂n
(x, y) =

r2 − |x|2
σ(Sn−1)r

|x− y|−n .

Then ρ ∈ C2(B(0, r)) ∩ L1(B(0, r)) and f ∈ C
³
∂B(0, r)

´
, then

u(x) =

Z
B(0,r)

G(x, y)ρ(y)dy +

Z
∂B(0,r)

K(x, y)f(y)dσ(y) (43.39)

solves the equation

∆u = −ρ on B(0, r) with u = f on ∂B(0, r).
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Remark 43.33. Letting ρ = |x| , we may write K(x, y) as

K(x, y) =
r2 − ρ2

σ(Sn−1)r
1

(ρ2 + r2 − 2ρrx̂ · ŷ)n/2
. (43.40)

In particular when r = 1, n = 2, x = ρeiθ and y = reiα, this gives

K(x, y) =
1− ρ2

2π (ρ2 + 1− 2ρ cos (θ − α))

which agrees with the Poisson kernel Pρ(θ−α) of Eq. (22.40) which we derived
earlier by Fourier series methods.

Proof. The proof is essentially the same as Theorem 43.31 but a bit easier.
For these reasons, we will only prove here the assertion

lim
x→x0

Z
∂B(0,r)

K(x, y)f(y)dσ(y) = f(x0) for all x0 ∈ ∂B(0, r). (43.41)

From Theorem 43.5 with u = 1 it follows again thatZ
∂B(0,r)

K(x, y)dσ(y) = 1.

For any α ∈ (0, 1) let
�(α) := sup

©|f(ry)− f(rx)| : y, x ∈ Sn−1 with ŷ · x̂ ≤ α
ª
.

Then by uniform continuity of f on ∂B(0, r), it follows that �(α)→ 0 as α ↑ 1
and hence

|
Z
∂B(0,r)

K(x, y)f(y)dσ(y)− f(rx̂)|

≤
Z
∂B(0,r)

K(x, y) |f(y)− f(rx̂)| dσ(y)

=

Z
∂B(0,r)

1ŷ·x̂>αK(x, y) |f(y)− f(rx̂)| dσ(y)

+

Z
∂B(0,r)

1ŷ·x̂≤αK(x, y) |f(y)− f(rx̂)| dσ(y)

≤ 2 kfku
Z
∂B(0,r)

1ŷ·x̂>αK(x, y)dσ(y) + �(α)

≤ C(α) kfku
³
r2 − |x|2

´
+ �(α)

where C(α) is some constant only depending on α, see Eq. (43.40). Therefore,

sup
|x|=ρ

¯̄̄̄
¯
Z
∂B(0,r)

K(x, y)f(y)dσ(y)− f(rx̂)

¯̄̄̄
¯ ≤ C(α) kfku

¡
r2 − ρ2

¢
+ �(α)
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and hence

lim
ρ↑r
sup sup

|x|=ρ

¯̄̄̄
¯
Z
∂B(0,r)

K(x, y)f(y)dσ(y)− f(rx̂)

¯̄̄̄
¯ ≤ �(α)→ 0 as α ↓ 0

which implies Eq. (43.41).

Corollary 43.34. Suppose that u is a harmonic function on Ω, then u is real
analytic on Ω.

Proof. The condition of being real analytic is local and invariant under
translations as is the notion of being harmonic. Hence we may assume 0 ∈
B(0, r) ⊂ Ω for some r > 0, in which case we have, for |x| < r and f =
u|∂B(0,r), that

u(x) =

Z
∂B(0,r)

K(x, y)f(y)dσ(y) =
r2 − |x|2
σ(Sn−1)r

Z
∂B(0,r)

|x− y|−n f(y)dσ(y)

=
r2 − |x|2
σ(Sn−1)r

Z
∂B(0,r)

|x− ŷr|−n f(y)dσ(y). (43.42)

Now

|x− y|−n = |x− ŷr|−n = r−n
¯̄
ŷ − r−1x

¯̄−n
= r−n

Ã
1− 2r−1ŷ · x+ |x|

2

r2

!−n/2
=: r−n (1− α(x, y))

−n/2

where

α(x, y) := 2r−1ŷ · x− |x|
2

r2
.

Since

|α(x, y)| ≤ 2r−1 |x|+ |x|
2

r2
≤ 2α0 + α20 < 1

if |x| ≤ α0r and α0 <
√
2− 1, we find that |x− y|−n has a convergent power

series expansion,

|x− y|−n = r−n
∞X

m=0

amα(x, y)
m for |x| ≤ α0r.

Plugging this into Eq. (43.42) shows u(x) has a convergent power series ex-
pansion in x for |x| ≤ ¡√2− 1¢ r.
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43.5 Perron’s Method for solving the Dirichlet Problem

For this section let Ω ⊂o Rn be a bounded open set and f ∈ C (bd(Ω),R) be
a given function. We are going to investigate the solvability of the Dirichlet
problem:

∆u = 0 on Ω with u = f on bd(Ω). (43.43)

Let S(Ω) denote those w ∈ C
¡
Ω̄
¢
such that w is subharmonic on Ω and let

Sf (Ω) denote those w ∈ S(Ω) such that w ≤ f on bd(Ω). As we have seen in
Corollary 43.26, if there is a solution to u ∈ C2(Ω) ∩ C ¡Ω̄¢ , then w ≤ u for
all w ∈ Sf (Ω). This suggests we try to define

u(x) := uf (x) := sup {w(x) : w ∈ Sf (Ω)} for all x ∈ Ω̄. (43.44)

Notation 43.35 Given w ∈ S(Ω), ξ ∈ Ω and r > 0 such that B(ξ, r) ⊂ Ω,
let (see Figure 43.6)

wξ,r(y) =

½
w(y) for y ∈ Ω \B(ξ, r)
h(y) for y ∈ B(ξ, r)

where h ∈ C
³
B(ξ, r)

´
is the unique solution to

∆h = 0 on B(ξ, r) with h = w on ∂B(ξ, r).

The existence of h is guaranteed by Theorem 43.32.

Fig. 43.6. The construction of wξ,r in the one-dimensional case.

Proposition 43.36. Let w ∈ S(Ω) and wξ,r be as above. Then

1. w ≤ wξ,r.
2. wξ,r ∈ S(Ω), i.e. wξ,r is subharmonic.
3. For any ξ ∈ Ω and r > 0 such that B(ξ, r) ⊂ Ω, the mean value inequality
is valid,

w(ξ) ≤
Z
−

∂B(ξ,r)

wdσ.
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Proof. 1. Since w = wξ,r on Ω \ B(ξ, r), it suffices to show w ≤ h on
B(ξ, r). But this follows from Corollary 43.26.
2. Since wξ,r is harmonic on B(ξ, r) and subharmonic on Ω \ B(ξ, r), we

need only show

wξ,r(y) ≤
Z
−

∂B(y,ρ)

wξ,rdσ

for all y ∈ ∂B(ξ, r) and ρ sufficiently small. This is easily checked, since w is
subharmonic,

wξ,r(y) = w(y) ≤
Z
−

∂B(y,ρ)

wdσ ≤
Z
−

∂B(y,ρ)

wξ,rdσ

wherein the last equality we made use of Item 1.
3. By item 1. and the mean value property for the harmonic function, wξ,r,

we have

w(ξ) ≤ wξ,r(ξ) =

Z
−

∂B(ξ,r)

wξ,rdσ =

Z
−

∂B(ξ,r)

wdσ.

Theorem 43.37. The function u = uf defined in Eq. (43.44) is harmonic on
Ω and u ≤ f on bd(Ω).

Proof. Let us begin with a couple of observations. In what follows

m := min {f(x) : x ∈ bd(Ω)} and M := min {f(x) : x ∈ bd(Ω)} .

1. The function u = uf ≥ m on Ω since m ∈ Sf (Ω).
2. By the maximum principle w ≤M on Ω for all w ∈ Sf (Ω) and therefore

uf ≤M on Ω.
3. If w1, . . . , wm ∈ Sf (Ω), then w = max {w1, . . . , wm} ∈ Sf (Ω). Indeed for

ξ ∈ Ω and r small, Z
−

∂B(ξ,r)

wdσ ≥
Z
−

∂B(ξ,r)

widσ ≥ wi(ξ)

for all i.
4. Now suppose ξ ∈ Ω and R > 0 be chosen so that B (ξ,R) ⊂ Ω and

D ⊂ B(ξ,R) is a countable set. Then there is a harmonic function wD on
B(ξ,R) such that wD = uf on D.

To prove this last item let D := {yk}∞k=1 and choose {wm
k } ⊂ Sf (Ω)

such that wm
k (yk) → u(yk) as m → ∞ for each k. By replacing wm

k by
max

©
w1k, . . . , w

m
k

ª
if necessary we may assume for each k that wm

k is in-
creasing in m for each k. Letting
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Wm := max {wm
1 , . . . , w

m
m}

we find an increasing sequence {Wm} ⊂ Sf (Ω) such that Wm(y) ↑ uf (y) for
all y ∈ D. Finally define a sequence {wm} ⊂ Sf (Ω) by wm := (Wm)ξ,2R . By
the maximum principle, wm is still increasing and sinceWm ≤ wm and we still
have wm(y) ↑ uf (y) for all y ∈ D. We now define wD := limm→∞wm|B(ξ,R)
which exists because wm is increasing and w. We have wD = uf on D and
because {wm} is a bounded and convergent sequence of harmonic functions
on B(ξ,R), it follows from Corollary 43.18 that w is harmonic on B(ξ,R).
This completes the proof of item 4.
We now use item 4. to prove uf is continuous at ξ ∈ Ω. To do this let

{yk}∞k=1 ⊂ B (ξ,R) be any sequence such that yk → ξ as k → ∞ and let
D = {ξ} ∪ {yk}∞k=1 ⊂ B (ξ,R) . Since wD is harmonic and hence continuous,

lim
k→∞

uf (yk) = lim
k→∞

wD(yk) = wD(ξ) = uf (ξ)

showing uf is continuous.
To show uf is harmonic on B(ξ,R), let D be a countable dense subset of

B(ξ,R). Then the continuity of uf and the fact that uf = wD on D, it follows
that uf = wD on B(ξ,R). In particular uf is harmonic on B(ξ,R). Since ξ is
arbitrary, we have shown uf is harmonic.
To complete our program, we want to show that uf extends to a function

in C(Ω̄) and that uf = f on bd(Ω). For this we will need some assumption
on bd(Ω).

Definition 43.38. A function Q ∈ C
¡
Ω̄
¢
is a barrier function for η ∈

bd(Ω) if Q is subharmonic on Ω, Q(η) = 0 and Q(x) < 0 for all x ∈ bd(Ω) \
{η} .
Example 43.39. Suppose that η ∈ bd(Ω) and there exists ξ ∈ Rn such that
(x− η)·ξ < 0 for all x ∈ bd(Ω)\{η} (see Figure 43.7 below), then the function
Q(x) := (x− η) · ξ is a barrier function of η.

Example 43.40. Suppose that η ∈ bd(Ω) and there exists a ball B(ξ, r)∩ Ω̄ =
{η} (see Figure 43.8), then Q(x) := α(r)− α(|x− ξ|) is a barrier function for
η, where α is defined in Eq. 43.4.

Theorem 43.41. Suppose f ∈ C(bd(Ω)) and u = uf is the harmonic func-
tion defined by Eq. (43.44) and there exists a barrier function Q for η ∈ bd(Ω).
Then limx→η uf (x) = f(η). In particular if every point η ∈ bd(Ω) admits a
barrier function, then there is a unique solution u ∈ C

¡
Ω̄
¢∩C2(Ω) to ∆u = 0

with u = f on bd(Ω).

Proof. Given � > 0 and K > 0, let w(x) := f(η) − � − KQ(x) for all
x ∈ Ω̄. For any � > 0 we may choose (using continuity of f and compactness
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Fig. 43.7. Constructing a barrier function at point where η where ∂Ω lies in a half
plane.

Fig. 43.8. Another η for which there exists a barrier function.

of bd(Ω)) K sufficiently large so that w ≤ f on bd(Ω), i.e. w ∈ Sf (Ω).
Therefore w ≤ uf and hence

f(η)− � = w(η) = lim
x→η

w(x) ≤ lim inf
x→η

uf (x).

Since � > 0 is arbitrary, this shows

lim inf
x→η

uf (x) ≥ f(η). (43.45)

We now consider the function

−u−f (x) = − sup {w(x) : w ∈ S−f (Ω)} = inf {−w(x) : w ∈ S−f (Ω)}
= inf {W (x) : −W ∈ S−f (Ω)} . (43.46)
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If w ∈ Sf (Ω) and −W ∈ S−f (Ω), then w−W is sub harmonic and w−W ≤
f − f = 0 on bd(Ω), therefore by the maximum principle it follows that
w ≤W on Ω̄. Coupling this fact with Eq. (43.46) shows −u−f (x) ≥ w(x) for
all w ∈ Sf (Ω) and then taking the supremum over w shows uf (x) ≤ −u−f (x).
Therefore using Eq. (43.45) with f replaced by −f shows

lim sup
x→η

uf (x) ≤ lim sup
x→η

(−u−f (x)) = − lim inf
x→η

(u−f (x)) ≤ − (−f(η)) = f(η)

(43.47)
which combined with Eq. (43.45) shows

lim
x→η

uf (x) = f(η).

Exercise 43.42. Suppose that R is an n×n orthogonal matrix (RtrR = I =
RRtr) viewed as a linear transformation on Rn. Show for f ∈ C2 (Rn) that
∆(f ◦R) = ∆f ◦R, i.e. ∆ is invariant under rotations.

Exercise 43.43. Show that every point η ∈ bd(Ω) has a barrier func-
tion when bd(Ω) is C2. Hint: By making a change of coordinated involv-
ing rotations and translations change of coordinates, it suffices to assume
η = 0 ∈ bd(Ω) and that B(0, r) ∩ bd(Ω) is the graph of a C2 — function
g : B(0, r) ∩ Rn−1 → Rn such that g(0) = 0 and ∇g(0) = 0. Show for δ > 0
sufficiently small that

dδ(x) := |δen − x|2 for x ∈ bd(Ω)

has a unique global minimum at x = 0. Use this fact and Example 43.40 to
complete the proof.

Remark 43.44. To make Barrier functions for cones C, let D := C ∩Sn−1 and
let u(ω) for ω ∈ D denote the Dirichlet eigenfunction on D for the spherical
Laplacian with smallest eigenvalue λ > 0, i.e. −∆Sn−1u = λu. This function is
positive on Do and vanishes on the boundary. If C has sperical symmetry, the
function should be describable explicitly. At any rate, we can now considier
the function U(rω) = rαu, then

∆U =
1

rn−1
∂r
¡
rn−1∂r [rαu]

¢
+

rα

r2
∆Sn−1u

= α (α+ n− 2) rα−2u− λrα−2u

which will be zero if λ = α (α+ n− 2) , i.e.

α2 + (n− 2)α− λ = 0

where
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α =
−(n− 2)±

q
(n− 2)2 + 4λ
2

.

Hence taking

α =

q
(n− 2)2 + 4λ− (n− 2)

2
,

the function U(rω) = rαu(ω) is harmonic in C and 0 on ∂C. (Probably should
be doing these considerations for the exterior of C.)

43.6 Solving the Dirichlet Problem by Integral Equations

Another method for solving the Dirichlet problem to reduce it to a question
of solvability of a certain integral equation in bd(Ω). For a nice sketch of how
this goes the reader is referred to Reed and Simon [11], included below. For a
more detailed account the reader may consult Sobolev [16] or Guenther and
Lee [6].
The following text is taken from Reed and Simon Volume 1.





44

Introduction to the Spectral Theorem

The following spectral theorem is a minor variant of the usual spectral theorem
for matrices. This reformulation has the virtue of carrying over to general
(unbounded) self adjoint operators on infinite dimensional Hilbert spaces.

Theorem 44.1. Suppose A is an n×n complex self adjoint matrix, i.e. A∗ =
A or equivalently Aji = Āij and let µ be counting measure on {1, 2, . . . , n}.
Then there exists a unitary map U : Cn → L2({1, 2, . . . , n}, dµ) and a real
function λ : {1, 2, . . . , n} → R such that UAξ = λ · Uξ for all ξ ∈ Cn. We
summarize this equation by writing UAU−1 =Mλ where

Mλ : L
2({1, 2, . . . , n}, dµ)→ L2({1, 2, . . . , n}, dµ)

is the linear operator, g ∈ L2({1, 2, . . . , n}, dµ)→ λ ·g ∈ L2({1, 2, . . . , n}, dµ).
Proof. By the usual form of the spectral theorem for self-adjoint matrices,

there exists an orthonormal basis {ei}ni=1 of eigenvectors of A, say Aei = λiei
with λi ∈ R. Define U : Cn → L2({1, 2, . . . , n}, dµ) to be the unique (unitary)
map determined by Uei = δi where

δi(j) =

½
1 if i = j
0 if i 6= j

and let λ : {1, 2, . . . , n}→ R be defined by λ(i) := λi.

Definition 44.2. Let A : H → H be a possibly unbounded operator on H. We
let

D(A∗) = {y ∈ H : ∃ z ∈ H 3 (Ax, y) = (x, z) ∀ x ∈ D(A)}
and for y ∈ D(A∗) set A∗y = z.

Definition 44.3. An operator A on H is symmetric if A ⊂ A∗ and is self-
adjoint iff A = A∗.

The reader should check that A : H → H is symmetric iff (Ax, y) = (x,Ay)
for all x, y ∈ D(A).



934 44 Introduction to the Spectral Theorem

Proposition 44.4. Let (X,µ) be σ — finite measure space, H = L2(X, dµ)
and f : X → C be a measurable function. Set Ag = fg =Mfg for all

g ∈ D(Mf ) = {g ∈ H : fg ∈ H}.
Then D(Mf ) is a dense subspace of H and M∗f =Mf̄ .

Proof. For any g ∈ H = L2(X, dµ) and m ∈ N, let gm := g1|f |≤m. Since
|fgm| ≤ m |g| it follows that fgm ∈ H and hence gm ∈ D(Mf ). By the
dominated convergence theorem, it follows that gm → g in H as m → ∞,
hence D(Mf ) is dense in H.
Suppose h ∈ D(M∗f ) then there exists k ∈ L2 such that (Mfg, h) = (g, k)

for all g ∈ D(Mf ), i.e.Z
X

fgh dµ =

Z
X

gk dµ for all g ∈ D(Mf )

or equivalently Z
X

g(fh− k)dµ = 0 for all g ∈ D(Mf ). (44.1)

Choose Xn ⊂ X such that Xn ↑ X and µ(Xn) < ∞ for all n. It is easily
checked that

gn := 1Xn

fh− k¯̄
fh− k

¯̄1|f|≤n
is in D(Mf ) and putting this function into Eq. (44.1) showsZ

X

¯̄
fh− k

¯̄
1|f |≤ndµ = 0 for all n.

Using the monotone convergence theorem, we may let n→∞ in this equation
to find

R
X

¯̄
fh− k

¯̄
dµ = 0 and hence that f̄h = k ∈ L2. This shows h ∈

D(Mf̄ ) and M∗fh = fh.

Theorem 44.5 (Spectral Theorem). Suppose A∗ = A then there exists
(X,µ) a σ — finite measure space, f : X → R measurable, and U : H →
L2(x, µ) unitary such that UAU−1 = Mf . Note this is a statement about
domains as well, i.e. UD(Mf ) = D(A).

I would like to give some examples of computing A∗ and Theorem 44.5 as
well. We will consider here the case of constant coefficient differential operators
on L2(Rn). First we need the following definition.

Definition 44.6. Let aα ∈ C∞(U), L =
P
|α|≤m aα∂

α — a mth order linear
differential operator on D(U) and

L
†
φ =

X
|α|≤m

(−1)|α| ∂α [aαφ]
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denote the formal adjoint of L as in Lemma 40.4 above. For f ∈ Lp(U) we
say Lf ∈ Lp(U) or Lploc(U) if the generalized function Lf may be represented
by an element of Lp(U) or Lploc(U) respectively, i.e. Lf = g ∈ Lploc(U) iffZ

U

f · L†φ dm =

Z
U

gφdm for all φ ∈ C∞c (U). (44.2)

In terms of the complex inner product,

(f, g) :=

Z
U

f(x)ḡ(x)dm(x)

Eq. (44.2) is equivalent to¡
f · L~φ¢ = (g, φ) for all φ ∈ C∞c (U)

where
L~φ :=

X
|α|≤m

(−1)|α| ∂α [āαφ] .

Notice that L~ satisfies L~ φ̄ = L†φ. (We do not write L∗ here since L~ is to
be considered an operator on the space on D0 (U) .)
Remark 44.7. Recall that if f, h ∈ L2 (Rn) , then the following are equivalent

1. f̂ = h.
2. (h, g) =

¡
f,F−1g¢ for all g ∈ C∞c (Rn) .

3. (h, g) =
¡
f,F−1g¢ for all g ∈ S (Rn) .

4. (h, g) =
¡
f,F−1g¢ for all g ∈ L2 (Rn) .

Indeed if f̂ = h and g ∈ L2 (Rn) , the unitarity of F implies

(h, g) =
³
f̂ , g

´
= (Ff, g) = ¡f,F−1g¢ .

Hence 1 =⇒ 4 and it is clear that 4 =⇒ 3 =⇒ 2. If 2 holds, then again since
F is unitary we have

(h, g) =
¡
f,F−1g¢ = ³f̂ , g´ for all g ∈ C∞c (Rn)

which implies h = f̂ a.e., i.e. h = f̂ in L2 (Rn) .

Proposition 44.8. Let p(x) =
P
|α|≤m aαx

α be a polynomial on Cn,

L := p (∂) :=
X
|α|≤m

aα∂
α (44.3)

and f ∈ L2 (Rn) . Then Lf ∈ L2 (Rn) iff p(iξ)f̂(ξ) ∈ L2 (Rn) and in which
case
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(Lf)
ˆ
(ξ) = p(iξ)f̂(ξ). (44.4)

Put more concisely, letting

D(B) =
©
f ∈ L2 (Rn) : Lf ∈ L2 (Rn)

ª
with Bf = Lf for all f ∈ D(B), we have

FBF−1 =Mp(iξ).

Proof. As above, let

L† :=
X
|α|≤m

aα (−∂)α and L~ :=
X
|α|≤m

āα (−∂)α . (44.5)

For φ ∈ C∞c (Rn) ,

L~φ∨(x) = L~
Z

φ (ξ) eix·ξdλ(ξ) =
X
|α|≤m

āα (−∂x)α
Z

φ (ξ) eix·ξdλ(ξ)

=

Z
p (iξ)φ (ξ) eix·ξdλ(ξ) = F−1

h
p (iξ)φ (ξ)

i
(x)

So if f ∈ L2 (Rn) such that Lf ∈ L2 (Rn) . Then by Remark 44.7,

(cLf, φ) = (Lf, φ∨) = hf, L~φ∨i = hf(x),F−1 hp (iξ)φ (ξ)i (x)i
= hf̂(ξ),

h
p (iξ)φ (ξ)

i
i = hp (iξ) f̂(ξ), φ (ξ)i for all φ ∈ C∞c (Rn)

from which it follows that Eq. (44.4) holds and that p (iξ) f̂(ξ) ∈ L2 (Rn) .
Conversely, if f ∈ L2 (Rn) is such that p (iξ) f̂(ξ) ∈ L2 (Rn) then for

φ ∈ C∞c (Rn) , ¡
f,L~φ

¢
=
³
f̂ ,FL~φ

´
. (44.6)

Since

F ¡L~φ¢ (ξ) = Z L~φ (x) e−ix·ξdλ(x) =
Z

φ (x)Lxe
−ix·ξdλ(x)

=

Z
φ (x) aα∂

α
x e
−ix·ξdλ(x) =

Z
φ (x) aα (−iξ)α e−ix·ξdλ(x)

= p (iξ)φ̂(ξ),

Eq. (44.6) becomes¡
f,L~φ

¢
=
³
f̂(ξ), p (iξ)φ̂(ξ)

´
=
³
p (iξ) f̂(ξ), φ̂(ξ)

´
=
³
F−1

h
p (iξ) f̂(ξ)

i
(x), φ(x)

´
.

This shows Lf = F−1
h
p (iξ) f̂(ξ)

i
∈ L2 (Rn) .
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Lemma 44.9. Suppose p(x) =
P

|α|≤m aαx
α is a polynomial on Rn and L =

p(∂) is the constant coefficient differential operator B =
P

|α|≤m aα∂
α with

D(B) := S (Rn) ⊂ L2 (Rn) . Then

FBF−1 =Mp(iξ)|S(Rn).
Proof. This is result of the fact that F (S (Rn)) = S (Rn) and for f ∈

S (Rn) we have
f(x) =

Z
Rn

f̂(ξ)eiξ·xdλ(ξ)

so that

Bf(x) =

Z
Rn

f̂(ξ)Lxe
iξ·xdλ(ξ) =

Z
Rn

f̂(ξ)p(iξ)eiξ·xdλ(ξ)

so that
(Bf)ˆ (ξ) = p(iξ)f̂(ξ) for all f ∈ S (Rn) .

Lemma 44.10. Suppose g : Rn → C is a measurable function such that
|g(x)| ≤ C

³
1 + |x|M

´
for some constants C and M. Let A be the unbounded

operator on L2 (Rn) defined by D(A) = S (Rn) and for f ∈ S (Rn) , Af = gf.
Then A∗ =Mḡ.

Proof. If h ∈ D (Mḡ) and f ∈ D(A), we have

(Af, h) =

Z
Rn

gfh̄dm =

Z
Rn

fghdm = (f,Mḡh)

which shows Mḡ ⊂ A∗, i.e. h ∈ D(A∗) and A∗h = Mḡh. Now suppose h ∈
D (A∗) and A∗h = k, i.e.Z

Rn
gfh̄dm = (Af, h) = (f, k) =

Z
Rn

fkdm for all f ∈ S (Rn)

or equivalently thatZ
Rn

¡
gh̄− k̄

¢
fdm = 0 for all f ∈ S (Rn) .

Since the last equality (even just for f ∈ C∞c (Rn)) implies gh̄− k̄ = 0 a.e. we
may conclude that h ∈ D(Mḡ) and k =Mḡh, i.e. A∗ ⊂Mḡ.

Theorem 44.11. Suppose p(x) =
P
|α|≤m aαx

α is a polynomial on Rn and
A = p(∂) is the constant coefficient differential operator with D(A) :=
C∞c (Rn) ⊂ L2 (Rn) such that A = L = p(∂) on D(A), see Eq. (44.3). Then
A∗ is the operator described by
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D(A∗) =
©
f ∈ L2 (Rn) : L†f ∈ L2 (Rn)

ª
=
n
f ∈ L2 (Rn) : p(iξ)f̂(ξ) ∈ L2 (Rn)

o
and A∗f = L†f for f ∈ D(A∗) where L† is defined in Eq. (44.5) above.
Moreover we have FA∗F−1 =Mp(iξ).

Proof. Let D(B) = S (Rn) and B := L on D(B) so that A ⊂ B. We are
first going to show A∗ = B∗. As is easily verified, in general if A ⊂ B then
B∗ ⊂ A∗. So we need only show A∗ ⊂ B∗. Now by definition, if g ∈ D(A∗)
with k = A∗g, then

(Af, g) = (f, k) for all f ∈ D(A) := C∞c (Rn) .

Suppose that f ∈ S (Rn) and φ ∈ C∞c (Rn) such that φ = 1 in a neighborhood
of 0. Then fn(x) := φ(x/n)f(x) is in S (Rn) and hence

(fn, k) = (Lfn, g) . (44.7)

An exercise in the product rule and the dominated convergence theorem shows
fn → f and Lfn → Lf in L2 (Rn) as n → ∞. Therefore we may pass to the
limit in Eq. (44.7) to learn

(f, k) = (Bf, g) for all f ∈ S (Rn)
which shows g ∈ D(B∗) and B∗g = k.
By Lemma 44.10, we may conclude that A∗ = B∗ =M

p(iξ)
and by Propo-

sition 44.8 we then conclude that

D (A∗) =
n
f ∈ L2 (Rn) : p(iξ)f̂(ξ) ∈ L2 (Rn)

o
=
©
f ∈ L2 (Rn) : L†f ∈ L2 (Rn)

ª
and for f ∈ D (A∗) we have A∗f = L†f.

Example 44.12. If we take L = ∆ with D(L) := C∞c (Rn) , then

L∗ = ∆̄ = FM−|ξ|2F−1

where D(∆̄) =
©
f ∈ L2 (Rn) : ∆f ∈ L2 (Rn)

ª
and ∆̄f = ∆f.

Theorem 44.13. Suppose A = A∗ and A ≤ 0. Then for all u0 ∈ D(A) there
exists a unique solution u ∈ C1([0,∞)) such that u(t) ∈ D(A) for all t and

u̇(t) = Au(t) with u(0) = u0. (44.8)

Writing u(t) = etAu0, the map u0 → etAu0 is a linear contraction semi-group,
i.e.

ketAu0k ≤ ku0k for all t ≥ 0. (44.9)

So etA extends uniquely to H by continuity. This extension satisfies:
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1. Strong Continuity: the map t ∈ [0,∞) → etAu0 is continuous for all
u0 ∈ H.

2. Smoothing property: t > 0

etAu0 ∈
∞\
n=0

D(An) =: C∞(A)

and

kAketAk ≤
µ
k

t

¶k
e−k for all k ∈ N. (44.10)

Proof. Uniqueness. Suppose u solves Eq. (44.8), then

d

dt
(u(t), u(t)) = 2Re(u̇, u) = 2Re(Au, u) ≤ 0.

Hence ku(t)k is decreasing so that ku(t)k ≤ ku0k.This implies the uniqueness
assertion in the theorem and the norm estimate in Eq. (44.9).
Existence: By the spectral theorem we may assume A = Mf acting

on L2(X,µ) for some σ — finite measure space (X,µ) and some measurable
function f : X → (−∞, 0]. We wish to show u(t) = etfu0 ∈ L2 solves

u̇(t) = fu(t) with u(0) = u0 ∈ D(Mf ) ⊂ L2.

Let t > 0 and |∆| < t. Then by the mean value inequality¯̄̄̄
e(t+4)f − etf

4 u0

¯̄̄̄
= max

n
|fe(t+4̃)fu0| : ∆̃ between 0 and ∆

o
≤ |fu0| ∈ L2.

This estimated along with the fact that

u(t+∆)− u(t)

4 =
e(t+4)f − etf

4 u0
point wise→ fetfu0 as ∆→ 0

enables us to use the dominated convergence theorem to conclude

u̇(t) = L2— lim
∆→0

u(t+4)− u(t)

4 = etffu0 = fu(t)

as desired. i.e. u̇(t) = fu(t).
The extension of etA to H is given by Metf . For g ∈ L2,

¯̄
etfg

¯̄ ≤ |g| ∈ L2

and etfg → eτgf pointwise as t→ τ, so the Dominated convergence theorem
shows t ∈ [0,∞) → etAg ∈ H is continuous. For the last two assertions, let
t > 0 and f(x) = xketx. Then (ln f)0(x) = k

x + t which is zero when x = −k/t
and therefore

max
x≤0

¯̄
xketx

¯̄
= |f(−k/t)| =

µ
k

t

¶k
e−k.

Hence

kAketAkop ≤ max
x≤0

¯̄
xketx

¯̄ ≤ µk
t

¶k
e−k <∞.
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Theorem 44.14. Take A = FM−|ξ|2F−1 so A|S = ∆ then

C∞(A) :=
∞\
n=1

D(An) ⊂ C∞
¡
Rd
¢

i.e. for all f ∈ C∞(A) there exists a version f̃ of f such that f̃ ∈ C∞(Rd).

Proof. By assumption |ξ|2nf̂(ξ) ∈ L2 for all n. Therefore f̂(ξ) = gn(ξ)
1+|ξ|2n

for some gn ∈ L2 for all n. Therefore for n chosen so that 2n > m + d, we
have Z

Rd

|ξ|m|f̂(ξ)|dξ ≤ kgnkL2
°°°° |ξ|m
1 + |ξ|2n

°°°°
2

<∞

which shows |ξ|m|f̂(ξ)| ∈ L1 for all m = 0, 1, 2, . . . We may now differentiate
the inversion formula, f(x) =

R
f̂(ξ)eix·ξdξ to find

Dαf(x) =

Z
(iξ)αf̂(ξ)eix·ξdξ for any α

and thus conclude f ∈ C∞.

Exercise 44.15. Some Exercises: Section 2.5 4, 5, 6, 8, 9, 11, 12, 17.

44.1 Du Hammel’s principle again

Lemma 44.16. Suppose A is an operator on H such that A∗ is densely de-
fined then A∗ is closed.

Proof. If fn ∈ D(A∗)→ f ∈ H and A∗fn → g then for all h ∈ D(A)

(g, h) = lim
n→∞(A

∗fn, h)

while
lim
n→∞(A

∗fn, h) = lim
n→∞(fn, Ah) = (f,Ah),

i.e. (Ah, f) = (h, g) for all h ∈ D(A). Thus f ∈ D(A∗) and A∗f = g.

Corollary 44.17. If A∗ = A then A is closed.

Corollary 44.18. Suppose A is closed and u(t) ∈ D(A) is a path such that
u(t) and Au(t) are continuous in t. Then

A

Z T

0

u(τ)dτ =

Z T

0

Au(τ)dτ.
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Proof. Let πn be a sequence of partitions of [0, T ] such thatmesh(πn)→ 0
as n→∞ and set

fn =
X
πn

u(τi)(τi+1 − τi) ∈ D(A).

Then fn →
R T
0
u(τ)dτ and

Afn =
X
πn

Au(τi)(τi+1 − τi)→
Z T

0

Au(τ)dτ.

Therefore
R T
0
u(τ)dτ ∈ D(A) and A

R T
0
u(τ)dτ =

R T
0
Au(τ)dτ.

Lemma 44.19. Suppose A = A∗, A ≤ 0, and h : [0,∞] → H is continuous.
Then

(s, t) ∈ [0,∞)× [0,∞)→ esAh(t)

(s, t) ∈ (0,∞)× [0,∞)→ AkesAh(t)

are continuous maps into H.

Proof. Let k ≥ 0, then if s ≥ σ,

kAk
¡
esAh(t)− eσAh(τ)

¢ k
=
°°°AkeσA

³
e(s−σ)Ah(t)− h(τ)

´°°°
≤ °°AkeσA

°°°°°e(s−σ)A [h(t)− h(τ)] + e(s−σ)Ah(τ)− h(τ)
°°°

≤
µ
k

σ

¶k
e−k ·

h
kh(t)− h(τ)k+

°°°e(s−σ)Ah(τ)− h(τ)
°°°i .

So
lim

s↓σ and t→τ

°°Ak
¡
esAh(t)− eσAh(τ)

¢°° = 0
and we may take σ = 0 if k = 0. Similarly, if s ≤ σ,

kAk
¡
esAh(t)− eσAh(τ)

¢ k
=
°°°AkesA

³
h(t)− e(σ−s)Ah(τ)

´°°°
≤ °°AkesA

°° hkh(t)− h(τ)k+
°°°h(τ)− e(σ−s)Ah(τ)

°°°i
≤
µ
k

s

¶k
e−k

h
kh(t)− h(τ)k+

°°°h(τ)− e(σ−s)Ah(τ)
°°°i

and the latter expression tends to zero as s ↑ σ and t→ τ.

Lemma 44.20. Let h ∈ C ([0,∞),H) , D :=
©
(s, t) ∈ R2 : s > t ≥ 0ª and

F (s, t) :=
R t
0
e(s−τ)Ah(τ)dτ for (s, t) ∈ D. Then
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1. F ∈ C1(D,H) (in fact F ∈ C∞(D,H)),

∂

∂t
F (s, t) = e(s−t)Ah(t) (44.11)

and
∂F (s, t)

∂s
=

Z t

0

Ae(s−τ)Ah(τ)dτ. (44.12)

2. Given � > 0 let

u�(t) := F (t+ �, t) =

Z t

0

e(t+�−τ)Ah(τ)dτ.

Then u� ∈ C1 ((−�,∞),H) , u�(t) ∈ D(A) for all t > −� and
u̇�(t) = e�Ah(t) +Au�(t). (44.13)

Proof. We claim the function

(s, t) ∈ D→ F (s, t) :=

Z t

0

e(s−τ)Ah(τ)dτ

is continuous. Indeed if (s0, t0) ∈ D and (s, t) ∈ D is sufficiently close to (s0, t0)
so that s > t0, we have

F (s, t)− F (s0, t0) =
Z t

0

e(s−τ)Ah(τ)dτ −
Z t0

0

e(s
0−τ)Ah(τ)dτ

=

Z t

0

e(s−τ)Ah(τ)dτ −
Z t0

0

e(s−τ)Ah(τ)dτ

+

Z t0

0

h
e(s−τ)A − e(s

0−τ)A
i
h(τ)dτ

so that

kF (s, t)− F (s0, t0)k ≤
¯̄̄̄Z t

t0

°°°e(s−τ)Ah(τ)°°° dτ ¯̄̄̄
+

Z t0

0

°°°he(s−τ)A − e(s
0−τ)A

i
h(τ)

°°° dτ
≤
¯̄̄̄Z t

t0
kh(τ)k dτ

¯̄̄̄
+

Z t0

0

°°°he(s−τ)A − e(s
0−τ)A

i
h(τ)

°°° dτ. (44.14)

By the dominated convergence theorem,

lim
(s,t)→(s0,t0)

¯̄̄̄Z t

t0
kh(τ)k dτ

¯̄̄̄
= 0
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and

lim
(s,t)→(s0,t0)

Z t0

0

°°°he(s−τ)A − e(s
0−τ)A

i
h(τ)

°°° dτ = 0
which along with Eq. (44.14) shows F is continuous.
By the fundamental theorem of calculus,

∂

∂t
F (s, t) = e(s−t)Ah(t)

and as we have seen this expression is continuous on D. Moreover, since

∂

∂s
e(s−τ)Ah(τ) = Ae(s−τ)Ah(τ)

is continuous and bounded for on s > t > τ, we may differentiate under the
integral to find

∂F (s, t)

∂s
=

Z t

0

Ae(s−τ)Ah(τ)dτ for s > t.

A similar argument (making use of Eq. (44.10) with k = 1) shows ∂F (s,t)
∂s is

continuous for (s, t) ∈ D.
By the chain rule, u�(t) := F (t+ �, t) is C1 for t > −� and

u̇�(t) =
∂F (t+ �, t)

∂s
+

∂F (t+ �, t)

∂t

= e�Ah(t) +

Z t

0

Ae(s−τ+�)Ah(τ)dτ = e�Ah(t) + u�(t).

Theorem 44.21. Suppose A = A∗, A ≤ 0, u0 ∈ H and h : [0,∞) → H is
continuous. Assume further that h(t) ∈ D(A) for all t ∈ [0,∞) and t→ Ah(t)
is continuous, then

u(t) := etAu0 +

Z t

0

e(t−τ)Ah(τ)dτ (44.15)

is the unique function u ∈ C1((0,∞),H)∩C([0,∞),H) such that u(t) ∈ D(A)
for all t > 0 satisfying the differential equation

u̇(t) = Au(t) + h(t) for t > 0 and u(0+) = u0.

Proof. Uniqueness: If v(t) is another such solution then w(t) := u(t)−
v(t) satisfies,

ẇ(t) = Aw(t) with w(0+) = 0

which we have already seen implies w = 0.
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Existence: By linearity and Theorem 44.13 we may assume with out loss
of generality that u0 = 0 in which case

u(t) =

Z t

0

e(t−τ)Ah(τ)dτ.

By Lemma 44.19, we know τ ∈ [0, t]→ e(t−τ)Ah(τ) ∈ H is continuous, so the
integral in Eq. (44.15) is well defined. Similarly by Lemma 44.19,

τ ∈ [0, t]→ e(t−τ)AAh(τ) = Ae(t−τ)Ah(τ) ∈ H

and so by Corollary 44.18, u(t) ∈ D(A) for all t ≥ 0 and

Au(t) =

Z t

0

Ae(t−τ)Ah(τ)dτ =
Z t

0

e(t−τ)AAh(τ)dτ.

Let

u�(t) =

Z t

0

e(t+�−τ)Ah(τ)dτ

be defined as in Lemma 44.20. Then using the dominated convergence theo-
rem,

sup
t≤T

ku�(t)− u(t)k ≤ sup
t≤T

Z t

0

°°°³e(t+�−τ)A − e(t−τ)A
´
h(τ)

°°° dτ
≤
Z T

0

°°¡e�A − I
¢
h(τ)

°° dτ → 0 as � ↓ 0,

sup
t≤T

kAu�(t)−Au(t)k ≤
Z T

0

°°¡e�A − I
¢
Ah(τ)

°° dτ → 0 as � ↓ 0

and °°°°Z t

0

e�Ah(τ)dτ −
Z t

0

h(τ)dτ

°°°° ≤ Z t

0

°°¡e�A − I
¢
h(τ)

°° dτ → 0 as � ↓ 0.

Integrating Eq. (44.13) shows

u�(t) =

Z t

0

e�Ah(τ)dτ +

Z t

0

Au�(τ)dτ (44.16)

and then passing to the limit as � ↓ 0 in this equations shows

u(t) =

Z t

0

h(τ)dτ +

Z t

0

Au(τ)dτ.

This shows u is differentiable and u̇(t) = h(t) +Au(t) for all t > 0.
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Theorem 44.22. Let α > 0, h : [0,∞)→ H be a locally α — Holder continu-
ous function, A = A∗, A ≤ 0 and u0 ∈ H. The function

u(t) := etAu0 +

Z t

0

e(t−τ)Ah(τ)dτ

is the unique function u ∈ C1((0,∞),H)∩C([0,∞),H) such that u(t) ∈ D(A)
for all t > 0 satisfying the differential equation

u̇(t) = Au(t) + h(t) for t > 0 and u(0+) = u0.

(For more details see Pazy [9, §5.7].)

Proof. The proof of uniqueness is the same as in Theorem 44.21 and for
existence we may assume u0 = 0.
With out loss of generality we may assume u0 = 0 so that

u(t) =

Z t

0

e(t−τ)Ah(τ)dτ.

By Lemma 44.19, we know τ ∈ [0, t]→ e(t−τ)Ah(τ) ∈ H is continuous, so the
integral defining u is well defined. For � > 0, let

u�(t) :=

Z t

0

e(t+�−τ)Ah(τ)dτ =
Z t

0

e(t−τ)Ae�Ah(τ)dτ.

Notice that v(τ) := e�Ah(τ) ∈ C∞(A) for all τ and moreover since Ae�A is
a bounded operator, it follows that τ → Av(τ) is continuous. So by Lemma
44.19, it follows that τ ∈ [0, t] → Ae(t−τ)Av(τ) ∈ H is continuous as well.
Hence we know u�(t) ∈ D(A) and

Au�(t) =

Z t

0

Ae(t−τ)Ae�Ah(τ)dτ.

Now

Au�(t) =

Z t

0

Ae(t+�−τ)Ah(t)dτ +
Z t

0

Ae(t+�−τ)A [h(τ)− h(t)] dτ,

Z t

0

Ae(t+�−τ)Ah(t)dτ = −e(t+�−τ)Ah(t)|τ=tτ=0 = e(t+�)Ah(t)− e�Ah(t)

and°°°Ae(t+�−τ)A [h(τ)− h(t)]
°°° ≤ e−1

1

(t+ �− τ)
kh(τ)− h(t)k

≤ Ce−1
1

(t+ �− τ)
|t− τ |α ≤ Ce−1 |t− τ |α−1 .
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These results along with the dominated convergence theorem shows lim�↓0Au�(t)
exists and is given by

lim
�↓0

Au�(t) = lim
�↓0

h
e(t+�)Ah(t)− e�Ah(t)

i
+ lim

�↓0

Z t

0

Ae(t+�−τ)A [h(τ)− h(t)] dτ

= etAh(t)− h(t) +

Z t

0

Ae(t−τ)A [h(τ)− h(t)] dτ.

Because A is a closed operator, it follows that u(t) ∈ D(A) and

Au(t) = etAh(t)− h(t) +

Z t

0

Ae(t−τ)A [h(τ)− h(t)] dτ.

Claim: t→ Au(t) is continuous. To prove this it suffices to show

v(t) := A

Z t

0

e(t−τ)A(h(τ)− h(t))dτ

is continuous and for this we have

v(t+4)− v(t) =

Z t+4

0

Ae(t+4−τ)A(h(τ)− h(t+4))dτ

−
Z t

0

Ae(t−τ)A(h(τ)− h(t))dτ

= I + II

where

I =

Z t+4

t

Ae(t+4−τ)A(h(τ)− h(t+4))dτ and

II =

Z t

0

h
Ae(t+4−τ)A(h(τ)− h(t+4))−Ae(t−τ)A(h(τ)− h(t))

i
dτ

=

Z t

0

h
Ae(t+4−τ)A(h(τ)− h(t))−Ae(t−τ)A(h(τ)− h(t))

i
dτ

+

Z t

0

h
Ae(t+4−τ)A(h(t)− h(t+4))

i
dτ

= II1 + II2

and

II1 =

Z t

0

A
h
e(t+4−τ)A − e(t−τ)A

i
(h(τ)− h(t))dτ and

II2 =
h
e(t+∆)A − e∆A

i
(h(t)− h(t+4)).
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We estimate I as

kIk ≤
¯̄̄̄
¯
Z t+4

t

°°°Ae(t+4−τ)A(h(τ)− h(t+4))
°°° dτ ¯̄̄̄¯

≤ C

¯̄̄̄
¯
Z t+4

t

1

t+4− τ
|t+4− τ |α dτ

¯̄̄̄
¯

= C

Z |∆|

0

xα−1dx = Cα−1 |∆|α → 0 as ∆→ 0.

It is easily seen that kII2k ≤ 2C |∆|α → 0 as ∆→ 0 and°°°A he(t+4−τ)A − e(t−τ)A
i
(h(τ)− h(t))

°°° ≤ C |t− τ |α−1

which is integrable, so by the dominated convergence theorem,

kII1k ≤
Z t

0

°°°A he(t+4−τ)A − e(t−τ)A
i
(h(τ)− h(t))

°°° dτ → 0 as ∆→ 0.

This completes the proof of the claim.
Moreover,

Au�(t)−Au(t) = e(t+�)Ah(t)− etAh(t) + h(t)− e�Ah(t)

+

Z t

0

A
³
e(t+�−τ)A − e(t−τ)A

´
[h(τ)− h(t)] dτ

so that

kAu�(t)−Au(t)k ≤2°°h(t)− e�Ah(t)
°°

+

Z t

0

°°°Ae(t−τ)A ¡e�A − I
¢
[h(τ)− h(t)]

°°° dτ
≤2°°h(t)− e�Ah(t)

°°
+ e−1

Z t

0

1

|t− τ |
°°¡e�A − I

¢
[h(τ)− h(t)]

°° dτ
from which it follows Au�(t) → Au(t) boundedly. We may now pass to the
limit in Eq. (44.16) to find

u(t) = lim
�↓0

u�(t) = lim
�↓0

·Z t

0

e�Ah(τ)dτ +

Z t

0

Au�(τ)dτ

¸
=

Z t

0

h(τ)dτ +

Z t

0

Au(τ)dτ

from which it follows that u ∈ C1((0,∞),H) and u̇(t) = h(t) +Au(t).





45

Heat Equation

The heat equation for a function u : R+ × Rn → C is the partial differential
equation µ

∂t − 1
2
∆

¶
u = 0 with u(0, x) = f(x), (45.1)

where f is a given function on Rn. By Fourier transforming Eq. (45.1) in the
x — variables only, one finds that (45.1) implies thatµ

∂t +
1

2
|ξ|2
¶
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ). (45.2)

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then

shows that

u(t, x) = F−1
³
e−t|ξ|

2/2f̂(ξ)
´
(x) =

³
F−1

³
e−t|ξ|

2/2
´
Ff

´
(x) =: et∆/2f(x).

From Example 32.4,

F−1
³
e−t|ξ|

2/2
´
(x) = pt(x) = t−n/2e−

1
2t |x|2

and therefore,

u(t, x) =

Z
Rn

pt(x− y)f(y)dy.

This suggests the following theorem.

Theorem 45.1. Let

pt(x− y) := (2πt)−n/2 e−|x−y|
2/2t (45.3)

be the heat kernel on Rn. Thenµ
∂t − 1

2
∆x

¶
pt(x− y) = 0 and lim

t↓0
pt(x− y) = δx(y), (45.4)



950 45 Heat Equation

where δx is the δ — function at x in Rn. More precisely, if f is a continuous
bounded function on Rn, then

u(t, x) =

Z
Rn

pt(x− y)f(y)dy

is a solution to Eq. (45.1) where u(0, x) := limt↓0 u(t, x).

Proof. Direct computations show that
¡
∂t − 1

2∆x

¢
pt(x − y) = 0 and an

application of Theorem 11.21 shows limt↓0 pt(x − y) = δx(y) or equivalently
that limt↓0

R
Rn pt(x − y)f(y)dy = f(x) uniformly on compact subsets of Rn.

This shows that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.

Proposition 45.2 (Properties of et∆/2).

1. For f ∈ L2(Rn, dx), the function³
et∆/2f

´
(x) = (Ptf)(x) =

Z
Rn

f(y)
e−

1
2t |x−y|2

(2πt)n/2
dy

is smooth in (t, x) for t > 0 and x ∈ Rn and is in fact real analytic.
2. et∆/2 acts as a contraction on Lp(Rn, dx) for all p ∈ [0,∞] and t > 0.
Indeed,

3. Moreover, pt ∗ f → f in Lp as t→ 0.

Proof. Item 1. is fairly easy to check and is left the reader. One just
notices that pt(x− y) analytically continues to Re t > 0 and x ∈ Cn and then
shows that it is permissible to differentiate under the integral.
Item 2.

|(pt ∗ f)(x)| ≤
Z
Rn
|f(y)|pt(x− y)dy

and hence with the aid of Jensen’s inequality we have,

kpt ∗ fkpLp ≤
Z
Rn

Z
Rn
|f(y)|ppt(x− y)dydx = kfkpLp

So Pt is a contraction ∀t > 0.
Item 3. It suffices to show, because of the contractive properties of pt∗,

that pt ∗ f → f as t ↓ 0 for f ∈ Cc(Rn). Notice that if f has support in the
ball of radius R centered at zero, then

|(pt ∗ f)(x)| ≤
Z
Rn
|f(y)|Pt(x− y)dy ≤ kfk∞

Z
|y|≤R

Pt(x− y)dy

= kfk∞CRne−
1
2t (|x|−R)2

and hence

kpt ∗ f − fkpLp =
Z
|y|≤R

|pt ∗ f − f |pdy + kfk∞CRne−
1
2t (|x|−R)2 .

Therefore pt ∗ f → f in Lp as t ↓ 0 ∀f ∈ Cc(Rn).
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Theorem 45.3 (Forced Heat Equation). Suppose g ∈ Cb(Rd) and f ∈
C1,2b ([0,∞)×Rd) then

u(t, x) := pt ∗ g(x) +
Z t

0

pt−τ ∗ f(τ, x)dτ

solves
∂u

∂t
=
1

2
4u+ f with u(0, ·) = g.

Proof. Because of Theorem 45.1, we may with out loss of generality as-
sume g = 0 in which case

u(t, x) =

Z t

0

pt ∗ f(t− τ, x)dτ.

Therefore

∂u

∂t
(t, x) = pt ∗ f(0, x) +

Z t

0

pτ ∗ ∂

∂t
f(t− τ, x)dτ

= pt ∗ f0(x)−
Z t

0

pτ ∗ ∂

∂τ
f(t− τ, x)dτ

and
4
2
u(t, x) =

Z t

0

pt ∗ 4
2
f(t− τ, x)dτ.

Hence we find, using integration by parts and approximate δ — function argu-
ments, thatµ

∂

∂t
− 4
2

¶
u(t, x) = pt ∗ f0(x) +

Z t

0

pτ ∗
µ
− ∂

∂τ
− 1
2
4
¶
f(t− τ, x)dτ

= pt ∗ f0(x)

+ lim
�↓0

Z t

�

pτ ∗
µ
− ∂

∂τ
− 1
2
4
¶
f(t− τ, x)dτ

= pt ∗ f0(x)− lim
�↓0

pτ ∗ f(t− τ, x)
¯̄t
�

+ lim
�↓0

Z t

�

µ
∂

∂τ
− 1
2
4
¶
pτ ∗ f(t− τ, x)dτ

= pt ∗ f0(x)− pt ∗ f0(x) + lim
�↓0

p� ∗ f(t− �, x)

= f(t, x).
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45.1 Extensions of Theorem 45.1

Proposition 45.4. Suppose f : Rn → R is a measurable function and there
exists constants c, C <∞ such that

|f(x)| ≤ Ce
c
2 |x|2 .

Then u(t, x) := pt ∗ f(x) is smooth for (t, x) ∈ (0, c−1)×Rn and for all k ∈ N
and all multi-indices α,

Dα

µ
∂

∂t

¶k
u(t, x) =

Ã
Dα

µ
∂

∂t

¶k
pt

!
∗ f(x). (45.5)

In particular u satisfies the heat equation ut = ∆u/2 on (0, c−1)×Rn.
Proof. The reader may check that

Dα

µ
∂

∂t

¶k
pt(x) = q(t−1, x)pt(x)

where q is a polynomial in its variables. Let x0 ∈ Rn and � > 0 be small, then
for x ∈ B(x0, �) and any β > 0,

|x− y|2 = |x|2 − 2|x||y|+ |y|2 ≥ |y|2 + |x|2 −
³
β−2 |x|2 + β2 |y|2

´
≥ ¡1− β2

¢ |y|2 − ¡β−2 − 1¢ ³|x0|2 + �
´
.

Hence

g(y) := sup

(¯̄̄̄
¯Dα

µ
∂

∂t

¶k
pt(x− y)f(y)

¯̄̄̄
¯ : � ≤ t ≤ c− � & x ∈ B(x0, �)

)

≤ sup
(¯̄̄̄
¯q(t−1, x− y)

e−
1
2t |x−y|2

(2πt)
n/2

Ce
c
2 |y|2

¯̄̄̄
¯ : � ≤ t ≤ c− � & x ∈ B(x0, �)

)

≤ C(β, x0, �) sup

(¯̄̄̄
¯q(t−1, x− y)

e[−
1
2t (1−β2)+ c

2 ]|y|2

(2πt)n/2

¯̄̄̄
¯ : � ≤ t ≤ c− � and

x ∈ B(x0, �)

)
.

By choosing β close to 0, the reader should check using the above expression
that for any 0 < δ < (1/t− c) /2 there is a C̃ <∞ such that g(y) ≤ C̃e−δ|y|

2

.
In particular g ∈ L1 (Rn) . Hence one is justified in differentiating past the
integrals in pt ∗ f and this proves Eq. (45.5).
Lemma 45.5. There exists a polynomial qn(x) such that for any β > 0 and
δ > 0, Z

Rn
1|y|≥δe−β|y|

2

dy ≤ δnqn

µ
1

βδ2

¶
e−βδ

2
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Proof. Making the change of variables y → δy and then passing to polar
coordinates showsZ
Rn
1|y|≥δe−β|y|

2

dy = δn
Z
Rn
1|y|≥1e−βδ

2|y|2dy = σ
¡
Sn−1

¢
δn
Z ∞
1

e−βδ
2r2rn−1dr.

Letting λ = βδ2 and φn(λ) :=
R∞
r=1

e−λr
2

rndr, integration by parts shows

φn(λ) =

Z ∞
r=1

rn−1d

Ã
e−λr

2

−2λ

!
=
1

2λ
e−λ +

1

2

Z ∞
r=1

(n− 1)r(n−2) e
−λr2

λ
dr

=
1

2λ
e−λ +

n− 1
2λ

φn−2(λ).

Iterating this equation implies

φn(λ) =
1

2λ
e−λ +

n− 1
2λ

µ
1

2λ
e−λ +

n− 3
2λ

φn−4(λ)
¶

and continuing in this way shows

φn(λ) = e−λrn(λ−1) +
(n− 1)!!
2δλδ

φi(λ)

where δ is the integer part of n/2, i = 0 if n is even and i = 1 if n is odd and
rn is a polynomial. Since

φ0(λ) =

Z ∞
r=1

e−λr
2

dr ≤ φ1(λ) =

Z ∞
r=1

re−λr
2

dr =
e−λ

2λ
,

it follows that
φn(λ) ≤ e−λqn(λ−1)

for some polynomial qn.

Proposition 45.6. Suppose f ∈ C(Rn,R) such that |f(x)| ≤ Ce
c
2 |x|2 then

pt ∗ f → f uniformly on compact subsets as t ↓ 0. In particular in view of
Proposition 45.4, u(t, x) := pt ∗ f(x) is a solution to the heat equation with
u(0, x) = f(x).

Proof. Let M > 0 be fixed and assume |x| ≤M throughout. By uniform
continuity of f on compact set, given � > 0 there exists δ = δ(t) > 0 such
that |f(x)− f(y)| ≤ � if |x− y| ≤ δ and |x| ≤M. Therefore, choosing a > c/2
sufficiently small,

|pt ∗ f(x)− f(x)| =
¯̄̄̄Z

pt(y) [f(x− y)− f(x)] dy

¯̄̄̄
≤
Z

pt(y) |f(x− y)− f(x)| dy

≤ �

Z
|y|≤δ

pt(y)dy +
C

(2πt)n/2

Z
|y|≥δ

[e
c
2 |x−y|2 + e

c
2 |x|2 ]e−

1
2t |y|2dy

≤ �+ C̃ (2πt)−n/2
Z
|y|≥δ

e−(
1
2t−a)|y|2dy.



954 45 Heat Equation

So by Lemma 45.5, it follows that

|pt ∗ f(x)− f(x)| ≤ �+ C̃ (2πt)
−n/2

δnqn

Ã
1

β
¡
1
2t − a

¢2
!
e−(

1
2t−a)δ2

and therefore

lim sup
t↓0

sup
|x|≤M

|pt ∗ f(x)− f(x)| ≤ �→ 0 as � ↓ 0.

Lemma 45.7. If q(x) is a polynomial on Rn, thenZ
Rn

pt(x− y)q(y)dy =
∞X
n=0

tn

n!

∆n

2n
q(x).

Proof. Since

f(t, x) :=

Z
Rn

pt(x− y)q(y)dy =

Z
Rn

pt(y)
X

aαβx
αyβdy =

X
Cα(t)x

α,

f(t, x) is a polynomial in x of degree no larger than that of q. Moreover
f(t, x) solves the heat equation and f(t, x) → q(x) as t ↓ 0. Since g(t, x) :=P∞

n=0
tn

n!
∆n

2n q(x) has the same properties of f and ∆ is a bounded operator
when acting on polynomials of a fixed degree we conclude f(t, x) = g(t, x).

Example 45.8. Suppose q(x) = x1x2 + x43, then

et∆/2q(x) = x1x2 + x43 +
t

2
∆
¡
x1x2 + x43

¢
+

t2

2! · 4∆
2
¡
x1x2 + x43

¢
= x1x2 + x43 +

t

2
12x23 +

t2

2! · 44!
= x1x2 + x43 + 6tx

2
3 + 3t

2.

Proposition 45.9. Suppose f ∈ C∞(Rn) and there exists a constant C <∞
such that X

|α|=2N+2
|Dαf(x)| ≤ CeC|x|

2

,

then

(pt ∗ f)(x) = “et∆/2f(x)” =
NX
k=0

tk

k!
∆kf(x) +O(tN+1) as t ↓ 0

Proof. Fix x ∈ Rn and let

fN (y) :=
X

|α|≤2N+1

1

α!
Dαf(x)yα.
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Then by Taylor’s theorem with remainder

|f(x+ y)− fN (y)| ≤ C |y|2N+2 sup
t∈[0,1]

eC|x+ty|
2

≤ C |y|2N+2 e2C[|x|2+|y|2] ≤ C̃ |y|2N+2 e2C|y|2

and thus ¯̄̄̄Z
Rn

pt(y)f(x+ y)dy −
Z
Rn

pt(y)fN (y)dy

¯̄̄̄
≤ C̃

Z
Rn

pt(y) |y|2N+2 e2C|y|2dy

= C̃tN+1
Z
Rn

p1(y) |y|2N+2 e2t2C|y|2dy = O(tN+1).

Since f(x+y) and fN(y) agree to order 2N +1 for y near zero, it follows thatZ
Rn

pt(y)fN(y)dy =
NX
k=0

tk

k!
∆kfN (0) =

NX
k=0

tk

k!
∆k
yf(x+ y)|y=0

=
NX
k=0

tk

k!
∆kf(x)

which completes the proof.

45.2 Representation Theorem and Regularity

In this section, suppose that Ω is a bounded domain such that Ω̄ is a C2 —
submanifold with C2 boundary and for T > 0 let ΩT := (0, T )×Ω, and

ΓT := ([0, T ]× ∂Ω) ∪ ({0} ×Ω) ⊂ bd(ΩT ) = ([0, T ]× ∂Ω) ∪ ({0, T} ×Ω)

as in Figure 45.1 below.

Theorem 45.10 (Representation Theorem). Suppose u ∈ C2,1(Ω̄T )
(Ω̄T = Ω̄T = [0, T ]×Ω) solves ut = 1

2 4u+ f on Ω̄T . Then

u(T, x) =

Z
Ω

pT (x− y)u(0, y)dy +

Z
[0,T ]×Ω

pT−t(x− y)f(t, y)dydt

+
1

2

Z
[0,T ]×∂Ω

·
∂pT−t
∂ny

(x− y)u(t, y)− pT−t(x− y)
∂u

∂n
(y)

¸
dσ(y)dt

(45.6)
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Fig. 45.1. A cylindrical region ΩT and the parabolic boundary ΓT .

Proof. For v ∈ C2,1([0, T ]×Ω), integration by parts showsZ
ΩT

fvdydt =

Z
ΩT

v(ut − 1
2
4v)dydt

=

Z
ΩT

(−vt + 1
2
∇v ·∇u)dydt+

Z
Ω

vu
¯̄̄t=T
t=0

dy

+
1

2

Z
[0,T ]×∂Ω

v
∂v

∂n
dtdσ

=

Z
ΩT

(−vt − 1
2
4v)udydt+

Z
Ω

vu
¯̄̄T
0
dy

+
1

2

Z
[0,T ]×∂Ω

µ
∂u

∂n
u− v

∂u

∂n

¶
dσ dt.

Given � > 0, taking v(t, y) := pT+�−t(x − y) (note that vt + 1
2 4v = 0 and

v ∈ C2,1([0, T ]×Ω)) impliesZ
[0,T ]×Ω

f(t, y)pT+�−t(x− y)dydt = 0 +

Z
Ω

p�(x− y)u(t, y)dy

−
Z
Ω

pT+�(x− y)u(t, y)dy

+
1

2

Z
[0,T ]×∂Ω

"
∂pT+�−t(x−y)

∂ny
u(t, y)

−pT+�−t(x− y) ∂u∂n (y)

#
dσ(y)dt

Let � ↓ 0 above to complete the proof.
Corollary 45.11. Suppose f := 0 so ut(t, x) = 1

24u(t, x). Then u ∈
C∞ ((0, T )×Ω) .
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Proof. Extend pt(x) for t ≤ 0 by setting pt(x) := 0 if t ≤ 0. It is not to
hard to check that this extension is C∞ on R× Rn\{0}. Using this notation
we may write Eq. (45.6) as

u(t, x) =

Z
Ω

pt(x− y)u(0, y)dy

+
1

2

Z
[0,∞)×∂Ω

·
∂pt−τ
∂ny

(x− y)u(t, y)− pT−t(x− y)
∂u

∂n
(y)

¸
dσ(y)dτ.

The result follows since now it permissible to differentiate under the integral
to show u ∈ C∞ ((0, T )×Ω) .

Remark 45.12. Since x → pt(x) is analytic one may show that x → u(t, x) is
analytic for all x ∈ Ω.

45.3 Weak Max Principles

Notation 45.13 Let aij , bj ∈ C
¡
Ω̄T

¢
satisfy aij = aji and for u ∈ C2(Ω) let

Lu(t, x) =
nX

i,j=1

aij(t, x)uxixj (x) +
nX
i=1

bi(t, x)uxi(x). (45.7)

We say L is elliptic if there exists θ > 0 such thatX
aij(t, x)ξiξj ≥ θ|ξ|2 for all ξ ∈ Rn and (t, x) ∈ Ω̄T .

Assumption 3 In this section we assume L is elliptic. As an example L =
1
2∆ is elliptic.

Lemma 45.14. Let L be an elliptic operator as above and suppose u ∈ C2 (Ω)
and x0 ∈ Ω is a point where u(x) has a local maximum. Then Lu(t, x0) ≤ 0
for all t ∈ [0, T ].
Proof. Fix t ∈ [0, T ] and set Bij = uxixj (x0), Aij := aij(t, x0) and let

{ei}ni=1 be an orthonormal basis for Rn such that Aei = λiei. Notice that
λi ≥ θ > 0 for all i. By the first derivative test, uxi(x0) = 0 for all i and hence

Lu(t, x0) =
X

AijBij =
X

AjiBij = tr(AB)

=
X

ei ·ABei =
X

Aei ·Bei =
X
i

λiei ·Bei

=
X
i

λi∂
2
eiu(t, x0) ≤ 0.

The last inequality if a consequence of the second derivative test which asserts
∂2vu(t, x0) ≤ 0 for all v ∈ Rn.
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Theorem 45.15 (Elliptic weak maximum principle). Let Ω be a bounded
domain and L be an elliptic operator as in Eq. (45.7). We now assume that
aij and bj are functions of x alone. For each u ∈ C

¡
Ω̄
¢ ∩ C2(Ω) such that

Lu ≥ 0 on Ω (i.e. u is L — subharmonic) we have

max
Ω̄

u ≤ max
bd(Ω)

u. (45.8)

Proof. Let us first assume Lu > 0 on Ω. If u and had an interior local
maximum at x0 ∈ Ω then by Lemma 45.14, Lu(x0) ≤ 0 which contradicts the
assumption that Lu(x0) > 0. So if Lu > 0 on Ω we conclude that Eq. (45.8)
holds.
Now suppose that Lu ≥ 0 on Ω. Let φ(x) := eλx1 with λ > 0, then

Lφ(x) =
¡
λ2a11(x) + b1(x)λ

¢
eλx1 ≥ λ (λθ + b1(x)) e

λx1 .

By continuity of b(x) we may choose λ sufficiently large so that λθ+b1(x) > 0
on Ω̄ in which case Lφ > 0 on Ω. The results in the first paragraph may now
be applied to u�(x) := u(x) + �φ(x) (for any � > 0) to learn

u(x) + �φ(x) = u�(x) ≤ max
bd(Ω)

u� ≤ max
bd(Ω)

u+ � max
bd(Ω)

φ for all x ∈ Ω̄.

Letting � ↓ 0 in this expression then implies
u(x) ≤ max

bd(Ω)
u for all x ∈ Ω̄

which is equivalent to Eq. (45.8).

Theorem 45.16 (Parabolic weak maximum principle). Assume u ∈
C1,2(ΩT \ΓT ) ∩C(ΩT ).

1. If ut − Lu ≤ 0 in ΩT then

max
ΩT

u = max
ΓT

u. (45.9)

2. If ut − Lu ≥ 0 in ΩT then min
ΩT

u = min
ΓT

u.

Proof. Item 1. follows from Item 2. by replacing u → −u, so it suffices
to prove item 1. We begin by assuming ut − Lu < 0 on Ω̄T and suppose for
the sake of contradiction that there exists a point (t0, x0) ∈ ΩT \ΓT such that
u(t0, x0) = max

ΩT

u.

1. If (t0, x0) ∈ ΩT (i.e. 0 < t0 < T ) then by the first derivative test
∂u
∂t (t0, x0) = 0 and by Lemma 45.14 Lu(t0, x0) ≤ 0. Therefore,

(ut − Lu) (t0, x0) = −Lu(t0, x0) ≥ 0
which contradicts the assumption that ut − Lu < 0 in ΩT .
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2. If (t0, x0) ∈ ΩT \ΓT with t0 = T, then by the first derivative test,
∂u
∂t (T, x0) ≥ 0 and by Lemma 45.14 Lu(t0, x0) ≤ 0. So again

(ut − Lu) (t0, x0) ≥ 0

which contradicts the assumption that ut − Lu < 0 in ΩT .

Thus we have proved Eq. (45.9) holds if ut − Lu < 0 on Ω̄T . Finally if
ut − Lu ≤ 0 on Ω̄T and � > 0, the function u�(t, x) := u(t, x) − �t satisfies
u�t − Lu� ≤ −� < 0. Therefore by what we have just proved

u(t, x)− �t ≤ max
ΩT

u� = max
ΓT

u� ≤ max
ΓT

u for all (t, x) ∈ Ω̄T .

Letting � ↓ 0 in the last equation shows that Eq. (45.9) holds.
Corollary 45.17. There is at most one solution u ∈ C1,2(ΩT \ΓT ) ∩ C(ΩT )
to the partial differential equation

∂u

∂t
= Lu with u = f on ΓT .

Proof. If there were another solution v, then w := u − v would solve
∂w
∂t = Lw with w = 0 on ΓT . So by the maximum principle in Theorem 45.16,
w = 0 on Ω̄T .
We now restrict back to L = 1

24 and we wish to see what can be said
when Ω = Rn — an unbounded set.

Theorem 45.18. Suppose u ∈ C([0, T ]×Rn) ∩ C2,1((0, T )×Rn),

ut − 1
2
4u ≤ 0 on [0, T ]×Rn

and there exists constants A, a <∞ such that

u(t, x) ≤ Aea|x|
2

for (t, x) ∈ (0, T )×Rn.

Then
sup

(t,x)∈[0,T ]×Rn
u(t, x) ≤ K := sup

x∈Rn
u(0, x).

Proof. Recall that

pt(x) =

µ
1

t

¶n/2
e−

1
2t |x|2 =

µ
1

t

¶n/2
e−

1
2tx·x

solves the heat equation

∂tpt(x) =
1

2
4pt(x). (45.10)
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Since both sides of Eq. (45.10) are analytic as functions in x, so1

∂pt
∂t
(ix) =

1

2
(4pt)(ix) = −1

2
4xpt(ix)

and therefore for all τ > 0 and t < τ

∂pτ−t
∂t

(ix) = −ṗτ−t(ix) = 1

2
4xpτ−t(ix).

That is to say the function

ρ(t, x) := pτ−t(ix) =
µ

1

τ − t

¶n/2
e

1
2(τ−t) |x|2 for 0 ≤ t < τ

solves the heat equation. (This can be checked directly as well.)
Let �, τ > 0 (to be chosen later) and set

v(t, x) = u(t, x)− �ρ(t, x) for 0 ≤ t ≤ τ/2.

Since ρ(t, x) is increasing in t,

v(t, x) ≤ Aea|x|
2 − �

µ
1

τ

¶n/2
e

1
2τ |x|2 for 0 ≤ t ≤ τ/2.

Hence if we require 1
2τ > a or τ < 1

2a it will follows that

lim
|x|→∞

"
sup

0≤t≤τ/2
v(t, x)

#
= −∞.

Therefore we may choose M sufficiently large so that

v(t, x) ≤ K := sup
z

u(0, z) for all |x| ≥M and 0 ≤ t ≤ τ/2.

Since µ
∂t − 4

2

¶
v =

µ
∂t − 4

2

¶
u ≤ 0

we may apply the maximum principle with Ω = B(0,M) and T = τ/2 to
conclude for (t, x) ∈ ΩT that

u(t, x)− �ρ(t, x) = v(t, x) ≤ sup
z∈Ω

v(0, z) ≤ K if 0 ≤ t ≤ τ/2.

1 Similarly since both sides of Eq. (45.10) are analytic functions in t, it follows that

∂

∂t
p−t(x) = −ṗt(x) = −1

2
4p−t.
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We may now let � ↓ 0 in this equation to conclude that

u(t, x) ≤ K if 0 ≤ t ≤ τ/2. (45.11)

By applying Eq. (45.11) to u(t+ τ/2, x) we may also conclude

u(t, x) ≤ K if 0 ≤ t ≤ τ.

Repeating this argument then enables us to show u(t, x) ≤ K for all 0 ≤ t ≤
T.

Corollary 45.19. The heat equation

ut − 1
2
4u = 0 on [0, T ]×Rn with u(0, ·) = f(·) ∈ C (Rn)

has at most one solution in the class of functions u ∈ C([0, T ] × Rn) ∩
C2,1((0, T )×Rn) which satisfy

u(t, x) ≤ Aea|x|
2

for (t, x) ∈ (0, T )×Rn

for some constants A and a.

Theorem 45.20 (Max Principle a la Hamilton). Suppose u ∈ C1,2
¡
[0, T ]×Rd¢ satisfies

1. u(t, x) ≤ Aea|x|
2

for some A, a ( for all t ≤ T )
2. u(0, x) ≤ 0 for all x
3. ∂u∂t ≤ 4u i.e. (∂t −4)u ≤ 0.
Then u(t, x) ≤ 0 for all (t, x) ∈ [0, T ]×Rd.
Proof. Special Case. Assume ∂u

∂t < 4u on [0, T ]× Rd, u(0, x) < 0 for
all x ∈ Rd and there exists M > 0 such that u(t, x) < 0 if |x| ≥ M and
t ∈ [0, T ].For the sake of contradiction suppose there is some point (t, x) ∈
[0, T ]×Rd such that u(t, x) > 0.
By the intermediate value theorem there exists τ ∈ [0, t] such that u(τ, x) =

0. In particular the set {u = 0} is a non-empty closed compact subset of
(0, T ]×B(0,M). Let

π : (0, T ]×B(0,M)→ (0, T ]

be projection onto the first factor, since {u 6= 0} is a compact subset of (0, T ]×
B(0,M) if follows that

t0 := min{t ∈ π ({u = 0})} > 0.

Choose a point x0 ∈ B(0,M) such that (t0, x0) ∈ {u = 0}, i.e. u(t0, x0) = 0,
see Figure 45.2 below. Since u(t, x) < 0 for all 0 ≤ t < t0 and x ∈ Rd,
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Fig. 45.2. Finding a point (t0, x0) such that t0 is as small as possible and u(t0, x0) =
0.

u(t0, x) ≤ 0 for all x ∈ Rd with u(t0, x0) = 0. This information along with the
first and second derivative tests allows us to conclude

∇u(t0, x0) = 0, 4u(t0, x0) ≤ 0 and ∂u

∂t
(t0, x0) ≥ 0.

This then implies that

0 ≤ ∂u

∂t
(t0, x0) < 4u(t0, x0) ≤ 0

which is absurd. Hence we conclude that u ≤ 0 on [0, T ]×Rd.
General Case: Let pt(x) = 1

td/2
e−

1
4t |x|2 be the fundamental solution to

the heat equation
∂tpt = 4pt.

Let τ > 0 to be determined later. As in the proof of Theorem 45.18, the
function

ρ(t, x) := pτ−t(ix) =
µ

1

τ − t

¶d/2
e

1
4(τ−t) |x|2 for 0 ≤ t < τ

is still a solution to the heat equation. Given � > 0, define, for t ≤ τ/2,

u�(t, x) = u(t, x)− �− �t− �ρ(t, x).

Then

(∂t −4)u� = (∂t −4)u− � ≤ −� < 0,
u�(0, x) = u(0, x)− � ≤ 0− � ≤ −� < 0
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and for t ≤ τ/2

u�(t, x) ≤ Aea|x|
2 − �− �

1

τd/2
e

1
4τ |x|2 .

Hence if we choose τ such that 1
4τ > a, we will have u�(t, x) < 0 for |x|

sufficiently large. Hence by the special case already proved, u�(t, x) ≤ 0 for
all 0 ≤ t ≤ τ

2 and � > 0. Letting � ↓ 0 implies that u(t, x) ≤ 0 for all
0 ≤ t ≤ τ/2. As in the proof of Theorem 45.18 we may step our way up by
applying the previous argument to u(t+ τ/2, x) and then to u(t+ τ, x), etc.
to learn u(t, x) ≤ 0 for all 0 ≤ t ≤ T.

45.4 Non-Uniqueness of solutions to the Heat Equation

Theorem 45.21 (See Fritz John §7). For any α > 1, let

g(t) :=

½
e−t

−α
t > 0

0 t ≤ 0 (45.12)

and define

u(t, x) =
∞X
k=0

g(k)(t)x2k

(2k)!
.

Then u ∈ C∞(R2) and

ut = uxx and u(0, x) := 0. (45.13)

In particular, the heat equation does not have unique solutions.

Proof. We are going to look for a solution to Eq. (45.13) of the form

u(t, x) =
∞X
n=0

gn(t)x
n

in which case we have (formally) that

0 = ut − uxx =
∞X
n=0

(ġn(t)x
n − gn(t)n(n− 1)xn−2)

=
∞X
n=0

[ġn(t)− (n+ 2)(n+ 1)gn+2(t)]xn.

This implies

gn+2 =
ġn

(n+ 2)(n+ 1)
. (45.14)

To simplify the final answer, we will now assume ux(0, x) = 0, i.e. g1 ≡ 0 in
which case Eq. (45.14) implies gn ≡ 0 for all n odd. We also have with g := g0,
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g2 =
ġ0
2 · 1 =

ġ

2!
, g4 =

ġ20

4 · 3 =
g̈

4!
, g6 =

g(3)

6!
. . . g2k =

g(k)

(2k)!

and hence

u(t, x) =
∞X
k=0

g(k)(t)x2k

(2k)!
. (45.15)

The function u(t, x) will solve ut = uxx for (t, x) ∈ R2 with u(0, x) = 0
provided the convergence in the sum is adequate to justify the above compu-
tations.
Now let g(t) be given by Eq. (45.12) and extend g to C\(−∞, 0] via g(z) =

e−z
−α
where

z−α = e−α log(z) = e−α(ln r+iθ) for z = reiθ with − π < θ < π.

In order to estimate g(k)(t) we will use of the Cauchy estimates on the contour
|z − t| = γt where γ is going to be chosen sufficiently close to 0. Now

Re(z−α) = e−α ln r cos(αθ) = |z|−α cos(αθ)
and hence

|g(z)| = e−Re(z
−α) = e−|z|

−α cos(αθ).

From Figure 45.3, we see

Fig. 45.3. Here is a picture of the maximum argument θm that a point z on ∂B(t, γt)
may attain. Notice that sin θm = γt/t = γ is independent of t and θm → 0 as γ → 0.

β(γ) := min
©
cos(αθ) : −π < θ < π and |reiθ − t| = γt

ª
is independent of t and β(γ)→ 1 as γ → 0. Therefore for |z− t| = γt we have

|g(z)| ≤ e−|z|
−αβ(γ) ≤ e−([γ+1]t)

−αβ(γ) = e−
β(γ)
1+γ t

−α ≤ e−
1
2 t
−α

provided γ is chosen so small that β(γ)
1+γ ≥ 1

2 .



45.5 The Heat Equation on the Circle and R 965

By for w ∈ B(t, tγ), the Cauchy integral formula and its derivative give

g(w) =
1

2πi

I
|z−t|=γt

g(z)

z − w
dz and

g(k)(w) =
k!

2πi

I
|z−t|=γt

g(z)

(z − w)k+1
dz

and in particular¯̄̄
g(k)(t)

¯̄̄
≤ k!

2π

I
|z−t|=γt

|g(z)|
|z − w|k+1

|dz|

≤ k!

2π
e−

1
2 t
−α 2πγt

|γt|k+1
=

k!

|γt|k
e−

1
2 t
−α

. (45.16)

We now use this to estimate the sum in Eq. (45.15) as

|u(t, x)| ≤
∞X
k=0

¯̄̄̄
g(k)(t)x2k

(2k)!

¯̄̄̄
≤ e−

1
2 t
−α
∞X
k=0

k!

(γt)k
|x|2k
(2k)!

≤ e−
1
2 t
−α
∞X
k=0

1

k!

µ
x2

γt

¶k
= exp

µ
x2

γt
− 1
2
t−α

¶
<∞.

Therefore lim
t↓0

u(t, x) = 0 uniformly for x in compact subsets of R. Similarly

one may use the estimate in Eq. (45.16) to show u is smooth and

uxx =
∞X
k=0

g(k)(t)(2k)(2k − 1)x2k−2
(2k)!

=
∞X
k=1

g(k)(t)x2(k−1)

(2(k − 1))!

=
∞X
k=0

g(k+1)(t)x2k

(2k)!
= ut.

45.5 The Heat Equation on the Circle and R

In this subsection, let SL := {Lz : z ∈ S} — be the circle of radius L. As usual
we will identify functions on SL with 2πL — periodic functions on R. Given
two 2πL periodic functions f, g, let

(f, g)L :=
1

2πL

Z πL

−πL
f(x)ḡ(x)dx

and denote HL := L22πL to be the 2πL — periodic functions f on R such
that (f, f)L <∞. By Fourier’s theorem we know that the functions χLk (x) :=
eikx/L with k ∈ Z form an orthonormal basis for HL and this basis satisfies
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d2

dx2
χLk = −

µ
k

L

¶2
χLk .

Therefore the solution to the heat equation on SL,

ut =
1

2
uxx with u(0, ·) = f ∈ HL

is given by

u(t, x) =
X
k∈Z
(f, χLk )e

− 1
2(

k
L)

2
teikx/L

=
X
k∈Z

Ã
1

2πL

Z πL

−πL
f(y)e−iky/Ldy

!
e−

1
2(

k
L)

2
teikx/L

=

Z πL

−πL
pLt (x− y)f(y)dy

where
pLt (x) =

1

2πL

X
k∈Z

e−
1
2 (

k
L)

2
teikx/L.

If f is L periodic then it is nL — periodic for all n ∈ N, so we also would learn

u(t, x) =

Z πnL

−πnL
pnLt (x− y)f(y)dy for all n ∈ N.

this suggest that we might pass to the limit as n → ∞ in this equation to
learn

u(t, x) =

Z
R
pt(x− y)f(y)dy

where

pt(x) := lim
n→∞ pnLt (x) = lim

L→∞
1

2πL

X
k∈Z

e−
1
2 (

k
L)

2
tei(

k
L)x

=
1

2π

Z
R
e−

1
2 ξ

2teiξxdξ =
1√
2πt

e−
x2

2t .

From this we conclude

u(t, x) =

Z
R
pt(x− y)f(y)dy =

Z πL

−πL

X
n∈Z

pt(x− y + 2πnL)f(y)dy

and we arrive at the identityX
n∈Z

1√
2πt

e−
(x+2πnL)2

2t =
X
n∈Z

pt(x+ 2πnL) =
1

2πL

X
k∈Z

e−
1
2(

k
L)

2
teikx/L

which is a special case of Poisson’s summation formula.



46

Abstract Wave Equation

In the next section we consider

utt −4u = 0 with u(x, 0) = f(x) and ut(x, 0) = g(x) for x ∈ Rn. (46.1)

Before working with this explicit equation we will work out an abstract Hilbert
space theory first.

Theorem 46.1 (Existence). Suppose A : H → H is a self-adjoint non-
positive operator, i.e. A∗ = A and A ≤ 0 and f ∈ D(A) and g ∈ g ∈
D
¡√−A¢ are given. Then

u(t) = cos(t
√−A)f + sin(t

√−A)√−A g (46.2)

satisfies:

1. u̇(t) = cos(t
√−A)√−A f + sin(t

√−A)g exists and is continuous.
2. ü(t) exists and is continuous

ü(t) = Au with u(0) = f and u̇(0) = g. (46.3)

3. d
dt

√−A u(t) = − cos(t√−A)A f + sin(t
√−A)√−Ag exists and is con-

tinuous.

Eq. (46.3) is Newton’s equation of motion for an infinite dimensional har-
monic oscillation. Given any solution u to Eq. (46.3) it is natural to define its
energy by

E(t, u) :=
1

2
[ku̇(t)k2 + kωu(t)k2] = K.E.+ P.E.

where ω :=
√−A. Notice that Eq. (46.3) becomes ü + ω2u = 0 with this

definition of ω.
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Lemma 46.2 (Conservation of Energy). Suppose u is a solution to Eq.
(46.3) such that d

dt

√−Au(t) exists and is continuous. Then Ė(t) = 0.

Proof.

Ė(t) = Re(u̇, ü) + Re(ωu, ωu̇) = Re(u̇,−ω2u)−Re(ω2u, u̇) = 0.

Theorem 46.3 (Uniqueness of Solutions). The only function u ∈
C2(R,H) satisfying 1) u(t) ∈ D(A) for all t and 2)

ü = Au with u(0) = 0 = u̇(0)

is the u(t) ≡ 0 for all t.
Proof. Let χM (x) = 1|x|≤M and define PM = χM (A) so that PM is

orthogonal projection onto the spectral subspace of H where −M ≤ A ≤ 0.
Then for all f ∈ D(A) we have PMAf = APMf and for all f ∈ H we have
PMf ∈ D((−A)α) for any α ≥ 0. Let uM (t) := PMu(t), then uM ∈ C2(R,H),
uM (t) ∈ D((−A)α) for all t and α, t→√−AuM (t) is continuous and

üM =
d2

dt2
(PMu) = PM ü = PMAu = APMu = AuM

with uM (0) = 0 = u̇M (0). By Lemma 46.2,

1

2
[ku̇M (t)k2 + kωuM (t)k2] = 1

2
[ku̇M (0)k2 + kωuM (0)k2] = 0

for all t. In particular this implies u̇M (t) = 0 and hence PMu(t) = uM (t) ≡ 0.
Letting M →∞ then shows u(t) ≡ 0.
Corollary 46.4. Any solution to ü = Au with u(0) ∈ D(A) and u̇ (0) ∈
D(
√−A) must satisfy t→√−Au(t) is C1.

46.1 Corresponding first order O.D.E.

Let v(t) = u̇(t), and

x(t) =

µ
u(t)
v(t)

¶
=

µ
u
u̇

¶
then

ẋ =

µ
u̇
ü

¶
=

µ
v
Au

¶
=

µ
0 I
A 0

¶
x = Bx with

x(0) =

µ
f
g

¶
,
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where

B :=

µ
0 I
A 0

¶
=

µ
0 I

−ω2 0
¶
.

Note formally that

etB
µ
f
g

¶
=

µ
u(t)
u̇(t)

¶
=

µ
cosωt f + sin tω

ω g
−ω sinωt f + cosωt g

¶
=

µ
cosωt sin tω

ω−ω sinωt cosωt
¶µ

f
g

¶
(46.4)

and this suggests that

etB =

µ
cosωt sin tω

ω−ω sinωt cosωt
¶

which is formally correct since

d

dt
etB =

µ−ω sinωt cosωt
−ω2 cosωt −ω sinωt

¶
=

µ
0 I

−ω2 0
¶µ

cosωt sin tω
ω−ω sinωt cosωt

¶
= BetB.

Since the energy form E(t) = ku̇k2 + kω uk2 is conserved, it is reasonable to
let

K = D(
√−A)⊕H :=

µ
D(
√−A)
H

¶
with inner product ¿

f
g

¯̄̄
f̃
g̃

À
= (g, g̃) + (ωf, ωf̃).

For simplicity we assumeNul(
√−A) = Nul(ω) = {0} in which caseK becomes

a Hilbert space and etB is a unitary evolution on K. Indeed,

ketB
µ
f
g

¶
k2K = k cosωtg − ω sinωtfk2 + kω(cos+ωf) + sinωtgk2

= k cosωtgk2 + kω sinωtfk2 + kω cosωtfk2 + k sinωtgk2
= kωfk2 + kgk2.

From Eq. (46.4), it easily follows that d
dt

¯̄̄
0
etB

µ
f
g

¶
exists iff g ∈ D(ω)

and f ∈ D(−ω2) = D(A). Therefore we define D(B) := D(A) ⊕ D(ω) =
D(A)⊕D

¡√−A¢and
B =

µ
0 I
A 0

¶
: D(B)→

D(ω)
⊕
H

= K
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Since B is the infinitesimal generator of a unitary semigroup, it follows that
B∗K = −B, i.e. B is skew adjoint. This may be checked directly as well as
follows.
Alternate Proof that B∗K = −B. Forµ

u
v

¶
,

µ
ũ
ṽ

¶
∈ D(B) = D(A)⊕D(ω),

hB
µ
u
v

¶
,

µ
ũ
ṽ

¶
i = h

µ
v
Au

¶
,

µ
ũ
ṽ

¶
i = (Au, ṽ) + (ωv, ωũ)

= (Au, ṽ)− (Av, ũ) = (u,Aṽ)− (v,Aũ)
and similarly

h
µ
u
v

¶
, B

µ
ũ
ṽ

¶
i = h

µ
u
v

¶
,

µ
ṽ
Aũ

¶
i = (ωu, ωṽ) + (v,Aũ)

= (−Au, ṽ) + (v,Aũ) = −hB
µ
u
v

¶
,

µ
ũ
ṽ

¶
i

which shows −B ⊂ B∗. Conversely if
µ
ũ
ṽ

¶
∈ D(B∗) and B∗

µ
ũ
ṽ

¶
=

µ
f
g

¶
,

then

hB
µ
u
v

¶ ¯̄̄
ũ
ṽ
i = hu

v

¯̄̄
f
g
i = (v, g) + (ωu, ωf) (46.5)

(Au, ṽ) + (ωv, ωũ) for all u ∈ D(A), v ∈ D(ω). Take u = 0 implies
(ωv, ωũ) = (v, g) for all v ∈ D(ω) which then implies ωũ ∈ D(ω∗) = D(ω)
and hence −Aũ = ω2ũ = g. (Note ũ ∈ D(A).) Taking v = 0 in Eq. (46.5)
implies (Au, ṽ) = (ωu, ωf) = (−Au, f). Since

Ran(A) = Nul(A)⊥ = {0}⊥ = H,

we find that f = −ṽ ∈ D(ω) since f ∈ D(ω). Therefore D(B∗) ⊂ D(B) and
for (ũ, ṽ) ∈ D(B∗) we have

B∗
µ
ũ
ṽ

¶
= −

µ −ṽ
−Aũ

¶
= −B

µ
ũ
ṽ

¶
.

46.2 Du Hamel’s Principle

Consider
ü = Au+ f(t) with u(0) = g and u̇(0) = h. (46.6)

Eq. (46.6) implies, with v = u̇, that

d

dt

µ
u
v

¶
=

µ
v
ü

¶
=

µ
v

Au+ f

¶
=

µ
0 I
A 0

¶µ
u
v

¶
+

µ
0
f

¶
.
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Therefore

µ
u
v

¶
(t) = e

t

 0 I
A 0

 µ
g
h

¶
+

Z t

0

e
(t−τ)

 0 I
A 0

 µ
0

f(τ)

¶
dτ

hence

u(t) = cos(t
√−A)g + sin(t

√−A)√−A h+

Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ.

Theorem 46.5. Suppose f(t) ∈ D(
√−A) for all t and that f(t) is continuous

relative to kfkA := kfk+ k
√−A fk. Then

u(t) :=

Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ

solves ü = Au+ f with u(0) = 0, u̇(0) = 0.

Proof. u̇(t) =
R t
0
cos((t− τ)

√−A)f(τ)dτ .

ü(t) = f(t)−
Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ

= f(t)−A

Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ.

So u̇ = Au+ f . Note u(0) = 0 = u̇(0).
Alternate. Let ω :=

√−A, then

u(t) =

Z t

0

sin((t− τ)ω)

ω
f(τ)dτ

=

Z t

0

sinωt cosωτ − sinωτ cosωt
ω

f(τ)dτ

and hence

u̇(t) =
sinωt cosωt− sinωt cosωt

ω
f(t)

+

Z t

0

(cosωt cosωτ + sinωτ sinωt) f(τ)dτ

=

Z t

0

(cosωt cosωτ + sinωτ sinωt) f(τ)dτ.

Similarly,
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ü(t) = (cosωt cosωt+ sinωt sinωt) f(t)

+

Z t

0

ω (− sinωt cosωτ + sinωτ cosωt) f(τ)dτ

= f(t)−
Z t

0

sin((t− τ)ω) ωf(τ)dτ = f(t)− ω2u(t)

= Au(t) + f(t).



47

Wave Equation on Rn

(Ref Courant & Hilbert Vol II, Chap VI §12.)
We now consider the wave equation

utt −4u = 0 with u(0, x) = f(x) and ut(0, x) = g(x) for x ∈ Rn. (47.1)

According to Section 46, the solution (in the L2 — sense) is given by

u(t, ·) = (cos(t
p
−4)f + sin(t

√−4)√−4 g. (47.2)

To work out the results in Eq. (47.2) we must diagonalize ∆. This is of course
done using the Fourier transform. Let F denote the Fourier transform in the
x — variables only. Then

¨̂u(t, k) + |k|2û(t, k) = 0 with
û(0, k) = f̂(k) and ˙̂u(t, k) = ĝ(k).

Therefore

û(t, k) = cos(t|k|)f̂(k) + sin(t|k|)|k| ĝ(k).

and so

u(t, x) = F−1
·
cos(t|k|)f̂(k) + sin(t|k|)|k| ĝ(k)

¸
(x),

i.e.

sin(t
√−4)√−4 g = F−1

·
sin(t|k|)
|k| ĝ(k)

¸
and (47.3)

cos(t
p
−4)f = F−1

h
cos(t|k|)f̂(k)

i
=

d

dt
F−1

·
sin(t|k|)
|k| ĝ(k)

¸
. (47.4)

.

Our next goal is to work out these expressions in x — space alone.
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47.1 n = 1 Case

As we see from Eq. (47.4) it suffices to compute:

sin(t
√−4)√−4 g = F−1

µ
sin(t|ξ|)
|ξ| ĝ(ξ)

¶
= lim

M→∞
F−1

µ
1|ξ|≤M

sin(t|ξ|)
|ξ| ĝ(ξ)

¶
= lim

M→∞
F−1

µ
1|ξ|≤M

sin(t|ξ|)
|ξ|

¶
B g. (47.5)

This inverse Fourier transform will be computed in Proposition 47.2 below
using the following lemma.

Lemma 47.1. Let CM denote the contour shown in Figure 47.1, then for
λ 6= 0 we have

lim
M→∞

Z
CM

eiλξ

ξ
dξ = 2πi1λ>0.

Proof. First assume that λ > 0 and let ΓM denote the contour shown in
Figure 47.1. Then¯̄̄̄

¯̄ Z
ΓM

eiλξ

ξ
dξ

¯̄̄̄
¯̄ ≤ Z π

0

¯̄̄
eiλMeiθ

¯̄̄
dθ = 2π

Z π

0

dθe−λM sin θ → 0 as M →∞.

Therefore

lim
M→∞

Z
CM

eiλξ

ξ
dξ = lim

M→∞

Z
CM+ΓM

eiλξ

ξ
dξ = 2πiresξ=0

µ
eiλξ

ξ

¶
= 2πi.

Fig. 47.1. A couple of contours in C.

If λ < 0, the same argument shows
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lim
M→∞

Z
CM

eiλξ

ξ
dξ = lim

M→∞

Z
CM+Γ̃M

eiλξ

ξ
dξ

and the later integral is 0 since the integrand is holomorphic inside the contour
CM + Γ̃M .

Proposition 47.2. lim
M→∞

F−1
³
1|ξ|≤M

sin(t|ξ|)
|ξ|

´
(x) = sgn(t)

√
π√
2
1|x|<|t|.

Proof. Let

IM =
√
2πF−1

µ
1|ξ|≤M

sin(t|ξ|)
|ξ|

¶
(x) =

Z
|ξ|≤M

sin(tξ)

ξ
eiξ·xdξ.

Then by deforming the contour we may write

IM =

Z
CM

sin tξ

ξ
eiξ·xdξ =

1

2i

Z
CM

eitξ − e−itξ

ξ
eiξ·xdξ

=
1

2i

Z
CM

ei(x+t)ξ − ei(x−t)ξ

ξ
dξ

By Lemma 47.1 we conclude that

lim
M→∞

IM =
1

2i
2πi(1(x+t)>0 − 1(x−t)>0) = πsgn(t) 1|x|<|t|.

(For the last equality, suppose t > 0. Then x − t > 0 implies x + t > 0 so
we get 0 and if x < −t, i.e. x + t < 0 then x − t < 0 and we get 0 again. If
|x| < t the first term is 1 while the second is zero. Similar arguments work
when t < 0 as well.)

Theorem 47.3. For n = 1,

sin(t
√−4)√−4 g(x) =

1

2

x+tZ
x−t

g(y) dλ(y) and (47.6)

cos(t
p
−4)g(x) = 1

2
[g(x+ t) + g(x− t)]. (47.7)

In particular

u(t, x) =
1

2
(f(x+ t) + f(x− t)) +

1

2

x+tZ
x−t

g(y) dy (47.8)

is the solution to the wave equation (47.2).
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Proof. From Eq. (47.5) and Proposition 47.2 we find

sin(t
√−4)√−4 g(x) = sgn(t)

1

2

Z
R

1|x−y|>|t| g(y) dy

= sgn(t)
1

2

x+|t|Z
x−|t|

g(y) dy =
1

2

x+tZ
x−t

g(y) dy.

Differentiating this equation in t gives Eq. (47.7).
If we have a forcing term, so ü = ux x+h, with u(0, ·) = 0 and ut(0, ·) = 0,

then

u(t, x) =

Z t

0

sin((t− τ)
√−4)√−4 h(τ, x)dτ =

1

2

Z t

0

dτ

x+t−τZ
x−t+τ

dyh(τ, y)

=
1

2

Z t

0

dτ

t−τZ
−(t+τ)

drh(τ, x+ r).

47.1.1 Factorization method for n = 1

Writing the wave equation as

0 =
¡
∂2t − ∂2x

¢
u = (∂t + ∂x)(∂t − ∂x)u = (∂t + ∂x)v

with v := (∂t − ∂x)u implies v(t, x) = v(0, x− t) with

v(0, x) = ut(0, x)− ux(0, x) = g(x)− f 0(x).

Now u solves (∂t − ∂x)u = v, i.e. ∂tu = ∂xu+ v. Therefore

u(t, x) = et∂xu(0, x) +

Z t

0

e(t−τ)∂x v(τ, x)dτ

= u(0, x+ t) +

Z t

0

v(τ, x+ t− τ)dτ

= u(0, x+ t) +

Z t

0

v(0, x+ t− 2τ| {z }
s

)dτ

= u(0, x+ t) +
1

2

Z t

−t
v(0, x+ s)ds

= f(x+ t) +
1

2

Z t

−t
(g(x+ s)− f 0(x+ s))ds

= f(x+ t)− 1
2
f(x+ s)

¯̄̄s=t
s=−t

+
1

2

Z t

−t
g(x+ s)ds

=
f(x+ t) + f(x− t)

2
+
1

2

Z t

−t
g(x+ s)ds
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which is equivalent to Eq. (47.8).

47.2 Solution for n = 3

Given a function f : Rn → R and t ∈ R let

f̄(x; t) :=

Z
−
S2

f(x+ tω)dσ(ω) =

Z
−
Z
|y|=|t|

f(x+ y)dσ(y).

Theorem 47.4. For f ∈ L2
¡
R3
¢
,

sin
¡√−∆t

¢
√−∆ f = F−1

·
sin |ξ|t
|ξ| f̂(ξ)

¸
(x) = tf̄(x; t)

and

cos
³√−∆t

´
g =

d

dt

£
tf̄(x; t)

¤
.

In particular the solution to the wave equation (47.1) for n = 3 is given by

u(t, x) =
∂

∂t
(t f̄(x; t)) + t g(x; t)

=
1

4π

Z
|ω|=1

(tg(x+ tω) + f(x+ tω) + t∇f(x+ tω) · ω)dσ(ω).

Proof. Let gM := F−1
h
sin |ξ|t
|ξ| 1|ξ|≤M

i
, then by symmetry and passing to

spherical coordinates,

(2π)
3/2

gM (x) =

Z
|ξ|≤M

sin |ξ|t
|ξ| eiξ·xdξ =

Z
|ξ|≤M

sin |ξ|t
|ξ| ei|x|ξ3dξ

=

Z M

0

dρρ2
Z 2π

0

dθ

Z π

0

dφ
sin ρt

ρ
eiρ|x| cosφ sinφ

= 2π

Z M

0

dρ sin ρt
eiρ|x| cosφ

−i|x|
¯̄̄π
0

= 2π

Z M

0

dρ sin ρt
eiρ|x| − e−iρ|x|

i|x| =
4π

|x|
Z M

0

sin ρt sin ρ |x| dρ.

Using

sinA sinB =
1

2
[cos(A−B)− cos(A+B)]

in this last equality, shows
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gM (x) = (2π)
−3/2 2π

|x|
Z M

0

[cos((t− |x|)ρ)− cos((t+ |x|)ρ)]dρ

= (2π)−3/2
π

|x|hM (|x|)

where

hM (r) :=

Z M

−M
[cos((t− r)α)− cos((t+ r)α)]dα,

an odd function in r. Since

F−1
·
sin |ξ|t
|ξ| f̂(ξ)

¸
= lim

M→∞
F−1(ĝM (ξ)f̂(ξ)) = lim

M→∞
(gM B f)(x)

we need to compute gM B f. To this end

gM B f(x) =

µ
1

2π

¶3
π

Z
R3

1

|y|hM (|y|)f(x− y)dy

=

µ
1

2π

¶3
π

Z ∞
0

dρ
hM (ρ)

ρ

Z
|y|=ρ

f(x− y)dσ(y)

=

µ
1

2π

¶3
π

Z ∞
0

dρ
hM (ρ)

ρ
4πρ2

Z
−

|y|=ρ

f(x− y)dσ(y)

=
1

2π

Z ∞
0

dρ hM (ρ)ρf̄(x; ρ) =
1

4π

Z ∞
−∞

dρ hM (ρ)ρf̄(x; ρ)

where the last equality is a consequence of the fact that hM (ρ)ρf̄(x; ρ) is an
even function of ρ. Continuing to work on this expression suing ρ→ ρf̄(x; ρ)
is odd implies

gM B f(x) =
1

4π

Z ∞
−∞

dρ

Z M

−M
[cos((t− ρ)α)− cos((t+ ρ)α)]dα ρf̄(x; ρ)

=
1

2π

Z ∞
−∞

dρ

Z M

−M
cos((t− ρ)α)ρf̄(x; ρ)dα

=
1

2π
Re

Z M

−M
dρ

Z ∞
−∞

dαei(t−ρ)αρf̄(x; ρ)dα→ tf̄(x; t) as M →∞

using the 1 — dimensional Fourier inversion formula.

47.2.1 Alternate Proof of Theorem 47.4

Lemma 47.5. lim
M→∞

RM
−M cos(ρλ)dρ = 2πδ(λ).

Proof.
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−M
cos(ρλ)dρ =

Z M

−M
eiρλdρ

so that Z
R

φ(λ)

"Z M

−M
eiρλdρ

#
dλ→

Z
R

dρ

Z
R

dλφ(λ)eiλρ = 2πϕ(0)

by the Fourier inversion formula.
Proof. of Theorem 47.4 again.Z

sin t|ξ|
|ξ| eiξ·xdξ =

Z
sin tρ

ρ
eṫρ|x| cos θ sin θdθ dϕ ρ2 dρ

= 2π

Z
sin tρ

ρ

eiρ|x|λ

iρ|x|
¯̄̄1
λ=−1

dρ

=
4π

|x|
Z ∞
0

sin tρ sin ρ|x| dρ

=
2π

|x|
Z ∞
0

[cos(ρ(t− |x|))− cos(ρ(t+ |x|))] dρ

=
4π

|x|
Z ∞
−∞

[cos(ρ(t− |x|))− cos(ρ(t+ |x|))] dρ

=
8π2

|x| (δ(t− |x|)− δ(t+ |x|))

Therefore

F−1
µ
sin t|ξ|
|ξ|

¶
∗ g(x)

=

µ
1

2π

¶3
2π2

Z
R3

(δ(t− |y|)− δ(t+ |y|))
|y| g(x− y) dλ(y)

=
1

4π

Z ∞
0

(δ(t− ρ)− δ(t+ ρ))g(x+ ρω)
ρ2

ρ
dρ dσ(ω)

= 1t>0 t g(x; t)− 1t<0 (−t) g(x;−t)
= tg(x; t)

47.3 Du Hamel’s Principle

The solution to

utt = 4u+ f with u(0, x) = 0 and ut(0, x) = 0
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is given by

u(t, x) =
1

4π

Z
B(x,t)

f(t− |y − x|, y)
|y − x| dy =

1

4π

Z
|z|<t

f(t− |z|, x+ z)

|z| dz. (47.9)

Indeed, by Du Hamel’s principle,

u(t, x) =

Z t

0

sin((t− τ)
√−4)√−4 f(τ, x)dτ =

Z t

0

sin(τ
√−4)√−4 f(t− τ, x)dτ

=

Z t

0

τf(t− τ, x; τ)dτ =
1

4π

Z t

0

dτ t2
Z

|ω|=1

f(t− τ, x+ τω)

τ
dσ(ω)

=
1

4π

Z
B(t,x)

f(t− |y − x|, y)
|y − x| dy (let y = x+ z)

=
1

4π

Z
|z|<t

f(t− |z|, x+ z)

|z| dz.

Thinking of u(t, x) as pressure (47.9) says that the pressure at x at time t is
the “average" of the disturbance at time t− |y − x| at location y.

47.4 Spherical Means

Let n ≥ 2 and suppose u solves utt = 4u. Since∆ is invariant under rotations,
i.e. for R ∈ O(n) we have 4(u ◦R) = (4u) ◦R, it follows that u ◦R is also a
solution to the wave equation. Indeed,

(u(t, ·) ◦R)tt = utt(t, ·) ◦R = ∆u(t, ·) ◦R = 4(u(t, ·) ◦R).
By the linearity of the wave equation, this also implies, with dR denoting
normalized Haar measure on O(n), that

U(t, |x|) :=
Z

O(n)

(u(t, Rx) ◦R)dR

must be a radial solution of the Wave equation. This implies

Utt = 4xU(t, |x|) = 1

rn−1
∂r(r

n−1∂rU(t, r))r=|x| =
·
∂2rU(t, r) +

n− 1
r

∂rU(t, r)

¸
r=|x|

.

Now

U(t, |x|) =
Z
0(n)

u(t,Rx)dR =

Z
−

B(0,|x|)

u(t, y)dσ(y).

Using the translation invariance of ∆ the same argument as above gives the
following theorem.
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Theorem 47.6. Suppose utt = 4u and x ∈ Rn and let

U(t, r) := u(t, x; r) :=

Z
−

∂B(x,r)

u(t, y)dσ(y)

=

Z
−

∂B(0,1)

u(t, x+ rω)dσ(ω).

Then U solves
Utt =

1

rn−1
∂r(r

n−1Ur)

with

U(0, r) =

Z
−

∂B(0,1)

u(0, x+ rω)dσ(ω) = f̄(x; r)

Ut(0, r) = g(x; r).

Proof. This has already been proved, nevertheless, let us give another
proof which does not rely on using integration over O(n). To this hence we
compute

∂rU(t, r) = ∂r

Z
−

∂B(0,1)

u(t, x+ rω)dσ(ω)

=

Z
−

∂B(0,1)

∇u(t, x+ rω) · ωdσ(ω)

=
1

σ (Sn−1) rn−1

Z
|y|=r

∇u(t, x+ y) · ŷdσ(y)

=
1

σ (Sn−1) rn−1

Z
|y|≤r

∆u(t, x+ y)dy

=
1

σ (Sn−1) rn−1

Z r

0

dρ

Z
|y|=ρ

∆u(t, x+ y)dσ(y)

so that

1

rn−1
∂r(r

n−1Ur) =
1

rn−1
∂r

"
1

σ (Sn−1)

Z r

0

dρ

Z
|y|=ρ

∆u(t, x+ y)dσ(y)

#

=
1

σ (Sn−1) rn−1

Z
|y|=r

∆u(t, x+ y)dσ(y)

=

Z
−

|y|=r

∆u(t, x+ y)dσ(y)

=

Z
−

|y|=r

utt(t, x+ y)dσ(y) = Utt.
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We can now use the above result to solve the wave equation. For simplicity,
assume n = 3 and let V (t, r) = r u(t, x; r) = r U(t, r). Then for r > 0 we have

Vrr = 2Ur + r Urr = r(Urr +
2

r
Ur)

= r Utt = Vtt.

This is also valid for r < 0 because V (t, r) is odd in r. Indeed for r < 0, let
v(t, r) = V (t,−r), then Vrr(t, r) = Vrr(t,−r) = Vtt(t,−r) = Vtt(t, r). By our
solution to the one dimensional wave equation we find

V (t, r) =
1

2
(V (0, t+ r) + V (0, r − t)) +

1

2

r+tZ
r−t

Vt(0, y)dy.

Now suppose that u(0, x) = 0 and ut(0, x) = g(x), in which case

V (0, r) = 0 and Vt (0, r) = rg(x, r)

and the previous equation becomes
Then

V (t, r) =
1

2

r+tZ
r−t

yg(x, y)dy

and noting that
∂

∂r

¯̄̄
0
V (t, r) = u(t, x; 0) = u(t, x)

we learn
u(t, x) =

1

2
[tg(x; t)− (−t) g(x;−t)] = tg(x; t)

as before.

47.5 Energy methods

Theorem 47.7 (Uniqueness on Bounded Domains). Let Ω be a bounded
domain such that Ω̄ is a submanifold with C2 — boundary and consider the
boundary value problem

utt −4u = h on ΩT

u = f on (∂Ω × [0, T ]) ∪ (Ω × {t = 0})
ut = g on Ω × {t = 0}

If u ∈ C2(ΩT ) then u is unique.
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Proof. As usual, using the linearity of the equation, it suffices to consider
the special case where f = 0, g = 0 and h = 0 and to show this implies u ≡ 0.
Let

EΩ(t) =
1

2

Z
Ω

h
u̇(t, x)2 + |∇u(t, x)|2

i
dx.

Clearly by assumption, EΩ(0) = 0 while the usual computation shows

ĖΩ(t) = (u̇, ü)L2(Ω) + (∇u(t),∇u̇(t))L2(Ω)
= (u̇,∆u)L2(Ω) + (∇u(t),∇u̇(t))L2(Ω)
= −(∇u̇(t),∇u(t))L2(Ω) +

Z
∂Ω

u̇(t, x)
∂u(t, x)

∂n
dσ(x)

+ (∇u(t),∇u̇(t))L2(Ω)
= 0

wherein we have used u(t, x) = 0 implies u̇(t, x) = 0 for x ∈ ∂Ω.
From this we conclude that EΩ(t) = 0 and therefore u̇(t, x) = 0 and hence

u ≡ 0.
The following proposition is expected to hold given the finite speed of

propagation we have seen exhibited above for solutions to the wave equation.

Proposition 47.8 (Local Energy). Let x ∈ Rn, T > 0, utt = ∆u and define

e(t) := EB(x,T−t)(u; t) :=
1

2

Z
B(x,T−t)

£|u̇(t, y)|2 + |∇u(t, y)|2¤ dy.
Then e(t) is decreasing for 0 ≤ t ≤ T.

Proof. First recall that
d

dr

Z
B(x,r)

f dx =
d

dr

Z r

0

dρ

Z
|y−x|=ρ

f(y)dσ(y) =

Z
∂B(x,r)

f dσ.

Hence

ė(t) =
d

dt

Z
B(x,R−t)

{|u̇(t, y)|2 + |∇u(t, y)|2}dy

= −1
2

Z
∂B(x,R−t)

(|u̇|2 + |∇u|2)dσ +
Z

B(x,R−t)

[u̇ ü+∇u ·∇u̇] dm

= −1
2

Z
∂B(x,R−t)

(|u̇|2 + |∇u|2)dσ +
Z

B(x,R−t)

[u̇ ∆u+∇u ·∇u̇] dm

= −1
2

Z
∂B(x,R−t)

(|u̇|2 + |∇u|2)dσ + 2
Z

∂B(x,R−t)

u̇
∂u

∂n
dσ

=
1

2

Z
∂B(x,R−t)

{2 u̇ (∇u · n)− (|u̇|2 + |∇u|2)}dσ ≤ 0
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wherein we have used the elementary estimate,

2 (∇u · n) u̇ ≤ 2|∇u| |u̇| ≤ (|u̇|2 + |∇u|2).

Therefore e(t) ≤ e(0) = 0 for all t i.e. e(t) := 0.

Corollary 47.9 (Uniqueness of Solutions). Suppose that u is a classical
solution to the wave equation with u(0, ·) = 0 = ut(0, ·). Then u ≡ 0.
Proof. Proposition 47.8 shows

1

2

Z
B(x,T−t)

£|u̇(t, y)|2 + |∇u(t, y)|2¤ dy = EB(x,T )(0) = 0

for all 0 ≤ t < T and x ∈ Rn. This then implies that u̇(t, y) = 0 for all y ∈ Rn
and 0 ≤ t ≤ T and hence u ≡ 0.
Remark 47.10. This result also applies to certain class of weak type solutions
in x by first convolving u with an approximate (spatial) delta function, say
u�(t, x) = u(t, ·)∗ δ�(x). Then u� satisfies the hypothesis of Corollary 47.9 and
hence is 0. Now let � ↓ 0 to find u ≡ 0.
Remark 47.11. Proposition 47.8 also exhibits the finite speed of propagation
of the wave equation.

47.6 Wave Equation in Higher Dimensions

47.6.1 Solution derived from the heat kernel

Let
pnt (x) :=

1

(2πt)n/2
e−

1
2t |x|2

and simply write pt for p1t . Then

2

Z ∞
0

cosωt pλ(t)dt =

Z
R
eitωpλ(t)dt = e−λ∂

2
t /2eitω|t=0 = e−λω

2/2.

Taking ω =
√−∆ and writing u(t, x) := cos

¡√−∆t
¢
g(x) the previous iden-

tity gives
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2

Z ∞
0

u(t, x)
1√
2πλ

e−
1
2λ t

2

dt = 2

Z ∞
0

u(t, x) pλ(t)dt

= eλ∆/2g(x) =

Z
Rn

pnλ(y)g(x− y)dy

=

Z
Rn

1

(2πλ)n/2
e−

1
2λ |y|2g(x− y)dy

=
1

(2πλ)
n/2

Z ∞
0

dρe−
1
2λρ

2

Z
|y|=ρ

g(x− y)dσ(y)

=
σ(Sn−1)

(2πλ)
n/2

Z ∞
0

dρe−
1
2λρ

2

ρn−1ḡ(x; ρ),

and soZ ∞
0

u(t, x)e−
1
2λ t

2

dt =

r
πλ

2

σ(Sn−1)

(2πλ)n/2

Z ∞
0

dρe−
1
2λρ

2

ρn−1ḡ(x; ρ)

=

r
π

2

σ(Sn−1)

(2π)
n/2

λ−(n−1)/2
Z ∞
0

e−
1
2λ t

2

tn−1ḡ(x; t)dt.

Suppose n = 2k+ 1 and let cn :=
p

π
2
σ(Sn−1)
(2π)n/2

, then the above equation readsZ ∞
0

u(t, x)e−
1
2λ t

2

dt = cnλ
−k
Z ∞
0

e−
1
2λ t

2

t2kḡ(x; t)dt

= cn

Z ∞
0

µ
−1
t
∂t

¶k
e−

1
2λ t

2

t2kḡ(x; t)dt

I.B.P.
= cn

Z ∞
0

e−
1
2λ t

2

(∂tMt−1)
k £
t2kḡ(x; t)

¤
dt.

By the injectivity of the Laplace transform (after making the substitution
t→√t, this implies

cos
³√−∆t

´
g(x) = u(t, x) = cn (∂tMt−1)

k £
t2kḡ(x; t)

¤
= cn (∂tMt−1∂tMt−1 . . . ∂tMt−1)

£
t2kḡ(x; t)

¤
= cn∂t

 k−1 timesz }| {
Mt−1∂tMt−1 . . .Mt−1∂t

 £t2k−1ḡ(x; t)¤
= cn∂t

µ
1

t
∂t

¶k−1 £
t2k−1ḡ(x; t)

¤
.

Hence we have derived the following theorem.

Theorem 47.12. Suppose n = 2k + 1 is odd and let cn :=
p

π
2
σ(Sn−1)
(2π)n/2

, then



986 47 Wave Equation on Rn

cos
³√−∆t

´
g(x) = cn∂t

µ
1

t
∂t

¶k−1 £
t2k−1ḡ(x; t)

¤
and

sin
¡√−∆t

¢
√−∆ f(x) =

Z t

0

cos
³√−∆τ

´
f(x)dτ = cn

µ
1

t
∂t

¶k−1 £
t2k−1ḡ(x; t)

¤
.

Proof. For the last equality we have usedµ
1

t
∂t

¶k−1
t2k−1 = const. ∗ t2k−1−2(k−1) = const. ∗ t

so that
¡
1
t ∂t
¢k−1 £

t2k−1ḡ(x; t)
¤
= O(t) and in particular is 0 at t = 0.

47.6.2 Solution derived from the Poisson kernel

Suppose we want to write

e−|x| =
Z ∞
0

φ(s)ps(x)ds.

Since Z
R
e−|x|eiλxdx = 2Re

Z ∞
0

e−xeiλxdx = 2Re
µ

1

1− iλ

¶
=

2

1 + λ2

and Z
R
ps(x)e

iλxdx = es∂
2
x/2eiλx|x=0 = e−sλ

2/2

φ must satisfyZ ∞
0

φ(s)e−sλ
2/2ds =

2

1 + λ2
=

Z ∞
0

e−s(1+λ
2)/2ds =

Z ∞
0

e−s/2e−sλ
2/2ds.

from which it follows that φ(s) = e−s/2. Thus we have derived the formula

e−|x| =
Z ∞
0

(2πs)−1/2e−s/2e−
1
2sx

2

ds (47.10)

Let : H → H such that A = A∗ and A ≤ 0. By the spectral theorem, we
may “substitute” x = t

√−A into Eq. (47.10) to learn

e−t
√−A =

Z ∞
0

(2πs)−1/2e−s/2e
t2

2sAds

and in particular taking A = ∆ one finds
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e−t
√−∆ =

Z ∞
0

(2πs)−1/2e−s/2e
t2

2s∆ds

from which we conclude the convolution kernel Qt(x) for e−t
√−∆ is given by

Qt(x) =

Z ∞
0

(2πs)−1/2e−s/2pnt2s−1(x)ds =
Z ∞
0

(2πs)−1/2e−s/2
e−

s
2t2

|x|2

(2πt2s−1)n/2
ds

= (2π)−1/2
¡
2πt2

¢−n/2 Z ∞
0

s
n−1
2 e
−s 12

µ
1+ |x|2

t2

¶
ds

= (2π)−1/2
¡
2πt2

¢−n/2 Z ∞
0

s
n+1
2 e
−s 12

µ
1+ |x|2

t2

¶
ds

s
.

Making the substitution, u = s12

³
1 + |x|2

t2

´
in the previous integral shows

Qt(x) = (2π)
−1/2 ¡2πt2¢−n/2 "1

2

Ã
1 +

|x|2
t2

!#−n+1
2 Z ∞

0

s
n+1
2 e−s

ds

s

= (2π)−1/22
n+1
2 (2π)−n/2 t

¡
t2
¢−n+1

2

Ã
1 +

|x|2
t2

!−n+1
2

Γ

µ
n+ 1

2

¶
= 2

n+1
2 (2π)−

n+1
2 Γ

µ
n+ 1

2

¶
t³

t2 + |x|2
´n+1

2

= Γ

µ
n+ 1

2

¶
t

π
n+1
2

³
t2 + |x|2

´n+1
2

.

Theorem 47.13. Let

cn :=
Γ
¡
n+1
2

¢
π
n+1
2

Qt(x) = cn
t³

t2 + |x|2
´n+1

2

(47.11)

then

e−t
√−∆f(x) =

Z
Rn

Qt(x− y)f(y)dy. (47.12)

Notice that if u(t, x) := e−t
√−∆f(x), we have ∂2t u(t, x) =

¡√−∆¢2 u(t, x) =
−∆u(t, x) with u(0, x) = f(x). This explains why Qt is the same Poisson ker-
nel which we already saw in Eq. (43.36) of Theorem 43.31 above. To match
the two results, observe Theorem 43.31 is for “spatial dimension” n− 1 not n
as in Theorem 47.13.
Integrating Eq. (47.12) from t to ∞ then implies
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1√−∆e−t
√−∆f(x) =

−1√−∆e−τ
√−∆f(x)|∞τ=t

=

Z ∞
t

e−τ
√−∆f(x)dτ

=

Z
Rn

Z ∞
t

dτQτ (x− y)f(y)dy.

NowZ ∞
t

Qτ (x− y)dτ = cn

Z ∞
t

τ³
τ2 + |x|2

´n+1
2

dτ =
cn
1− n

³
τ2 + |x|2

´ 1−n
2 |∞τ=t

=
cn

n− 1
³
t2 + |x|2

´−n−1
2

and hence

1√−∆e−t
√−∆f(x) =

Z
Rn

cn
n− 1

³
t2 + |y|2

´−n−1
2

f(x− y)dy

and by analytic continuation,

1√−∆e(it−�)
√−∆f(x) =

1√−∆e−(�−it)
√−∆f(x)

=
cn

n− 1
Z
Rn

³
(�− it)2 + |y|2

´−n−1
2

f(x− y)dy

=
cn

n− 1
Z
Rn

³
|y|2 − (t− i�)

2
´−n−1

2

f(x− y)dy

and hence

1√−∆ sin
³
t
√−∆

´
f(x) = c0n lim

�↓0

Z
Rn
Im
³
|y|2 − (t− i�)

2
´−n−1

2

f(x− y)dy.

Now if |y| > |t| then

lim
�↓0

³
|y|2 − (t− i�)2

´−n−1
2

=
³
|y|2 − t2

´−n−1
2

is real so

lim
�↓0
Im
³
|y|2 − (t− i�)

2
´−n−1

2

= 0 if |y| > |t| .

Similarly if n is odd lim�↓0
³
|y|2 − (t− i�)

2
´−n−1

2

=
³
|y|2 − t2

´−n−1
2 ∈ R and

so

lim
�↓0
Im
³
|y|2 − (t− i�)2

´−n−1
2
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is a distribution concentrated on the sphere |y| = |t| which is the sharp prop-
agation again. See Taylor Vol. 1., p. 221— 225 for more on this approach. Let
us examine here the special case n = 3,

Im

Ã
1

|y|2 − (t− i�)
2

!
= Im

Ã
1

|y|2 − t2 + �2 + 2i�t

!
=

−2�t³
|y|2 − t2 + �2

´2
+ 4�2t2

so

I := lim
�↓0

Z
Rn
Im

Ã
1

|y|2 − (t− i�)
2

!
f(x− y)dy

= lim
�↓0

Z
Rn

−2�t³
|y|2 − t2 + �2

´2
+ 4�2t2

f(x− y)dy

= 4π lim
�↓0

Z ∞
0

ρ2
−2�t

(ρ2 − t2 + �2)2 + 4�2t2
f̄(x; ρ)dρ

= ct lim
�↓0

Z ∞
0

ρ2
�

(ρ2 − t2 + �2)2 + 4�2t2
f̄(x; ρ)dρ.

Make the change of variables ρ = t+ �s above to find

I = ct lim
�↓0

Z ∞
−t/�

(t+ �s)2 �2

(2�st+ �2s2 + �2)
2
+ 4�2t2

f̄(x; t+ �s)ds

= ct lim
�↓0

Z ∞
−t/�

(t+ �s)
2

(2st+ �s2 + �)2 + 4t2
f̄(x; t+ �s)ds

= ctf̄(x; t)

Z ∞
−∞

t2

4t2s2 + 4t2
ds =

c

4
tf̄(x; t)

Z ∞
−∞

1

s2 + 1
ds

=
c

4
πtf̄(x; t)

which up to an overall constant is the result that we have seen before.

47.7 Explain Method of descent n = 2

u(t, x) =
1

2

Z
−

B(x,t)

t g(y) + t2 h(y) + t∇g(y) · (y − x)

(t2 − |y − x|2)1/2 dy.

See constant coefficient PDE notes for more details on this.
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Sobolev Theory





48

Sobolev Spaces

Definition 48.1. For p ∈ [1,∞], k ∈ N and Ω an open subset of Rd, let

W k,p
loc (Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lploc(Ω) (weakly) for all |α| ≤ k} ,

W k,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω) (weakly) for all |α| ≤ k} ,

kfkWk,p(Ω) :=

X
|α|≤k

k∂αfkpLp(Ω)

1/p

if p <∞ (48.1)

and
kfkWk,p(Ω) =

X
|α|≤k

k∂αfkL∞(Ω) if p =∞. (48.2)

In the special case of p = 2, we write W k,2
loc (Ω) =: H

k
loc (Ω) and W k,2 (Ω) =:

Hk (Ω) in which case k·kWk,2(Ω) = k·kHk(Ω) is a Hilbertian norm associated
to the inner product

(f, g)Hk(Ω) =
X
|α|≤k

Z
Ω

∂αf · ∂αg dm. (48.3)

Theorem 48.2. The function, k·kWk,p(Ω) , is a norm which makes W k,p(Ω)
into a Banach space.

Proof. Let f, g ∈W k,p(Ω), then the triangle inequality for the p — norms
on Lp (Ω) and lp ({α : |α| ≤ k}) implies
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kf + gkWk,p(Ω) =

X
|α|≤k

k∂αf + ∂αgkpLp(Ω)

1/p

≤
X
|α|≤k

h
k∂αfkLp(Ω) + k∂αgkLp(Ω)

ip1/p

≤
X
|α|≤k

k∂αfkpLp(Ω)

1/p

+

X
|α|≤k

k∂αgkpLp(Ω)

1/p

= kfkWk,p(Ω) + kgkWk,p(Ω) .

This shows k·kWk,p(Ω) defined in Eq. (48.1) is a norm. We now show com-
pleteness.
If {fn}∞n=1 ⊂W k,p(Ω) is a Cauchy sequence, then {∂αfn}∞n=1 is a Cauchy

sequence in Lp(Ω) for all |α| ≤ k. By the completeness of Lp(Ω), there exists
gα ∈ Lp(Ω) such that gα = Lp— limn→∞ ∂αfn for all |α| ≤ k. Therefore, for
all φ ∈ C∞c (Ω),

hf, ∂αφi = lim
n→∞hfn, ∂

αφi = (−1)|α| lim
n→∞h∂

αfn, φi = (−1)|α| lim
n→∞hgα, φi.

This shows ∂αf exists weakly and gα = ∂αf a.e. This shows f ∈ W k,p(Ω)
and that fn → f ∈W k,p(Ω) as n→∞.

Example 48.3. Let u(x) := |x|−α for x ∈ Rd and α ∈ R. ThenZ
B(0,R)

|u(x)|p dx = σ
¡
Sd−1

¢ Z R

0

1

rαp
rd−1dr = σ

¡
Sd−1

¢ Z R

0

rd−αp−1dr

= σ
¡
Sd−1

¢ ·( Rd−αp
d−αp if d− αp > 0

∞ otherwise
(48.4)

and hence u ∈ Lploc
¡
Rd
¢
iff α < d/p. Now ∇u(x) = −α |x|−α−1 x̂ where

x̂ := x/ |x| . Hence if ∇u(x) is to exist in Lploc
¡
Rd
¢
it is given by −α |x|−α−1 x̂

which is in Lploc
¡
Rd
¢
iff α+1 < d/p, i.e. if α < d/p−1 = d−p

p . Let us not check

that u ∈ W 1,p
loc

¡
Rd
¢
provided α < d/p − 1. To do this suppose φ ∈ C∞c (Rd)

and � > 0, then

−hu, ∂iφi = − lim
�↓0

Z
|x|>�

u(x)∂iφ(x)dx

= lim
�↓0

(Z
|x|>�

∂iu(x)φ(x)dx+

Z
|x|=�

u(x)φ(x)
xi
�
dσ(x)

)
.

Since
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¯
Z
|x|=�

u(x)φ(x)
xi
�
dσ(x)

¯̄̄̄
¯ ≤ kφk∞ σ

¡
Sd−1

¢
�d−1−α → 0 as � ↓ 0

and ∂iu(x) = −α |x|−α−1 x̂ · ei is locally integrable we conclude that

−hu, ∂iφi =
Z
Rd

∂iu(x)φ(x)dx

showing that the weak derivative ∂iu exists and is given by the usual pointwise
derivative.

48.1 Mollifications

Proposition 48.4 (Mollification). Let Ω be an open subset of Rd, k ∈
N0 := N∪ {0} , p ∈ [1,∞) and u ∈ W k,p

loc (Ω). Then there exists un ∈ C∞c (Ω)
such that un → u in W k,p

loc (Ω).

Proof.Apply Proposition 29.12 with polynomials, pα (ξ) = ξα, for |α| ≤ k.

Proposition 48.5. C∞c (Rd) is dense in W k,p(Rd) for all 1 ≤ p <∞.

Proof. The proof is similar to the proof of Proposition 48.4 using Exercise
29.32 in place of Proposition 29.12.

Proposition 48.6. Let Ω be an open subset of Rd, k ∈ N0 := N∪ {0} and
p ≥ 1, then
1. for any α with |α| ≤ k, ∂α :W k,p (Ω)→W k−|α|,p (Ω) is a contraction.
2. For any open subset V ⊂ Ω, the restriction map u→ u|V is bounded from

W k,p (Ω)→W k,p (V ) .

3. For any f ∈ Ck (Ω) and u ∈W k,p
loc (Ω), the fu ∈W k,p

loc (Ω) and for |α| ≤ k,

∂α (fu) =
X
β≤α

µ
α

β

¶
∂βf · ∂α−βu (48.5)

where
¡
α
β

¢
:= α!

β!(α−β)! .

4. For any f ∈ BCk (Ω) and u ∈ W k,p
loc (Ω), the fu ∈ W k,p

loc (Ω) and for
|α| ≤ k Eq. (48.5) still holds. Moreover, the linear map u ∈ W k,p(Ω) →
fu ∈W k,p (Ω) is a bounded operator.

Proof. 1. Let φ ∈ C∞c (Ω) and u ∈W k,p (Ω) , then for β with |β| ≤ k−|α| ,

h∂αu, ∂βφi = (−1)|α|hu, ∂α∂βφi = (−1)|α|hu, ∂α+βφi = (−1)|β|h∂α+βu, φi
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from which it follows that ∂β(∂αu) exists weakly and ∂β(∂αu) = ∂α+βu. This
shows that ∂αu ∈W k−|α|,p (Ω) and it should be clear that k∂αukWk−|α|,p(Ω) ≤
kukWk,p(Ω) .
Item 2. is trivial.
3 - 4. Given u ∈W k,p

loc (Ω) , by Proposition 48.4 there exists un ∈ C∞c (Ω)

such that un → u in W k,p
loc (Ω) . From the results in Appendix A.1, fun ∈

Ck
c (Ω) ⊂W k,p(Ω) and

∂α (fun) =
X
β≤α

µ
α

β

¶
∂βf · ∂α−βun (48.6)

holds. Given V ⊂o Ω such that V̄ is compactly contained in Ω, we may use
the above equation to find the estimate

k∂α (fun)kLp(V ) ≤
X
β≤α

µ
α

β

¶°°∂βf°°
L∞(V )

°°∂α−βun°°Lp(V )
≤ Cα(f, V )

X
β≤α

°°∂α−βun°°Lp(V ) ≤ Cα(f, V ) kunkWk,p(V )

wherein the last equality we have used Exercise 48.36 below. Summing this
equation on |α| ≤ k shows

kfunkWk,p(V ) ≤ C(f, V ) kunkWk,p(V ) for all n (48.7)

where C(f, V ) :=
P
|α|≤k Cα(f, V ). By replacing un by un − um in the above

inequality it follows that {fun}∞n=1 is convergent inW k,p(V ) and since V was
arbitrary fun → fu in W k,p

loc (Ω). Moreover, we may pass to the limit in Eq.
(48.6) and in Eq. (48.7) to see that Eq. (48.5) holds and that

kfukWk,p(V ) ≤ C(f, V ) kukWk,p(V ) ≤ C(f, V ) kukWk,p(Ω)

Moreover if f ∈ BC (Ω) then constant C(f, V ) may be chosen to be indepen-
dent of V and therefore, if u ∈W k,p(Ω) then fu ∈W k,p(Ω).
Alternative direct proof of 4. We will prove this by induction on |α| .

If α = ei then, using Lemma 29.9,

−hfu, ∂iφi = −hu, f∂iφi = −hu, ∂i [fφ]− ∂if · φi
= h∂iu, fφi+ hu, ∂if · φi = hf∂iu+ ∂if · u, φi

showing ∂i (fu) exists weakly and is equal to ∂i (fu) = f∂iu+∂if ·u ∈ Lp (Ω) .
Supposing the result has been proved for all α such that |α| ≤ m with m ∈
[1, k). Let γ = α + ei with |α| = m, then by what we have just proved each
summand in Eq. (48.5) satisfies ∂i

£
∂βf · ∂α−βu¤ exists weakly and

∂i
£
∂βf · ∂α−βu¤ = ∂β+eif · ∂α−βu+ ∂βif · ∂α−β+eu ∈ Lp (Ω) .
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Therefore ∂γ (fu) = ∂i∂
α (fu) exists weakly in Lp (Ω) and

∂γ (fu) =
X
β≤α

µ
α

β

¶£
∂β+eif · ∂α−βu+ ∂βf · ∂α−β+eiu¤ =X

β≤γ

µ
γ

β

¶£
∂βf · ∂γ−βu¤ .

For the last equality see the combinatorics in Appendix A.1.

Theorem 48.7. Let Ω be an open subset of Rd, k ∈ N0 := N∪ {0} and p ∈
[1,∞). Then C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

Proof. Let Ωn := {x ∈ Ω : dist(x,Ω) > 1/n} ∩B (0, n) , then
Ω̄n ⊂ {x ∈ Ω : dist(x,Ω) ≥ 1/n} ∩B (0, n) ⊂ Ωn+1,

Ω̄n is compact for every n andΩn ↑ Ω as n→∞. Let V0 = Ω3, Vj := Ωj+3\Ω̄j

for j ≥ 1, K0 := Ω̄2 and Kj := Ω̄j+2 \Ωj+1 for j ≥ 1 as in figure 48.1. Then

1

0

Ω1

Ω5

Ω2

Ω4

Ω3

1

20

Fig. 48.1. Decomposing Ω into compact pieces. The compact sets K0, K1 and K2

are the shaded annular regions while V0, V1 and V2 are the indicated open annular
regions.

Kn @@ Vn for all n and ∪Kn = Ω. Choose φn ∈ C∞c (Vn, [0, 1]) such that
φn = 1 on Kn and set ψ0 = φ0 and

ψj = (1− ψ1 − · · ·− ψj−1)φj = φj

j−1Y
k=1

(1− φk)

for j ≥ 1. Then ψj ∈ C∞c (Vn, [0, 1]),



998 48 Sobolev Spaces

1−
nX

k=0

ψk =
nY

k=1

(1− φk)→ 0 as n→∞

so that
P∞

k=0 ψk = 1 on Ω with the sum being locally finite.
Let � > 0 be given. By Proposition 48.6, un := ψnu ∈ W k,p (Ω) with

supp(un) @@ Vn. By Proposition 48.4, we may find vn ∈ C∞c (Vn) such that
kun − vnkWk,p(Ω) ≤ �/2n+1 for all n. Let v :=

P∞
n=1 vn, then v ∈ C∞(Ω)

because the sum is locally finite. Since

∞X
n=0

kun − vnkWk,p(Ω) ≤
∞X
n=0

�/2n+1 = � <∞,

the sum
P∞

n=0 (un − vn) converges in W k,p (Ω) . The sum,
P∞

n=0 (un − vn) ,
also converges pointwise to u − v and hence u − v =

P∞
n=0 (un − vn) is in

W k,p (Ω) . Therefore v ∈W k,p (Ω) ∩ C∞(Ω) and

ku− vk ≤
∞X
n=0

kun − vnkWk,p(Ω) ≤ �.

Notation 48.8 Given a closed subset F ⊂ Rd, let C∞ (F ) denote those u ∈
C (F ) that extend to a C∞ — function on an open neighborhood of F.

Remark 48.9. It is easy to prove that u ∈ C∞ (F ) iff there exists U ∈ C∞
¡
Rd
¢

such that u = U |F . Indeed, suppose Ω is an open neighborhood of F, f ∈
C∞ (Ω) and u = f |F ∈ C∞ (F ) . Using a partition of unity argument (making
use of the open sets Vi constructed in the proof of Theorem 48.7), one may
show there exists φ ∈ C∞(Ω, [0, 1]) such that supp(φ) @ Ω and φ = 1 on a
neighborhood of F. Then U := φf is the desired function.

Theorem 48.10 (Density of W k,p (Ω) ∩ C∞
¡
Ω̄
¢
in W k,p (Ω)). Let Ω ⊂

Rd be a manifold with C0 — boundary, then for k ∈ N0 and p ∈ [1,∞),
W k,p (Ωo)∩C∞ ¡Ω̄¢ is dense in W k,p

¡
Ω0
¢
. This may alternatively be stated

by assuming Ω ⊂ Rd is an open set such that Ω̄o = Ω and Ω̄ is a manifold
with C0 — boundary, then W k,p (Ω) ∩ C∞ ¡Ω̄¢ is dense in W k,p (Ω) .

Before going into the proof, let us point out that some restriction on the
boundary of Ω is needed for assertion in Theorem 48.10 to be valid. For
example, suppose

Ω0 :=
©
x ∈ R2 : 1 < |x| < 2ª and Ω := Ω0 \ {(1, 2)× {0}}

and θ : Ω → (0, 2π) is defined so that x1 = |x| cos θ(x) and x2 = |x| sin θ(x),
see Figure 48.2. Then θ ∈ BC∞ (Ω) ⊂ W k,∞ (Ω) for all k ∈ N0 yet θ can
not be approximated by functions from C∞

¡
Ω̄
¢ ⊂ BC∞ (Ω0) in W 1,p (Ω) .

Indeed, if this were possible, it would follows that θ ∈W 1,p (Ω0) . However, θ is
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Fig. 48.2. The region Ω0 along with a vertical in Ω.

not continuous (and hence not absolutely continuous) on the lines {x1 = ρ}∩Ω
for all ρ ∈ (1, 2) and so by Theorem 29.30, θ /∈W 1,p (Ω0) .
The following is a warm-up to the proof of Theorem 48.10.

Proposition 48.11 (Warm-up). Let f : Rd−1 → R be a continuous func-
tion and Ω :=

©
x ∈ Rd : xd > f(x1, . . . , xd−1)

ª
and C∞(Ω̄) denote those

u ∈ C
¡
Ω̄
¢
which are restrictions of C∞ — functions defined on an open neigh-

borhood of Ω̄. Then for p ∈ [1,∞), C∞(Ω̄) ∩W k,p (Ω) is dense in W k,p (Ω) .

Proof. By Theorem 48.7, it suffices to show than any u ∈ C∞ (Ω) ∩
W k,p (Ω) may be approximated by elements of C∞

¡
Ω̄
¢∩W k,p (Ω) . For s > 0

let us(x) := u(x+ sed) which is defined for x ∈ Ω − sed. Since

Ω̄ =
©
x ∈ Rd : xd ≥ f(x1, . . . , xd−1)

ª
⊂ ©x ∈ Rd : xd + s > f(x1, . . . , xd−1)

ª
= Ω − sed

and ∂αus = (∂
αu)s for all α,

us ∈W k,p(Ω − sed) ∩ C∞ (Ω − sed) ⊂ C∞
¡
Ω̄
¢ ∩W k,p (Ω) .

These observations along with the strong continuity of translations in Lp (see
Proposition 11.13), implies lims↓0 ku− uskWk,p(Ω) = 0.

48.1.1 Proof of Theorem 48.10

Proof. By Theorem 48.7, it suffices to show than any u ∈ C∞ (Ω)∩W k,p (Ω)
may be approximated by elements of C∞

¡
Ω̄
¢∩W k,p (Ω) . To understand the

main ideas of the proof, suppose that Ω is the triangular region in Figure
48.3 and suppose that we have used a partition of unity relative to the cover
shown so that u = u1 + u2 + u3 with supp(ui) ⊂ Bi. Now concentrating on
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Fig. 48.3. Splitting and moving a function in C∞ (Ω) so that the result is in
C∞

¡
Ω̄
¢
.

u1 whose support is depicted as the grey shaded area in Figure 48.3. We now
simply translate u1 in the direction v shown in Figure 48.3. That is for any
small s > 0, let ws(x) := u1(x+ sv), then vs lives on the translated grey area
as seen in Figure 48.3. The function ws extended to be zero off its domain of
definition is an element of C∞

¡
Ω̄
¢
moreover it is easily seen, using the same

methods as in the proof of Proposition 48.11, that ws → u1 in W k,p (Ω) .
The formal proof follows along these same lines. To do this choose an at

most countable locally finite cover {Vi}∞i=0 of Ω̄ such that V̄0 ⊂ Ω and for
each i ≥ 1, after making an affine change of coordinates, Vi = (−�, �)d for
some � > 0 and

Vi ∩ Ω̄ = {(y, z) ∈ Vi : � > z > fi(y)}
where fi : (−�, �)d−1 → (−�, �), see Figure 48.4 below. Let {ηi}∞i=0 be a par-

Ω

Fig. 48.4. The shaded area depicts the support of ui = uηi.

tition of unity subordinated to {Vi} and let ui := uηi ∈ C∞ (Vi ∩Ω) . Given
δ > 0, we choose s so small that wi(x) := ui(x + sed) (extended to be zero
off its domain of definition) may be viewed as an element of C∞(Ω̄) and such
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that kui − wikWk,p(Ω) < δ/2i. For i = 0 we set w0 := u0 = uη0. Then, since
{Vi}∞i=1 is a locally finite cover of Ω̄, it follows that w :=

P∞
i=0wi ∈ C∞

¡
Ω̄
¢

and further we have

∞X
i=0

kui − wikWk,p(Ω) ≤
∞X
i=1

δ/2i = δ.

This shows

u− w =
∞X
i=0

(ui − wi) ∈W k,p(Ω)

and ku− wkWk,p(Ω) < δ. Hence w ∈ C∞
¡
Ω̄
¢∩W k,p (Ω) is a δ — approximation

of u and since δ > 0 arbitrary the proof is complete.

48.2 Difference quotients

Recall from Notation 29.14 that for h 6= 0

∂hi u(x) :=
u(x+ hei)− u(x)

h
.

Remark 48.12 (Adjoints of Finite Differences). For u ∈ Lp and g ∈ Lq,Z
Rd

∂hi u(x) g(x) dx =

Z
Rd

u(x+ hei)− u(x)

h
g(x) dx

= −
Z
Rd

u(x)
g(x− hei)− g(x)

−h dx

= −
Z
Rd

u(x)∂−hi g(x) dx.

We summarize this identity by (∂hi )
∗ = −∂−hi .

Theorem 48.13. Suppose k ∈ N0, Ω is an open subset of Rd and V is an
open precompact subset of Ω.

1. If 1 ≤ p <∞, u ∈W k,p(Ω) and ∂iu ∈W k,p(Ω), then

k∂hi ukWk,p(V ) ≤ k∂iukWk,p(Ω) (48.8)

for all 0 < |h| < 1
2dist(V,Ω

c).
2. Suppose that 1 < p ≤ ∞, u ∈W k,p(Ω) and assume there exists a constant

C(V ) <∞ such that

k∂hi ukWk,p(V ) ≤ C(V ) for all 0 < |h| < 1

2
dist(V,Ωc).
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Then ∂iu ∈ W k,p(V ) and k∂iukWk,p(V ) ≤ C(V ). Moreover if C :=

supV⊂⊂Ω C(V ) < ∞ then in fact ∂iu ∈ W k,p(Ω) and there is a constant
c <∞ such that

k∂iukWk,p(Ω) ≤ c
³
C + kukLp(Ω)

´
.

Proof. 1. Let |α| ≤ k, then

k∂α∂hi ukLp(V ) = k∂hi ∂αukLp(V ) ≤ k∂i∂αukLp(Ω)
wherein we have used Theorem 29.22 for the last inequality. Eq. (48.8) now
easily follows.
2. If k∂hi ukWk,p(V ) ≤ C(V ) then for all |α| ≤ k,

k∂hi ∂αukLp(V ) = k∂α∂hi ukLp(V ) ≤ C(V ).

So by Theorem 29.22, ∂i∂αu ∈ Lp(V ) and k∂i∂αukLp(V ) ≤ C(V ). From this
we conclude that k∂βukLp(V ) ≤ C(V ) for all 0 < |β| ≤ k + 1 and hence
kukWk+1,p(V ) ≤ c

£
C(V ) + kukLp(V )

¤
for some constant c.

Notation 48.14 Given a multi-index α and h 6= 0, let

∂αh :=
dY
i=1

¡
∂hi
¢αi

.

The following theorem is a generalization of Theorem 48.13.

Theorem 48.15. Suppose k ∈ N0, Ω is an open subset of Rd, V is an open
precompact subset of Ω and u ∈W k,p(Ω).

1. If 1 ≤ p <∞ and |α| ≤ k, then k∂αhukWk−|α|(V ) ≤ kukWk,p(Ω) for h small.
2. If 1 < p ≤ ∞ and k∂αhukWk,p(V ) ≤ C for all |α| ≤ j and h near 0, then

u ∈W k+j,p(V ) and k∂αukWk,p(V ) ≤ C for all |α| ≤ j.

Proof. Since ∂αh =
Q
i
∂αih , item 1. follows from Item 1. of Theorem 48.13

and induction on |α| .
For Item 2., suppose first that k = 0 so that u ∈ Lp(Ω) and k∂αhukLp(V ) ≤

C for |α| ≤ j. Then by Proposition 29.16, there exists {hl}∞l=1 ⊂ R \ {0} and
v ∈ Lp(V ) such that hl → 0 and liml→∞h∂αhcu, φi = hv, φi for all φ ∈ C∞c (V ) .
Using Remark 48.12,

hv, φi = lim
l→∞

h∂αhcu, φi = (−1)|α| liml→∞
hu, ∂α−hcφi = (−1)|α| hu, ∂αφi

which shows ∂αu = v ∈ Lp(V ). Moreover, since weak convergence decreases
norms,

k∂αukLp(V ) = kvkLp(V ) ≤ C.
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For the general case if k ∈ N, u ∈ W k,p(Ω) such that k∂αhukWk,p(V ) ≤ C,
then (for p ∈ (1,∞), the case p =∞ is similar and left to the reader)X

|β|≤k
k∂αh∂βukpLp(V ) =

X
|β|≤k

k∂β∂αhukpLp(V ) = k∂αhukpWk,p(V )
≤ Cp.

As above this implies ∂α∂βu ∈ Lp(V ) for all |α| ≤ j and |β| ≤ k and that

k∂αukp
Wk,p(V )

=
X
|β|≤k

k∂α∂βukpLp(V ) ≤ Cp.

48.3 Sobolev Spaces on Compact Manifolds

Theorem 48.16 (Change of Variables). Suppose that U and V are
open subsets of Rd, T ∈ Ck (U, V ) be a Ck — diffeomorphism such that
k∂αTkBC(U) < ∞ for all 1 ≤ |α| ≤ k and � := infU |detT 0| > 0. Then the
map T ∗ : W k,p (V ) → W k,p (U) defined by u ∈ W k,p (V ) → T ∗u := u ◦ T ∈
W k,p (U) is well defined and is bounded.

Proof. For u ∈W k,p (V )∩C∞ (V ) , repeated use of the chain and product
rule implies,

(u ◦ T )0 = (u0 ◦ T )T 0
(u ◦ T )00 = (u0 ◦ T )0 T 0 + (u0 ◦ T )T 00 = (u00 ◦ T )T 0 ⊗ T 0 + (u0 ◦ T )T 00

(u ◦ T )(3) =
³
u(3) ◦ T

´
T 0 ⊗ T 0 ⊗ T 0 + (u00 ◦ T ) (T 0 ⊗ T 0)0

+ (u00 ◦ T )T 0 ⊗ T 00 + (u0 ◦ T )T (3)
...

(u ◦ T )(l) =
³
u(l) ◦ T

´ l timesz }| {
T ⊗ · · ·⊗ T +

l−1X
j=1

³
u(j) ◦ T

´
pj

³
T 0, T 00, . . . , T (l+1−j)

´
.

(48.9)

This equation and the boundedness assumptions on T (j) for 1 ≤ j ≤ k implies
there is a finite constant K such that¯̄̄

(u ◦ T )(l)
¯̄̄
≤ K

lX
j=1

¯̄̄
u(j) ◦ T

¯̄̄
for all 1 ≤ l ≤ k.

By Hölder’s inequality for sums we conclude there is a constant Kp such that
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|α|≤k

|∂α (u ◦ T )|p ≤ Kp

X
|α|≤k

|∂αu|p ◦ T

and therefore

ku ◦ TkpWk,p(U) ≤ Kp

X
|α|≤k

Z
U

|∂αu|p (T (x)) dx.

Making the change of variables, y = T (x) and using

dy = |detT 0(x)| dx ≥ �dx,

we find

ku ◦ TkpWk,p(U) ≤ Kp

X
|α|≤k

Z
U

|∂αu|p (T (x)) dx

≤ Kp

�

X
|α|≤k

Z
V

|∂αu|p (y) dy = Kp

�
kukpWk,p(V ) . (48.10)

This shows that T ∗ :W k,p (V ) ∩C∞ (V )→W k,p (U)∩C∞ (U) is a bounded
operator. For general u ∈W k,p (V ) , we may choose un ∈W k,p (V )∩C∞ (V )
such that un → u in W k,p (V ) . Since T ∗ is bounded, it follows that T ∗un
is Cauchy in W k,p (U) and hence convergent. Finally, using the change of
variables theorem again we know,

kT ∗u− T ∗unkpLp(V ) ≤ �−1 ku− unkpLp(U) → 0 as n→∞

and therefore T ∗u = limn→∞ T ∗un and by continuity Eq. (48.10) still holds
for u ∈W k,p (V ) .
LetM be a compact Ck — manifolds without boundary, i.e.M is a compact

Hausdorff space with a collection of charts x in an “atlas” A such that x :
D(x) ⊂o M → R(x) ⊂o Rd is a homeomorphism such that

x ◦ y−1 ∈ Ck (y (D(x) ∩D(y))) , x (D(x) ∩D(y))) for all x, y ∈ A.

Definition 48.17. Let {xi}Ni=1 ⊂ A such that M = ∪Ni=1D(xi) and let
{φi}Ni=1 be a partition of unity subordinate do the cover {D(xi)}Ni=1 . We now
define u ∈W k,p(M) if u :M → C is a function such that

kukWk,p(M) :=
NX
i=1

°°(φiu) ◦ x−1i °°
Wk,p(R(xi))

<∞. (48.11)

Since k·kWk,p(R(xi))
is a norm for all i, it easily verified that k·kWk,p(M) is a

norm on W k,p(M).
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Proposition 48.18. If f ∈ Ck(M) and u ∈ W k,p (M) then fu ∈ W k,p (M)
and

kfukWk,p(M) ≤ C kukWk,p(M) (48.12)

where C is a finite constant not depending on u. Recall that f : M → R is
said to be Cj with j ≤ k if f ◦ x−1 ∈ Cj(R(x),R) for all x ∈ A.
Proof. Since

£
f ◦ x−1i

¤
has bounded derivatives on supp(φi ◦ x−1i ), it fol-

lows from Proposition 48.6 that there is a constant Ci <∞ such that°°(φifu) ◦ x−1i °°
Wk,p(R(xi))

=
°°£f ◦ x−1i ¤

(φiu) ◦ x−1i
°°
Wk,p(R(xi))

≤ Ci

°°(φiu) ◦ x−1i °°
Wk,p(R(xi))

and summing this equation on i shows Eq. (48.12) holds with C := maxi Ci.

Theorem 48.19. If {yj}Kj=1 ⊂ A such that M = ∪Kj=1D(yj) and {ψj}Kj=1 is
a partition of unity subordinate to the cover {D(yj)}Kj=1 , then the norm

|u|Wk,p(M) :=
KX
j=1

°°(ψju) ◦ y−1j °°
Wk,p(R(yj))

(48.13)

is equivalent to the norm in Eq. (48.11). That is to say the space W k,p (M)
along with its topology is well defined independent of the choice of charts and
partitions of unity used in defining the norm on W k,p (M) .

Proof. Since |·|Wk,p(M) is a norm,

|u|Wk,p(M) =

¯̄̄̄
¯
NX
i=1

φiu

¯̄̄̄
¯
Wk,p(M)

≤
NX
i=1

|φiu|Wk,p(M)

=
KX
j=1

°°°°°
NX
i=1

(ψjφiu) ◦ y−1j
°°°°°
Wk,p(R(yj))

≤
KX
j=1

NX
i=1

°°(ψjφiu) ◦ y−1j °°
Wk,p(R(yj))

(48.14)

and since xi ◦ y−1j and yj ◦ x−1i are Ck diffeomorphism and the sets
yj (supp(φi) ∩ supp(ψj)) and xi (supp(φi) ∩ supp(ψj)) are compact, an appli-
cation of Theorem 48.16 and Proposition 48.6 shows there are finite constants
Cij such that°°(ψjφiu) ◦ y−1j °°

Wk,p(R(yj))
≤ Cij

°°(ψjφiu) ◦ x−1i °°
Wk,p(R(xi))

≤ Cij

°°φiu ◦ x−1i °°
Wk,p(R(xi))
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which combined with Eq. (48.14) implies

|u|Wk,p(M) ≤
KX
j=1

NX
i=1

Cij

°°φiu ◦ x−1i °°
Wk,p(R(xi))

≤ C kukWk,p(M)

where C := maxi
PK

j=1Cij < ∞. Analogously, one shows there is a constant
K <∞ such that kukWk,p(M) ≤ K |u|Wk,p(M) .

Lemma 48.20. Suppose x ∈ A(M) and U ⊂o M such that U ⊂ Ū ⊂ D(x),
then there is a constant C <∞ such that°°u ◦ x−1°°

Wk,p(x(U))
≤ C kukWk,p(M) for all u ∈W k,p(M). (48.15)

Conversely a function u : M → C with supp(u) ⊂ U is in W k,p(M) iff°°u ◦ x−1°°
Wk,p(x(U))

<∞ and in any case there is a finite constant such that

kukWk,p(M) ≤ C
°°u ◦ x−1°°

Wk,p(x(U))
. (48.16)

Proof. Choose charts y1 := x, y2, . . . , yK ∈ A such that {D (yi)}Kj=1 is
an open cover of M and choose a partition of unity {ψj}Kj=1 subordinate to
the cover {D(yj)}Kj=1 such that ψ1 = 1 on a neighborhood of Ū . To construct
such a partition of unity choose Uj ⊂o M such that Uj ⊂ Ūj ⊂ D(yj), Ū ⊂ U1
and ∪Kj=1Uj =M and for each j let ηj ∈ Ck

c (D(yj), [0, 1]) such that ηj = 1 on
a neighborhood of Ūj . Then define ψj := ηj (1− η0) · · · (1− ηj−1) where by
convention η0 ≡ 0. Then {ψj}Kj=1 is the desired partition, indeed by induction
one shows

1−
lX

j=1

ψj = (1− η1) · · · (1− ηl)

and in particular

1−
KX
j=1

ψj = (1− η1) · · · (1− ηK) = 0.

Using Theorem 48.19, it follows that°°u ◦ x−1°°
Wk,p(x(U))

=
°°(ψ1u) ◦ x−1°°Wk,p(x(U))

≤ °°(ψ1u) ◦ x−1°°Wk,p(R(y1))

≤
KX
j=1

°°(ψju) ◦ y−1j °°
Wk,p(R(yj))

= |u|Wk,p(M) ≤ C kukWk,p(M)



48.3 Sobolev Spaces on Compact Manifolds 1007

which proves Eq. (48.15).
Using Theorems 48.19 and 48.16 there are constants Cj for j =

0, 1, 2 . . . , N such that

kukWk,p(M) ≤ C0

KX
j=1

°°(ψju) ◦ y−1j °°
Wk,p(R(yj))

= C0

KX
j=1

°°(ψju) ◦ y−11 ◦ y1 ◦ y−1j °°
Wk,p(R(yj))

≤ C0

KX
j=1

Cj

°°(ψju) ◦ x−1°°Wk,p(R(y1))

= C0

KX
j=1

Cj

°°ψj ◦ x−1 · u ◦ x−1°°Wk,p(R(y1))
.

This inequality along with K — applications of Proposition 48.6 proves Eq.
(48.16).

Theorem 48.21. The space (W k,p(M), k·kWk,p(M)) is a Banach space.

Proof. Let {xi}Ni=1 ⊂ A and {φi}Ni=1 be as in Definition 48.17 and choose
Ui ⊂o M such that supp(φi) ⊂ Ui ⊂ Ūi ⊂ D(xi). If {un}∞n=1 ⊂ W k,p(M)

is a Cauchy sequence, then by Lemma 48.20,
©
un ◦ x−1i

ª∞
n=1
⊂ W k,p(xi(Ui))

is a Cauchy sequence for all i. Since W k,p(xi(Ui)) is complete, there exists
vi ∈ W k,p(xi(Ui)) such that un ◦ x−1i → ṽi in W k,p(xi(Ui)). For each i let
vi := φi (ṽi ◦ xi) and notice by Lemma 48.20 that

kvikWk,p(M) ≤ C
°°vi ◦ x−1i °°

Wk,p(xi(Ui))
= C kṽikWk,p(xi(Ui))

<∞

so that u :=
PN

i=1 vi ∈W k,p(M). Since supp(vi − φiun) ⊂ Ui, it follows that

ku− unkWk,p(M) =

°°°°°
NX
i=1

vi −
NX
i=1

φiun

°°°°°
Wk,p(M)

≤
NX
i=1

kvi − φiunkWk,p(M)

≤ C
NX
i=1

°°[φi (ṽi ◦ xi − un)] ◦ x−1i
°°
Wk,p(xi(Ui))

= C
NX
i=1

°°£φi ◦ x−1i ¡
ṽi − un ◦ x−1i

¢¤°°
Wk,p(xi(Ui))

≤ C
NX
i=1

Ci

°°ṽi − un ◦ x−1i
°°
Wk,p(xi(Ui))

→ 0 as n→∞
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wherein the last inequality we have used Proposition 48.6 again.

48.4 Trace Theorems

For many more general results on this subject matter, see E. Stein [17, Chapter
VI].

Notation 48.22 Let Hd :=
©
x ∈ Rd : xd > 0

ª
be the open upper half space

inside of Rd and if D > 0 let

Hd
D :=

©
x ∈ Hd : 0 < xd < D

ª
.

Lemma 48.23. Suppose k ≥ 1 and D > 0.

1. If p ∈ [1,∞) and Ck
c

³
Hd
´
,then for all α ∈ Nd−10 × {0} ⊂ Nd0 with |α| ≤

k − 1,

k∂αukLp(∂Hd) ≤ D−1/p k∂αukLp(HdD) +
D

p−1
p

p1/p

°°∂α+edu°°
Lp(HdD)

. (48.17)

In particular there there is a constant C = C(p, k,D, d) such that

kukWk−1,p(∂Hd) ≤ C(p,D, k, d) kukWk,p(Hd) . (48.18)

2. For p =∞ and u ∈W k,∞ ¡Hd
¢
, there is a continuous version ũ of u. The

function ũ is in BCk−1 ¡Hd
¢
and has the property that ∂αũ extends to a

continuous function vα ∈ BC
¡
H̄
¢
for all |α| < k and the function ũ|∂Hd

is in BCk−1 ¡∂H̄¢ and
kũkBCk−1(∂Hd) ≤ kukWk,∞(HdD)

for any D > 0.

Proof. 1. Write x ∈ Hd as x = (y, z) ∈ Rd−1 × [0,∞) and suppose
α ∈ Nd−10 × {0} ⊂ Nd0 with |α| ≤ k − 1. Then by the fundamental theorem of
calculus,

∂αu(y, 0) = ∂αu(y, z)−
Z z

0

∂αut(y, t)dt (48.19)

which implies

|∂αu(y, 0)| 1[0,D](z) ≤ |∂αu(y, z)| 1[0,D](z) + 1[0,D](z)
Z z

0

|∂αut(y, t)| dt.

Taking the Lp(Hd
D) — norm of this last equation implies

k∂αukLp(∂HdD) ·D
1/p ≤ k∂αukLp(HdD) +B
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where

Bp =

Z
HdD

µ
1[0,D](z)

Z z

0

|∂αut(y, t)| dt
¶p

dydz

≤
Z
HdD

µ
1[0,D](z) · zp/q

Z z

0

|∂αut(y, t)|p dt
¶
dydz

≤
Z
HdD

Ã
1[0,D](z) · zp/q

Z D

0

|∂αut(y, t)|p dt
!
dydz

=
°°∂α+edu°°p

Lp(HdD)
Dp/q+1

p/q + 1
=

Dp

p

°°∂α+edu°°p
Lp(HdD)

.

Putting these two equations together shows

k∂αukLp(∂HdD) ≤ D−1/p
·
k∂αukLp(HdD) +

D

p1/p

°°∂α+edu°°
Lp(HdD)

¸
which is the same as Eq. (48.17).
Suppose that p =∞ and u ∈W k,∞ ¡Hd

¢
. By Proposition 29.29, we know

that ∂αu has a Lipschitz continuous version vα on Hd for each |α| < k. Being
Lipschitz, each vα has a unique extension to a continuous function Hd. Let

η ∈ C∞c (B(0, 1) ∩
¡−Hd

¢
, [0,∞))

be chosen so that
R
Rn η(x)dx = 1 and ηm(x) = mnη(mx) and let um :=

u ∗ ηm = vo ∗ ηm. Since supp(η) ⊂
¡−Hd

¢
as in Figure 48.5, um ∈ C∞

³
Hd
´
,

η

Fig. 48.5. The support of η.

∂αum = ∂αu ∗ ηm = vα ∗ ηm for all |α| < k and

kum − unkBCk−1(Hd∩B(0,R)) → 0 as m,n→∞.

Therefore ∂αum → vα uniformly on compact subsets of Hd for all |α| < k.

Hence v0 ∈ Ck−1 ¡Hd
¢
and ∂αv0 = vα extends to Hd for all |α| < k and

v0|∂Hd ∈ BCk−1 ¡∂H̄¢ .
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Theorem 48.24 (Trace Theorem). Suppose k ≥ 1 and Ω ⊂o Rd such that
Ω̄ is a compact manifold with Ck — boundary. Then there exists a unique linear
map T :W k,p (Ω)→W k−1,p (∂Ω) such that Tu = u|∂Ω for all u ∈ Ck

¡
Ω̄
¢
.

Proof. Choose a covering {Vi}Ni=0 of Ω̄ such that V̄0 ⊂ Ω and for each
i ≥ 1, there is Ck — diffeomorphism xi : Vi → R(xi) ⊂o Rd such that

xi (∂Ω ∩ Vi) = R(xi) ∩ bd(Hd) and

xi (Ω ∩ Vi) = R(xi) ∩Hd

as in Figure 48.6. Further choose φi ∈ C∞c (Vi, [0, 1]) such that
PN

i=0 φi = 1

(Ω )

Fig. 48.6. Covering Ω (the shaded region) as described in the text.

on a neighborhood of Ω̄ and set yi := xi|∂Ω∩Vi for i ≥ 1. Given u ∈ Ck
¡
Ω̄
¢
if

p <∞ and u ∈W k,∞(Ω) if p =∞, we compute
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ku|∂Ω̄kWk−1,p(∂Ω̄) =
NX
i=1

°°(φiu) |∂Ω̄ ◦ y−1i °°
Wk−1,p(R(xi)∩bd(Hd))

=
NX
i=1

°°£(φiu) ◦ x−1i ¤ |bd(Hd)°°Wk−1,p(R(xi)∩bd(Hd))

≤
NX
i=1

Ci

°°£(φiu) ◦ x−1i ¤°°
Wk,p(R(xi))

≤ maxCi ·
NX
i=1

°°£(φiu) ◦ x−1i ¤°°
Wk,p(R(xi)∩Hd)

+
°°£(φ0u) ◦ x−10 ¤°°Wk,p(R(x0))

≤ C kukWk,p(Ω)

where C = max {1, C1, . . . , CN} . The proof is complete if p =∞ and follows
by the B.L.T. Theorem 2.68 and the fact that Ck

¡
Ω̄
¢
is dense insideW k,p (Ω)

if p <∞.

Notation 48.25 In the sequel will often abuse notation and simply write u|∂Ω̄
for the “function” Tu ∈W k−1,p(∂Ω̄).

Proposition 48.26 (Integration by parts). Suppose Ω ⊂o Rd such that
Ω̄ is a compact manifold with C1 — boundary, p ∈ [1,∞] and q = p

p−1 is the
conjugate exponent. Then for u ∈W 1,p (Ω) and v ∈W 1,q (Ω) ,Z

Ω

∂iu · vdm = −
Z
Ω

u · ∂ivdm+

Z
∂Ω̄

u|∂Ω̄ · v|∂Ω̄nidσ (48.20)

where n : ∂Ω̄ → Rd is unit outward pointing norm to ∂Ω̄.

Proof. Equation 48.20 holds for u, v ∈ C2
¡
Ω̄
¢
and therefore for (u, v) ∈

W k,p (Ω)×W k,q (Ω) since both sides of the equality are continuous in (u, v) ∈
W k,p (Ω)×W k,q (Ω) as the reader should verify.
Warning BRUCE: We might need p ∈ (1,∞) here. To fix this, I think if

p = 1 one should replace u by uM := ψM (u) where ψM (x) =
R x
0
α(y/m)dy

and α ∈ Cc (R, [0, 1) such that α = 1 on [−1, 1]. Then uM ∈ W 1,∞(Ω) and
uM → u in W 1,1 (Ω) and hence the argument given above goes through. We
need only approximate v ∈ W 1,q(Ω) with q < ∞ now. We should then pass
to the limit as M →∞.

Definition 48.27. Let W k,p
0 (Ω) := C∞c (Ω)

Wk,p(Ω)
be the closure of C∞c (Ω)

inside W k,p (Ω) .

Remark 48.28. Notice that if T : W k,p (Ω) → W k−1,p ¡∂Ω̄¢ is the trace op-
erator in Theorem 48.24, then T

³
W k,p
0 (Ω)

´
= {0} ⊂ W k−1,p ¡∂Ω̄¢ since

Tu = u|∂Ω̄ = 0 for all u ∈ C∞c (Ω).
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Corollary 48.29. Suppose Ω ⊂o Rd such that Ω̄ is a compact manifold with
C1 — boundary, p ∈ [1,∞) and T : W 1,p (Ω) → Lp(∂Ω) is the trace operator
of Theorem 48.24. Then W 1,p

0 (Ω) = Nul(T ).

Proof. It has already been observed in Remark 48.28 that W 1,p
0 (Ω) ⊂

Nul(T ). Suppose u ∈ Nul(T ) and supp(u) is compactly contained in Ω. The
mollification u�(x) defined in Proposition 48.4 will be in C∞c (Ω) for � > 0
sufficiently small and by Proposition 48.4, u� → u in W 1,p (Ω) . Thus u ∈
W 1,p
0 (Ω) . So to finish the proof that Nul(T ) ⊂ W 1,p

0 (Ω) , it suffices to show
every u ∈W 1,p

0 (Ω) may be approximated by v ∈W 1,p
0 (Ω) such that supp(v)

is compactly contained in Ω. Two proofs of this last assertion will now be
given.
Proof 1. For u ∈ Nul(T ) ⊂W 1,p (Ω) define

ũ(x) =

½
u(x) for x ∈ Ω̄
0 for x /∈ Ω̄.

Then clearly ũ ∈ Lp
¡
Rd
¢
and moreover by Proposition 48.26, for v ∈ C∞c (Rd),Z

Rd
ũ · ∂ivdm =

Z
Ω

u · ∂ivdm = −
Z
Ω

∂iu · vdm

from which it follows that ∂iũ exists weakly in Lp
¡
Rd
¢
and ∂iũ = 1Ω∂iu a.e..

Thus ũ ∈ W 1,p
¡
Rd
¢
with kũkW 1,p(Rd) = kukW 1,p(Ω) and supp(ũ) ⊂ Ω̄. (The

reader should compare this result with Proposition 48.30 below.)
Choose V ∈ C1c

¡
Rd,Rd

¢
such that V (x) · n(x) > 0 for all x ∈ ∂Ω̄ and

define
ũ�(x) = T�ũ(x) := ũ ◦ e�V (x).

Notice that supp(ũ�) ⊂ e−�V
¡
Ω̄
¢
@@ Ω for all � sufficiently small. By the

change of variables Theorem 48.16, we know that ũ� ∈ W 1,p (Ω) and since
supp(ũ�) is a compact subset of Ω, it follows from the first paragraph that
ũ� ∈W 1,p

0 (Ω) .
To so finish this proof, it only remains to show ũ� → u in W 1,p (Ω) as

� ↓ 0. Looking at the proof of Theorem 48.16, the reader may show there are
constants δ > 0 and C <∞ such that

kT�vkW1,p(Rd) ≤ C kvkW 1,p(Rd) for all v ∈W 1,p
¡
Rd
¢
. (48.21)

By direct computation along with the dominated convergence it may be
shown that

T�v → v in W 1,p
¡
Rd
¢
for all v ∈ C∞c (Rd). (48.22)

As is now standard, Eqs. (48.21) and (48.22) along with the density of C∞c (Rd)
inW 1,p

¡
Rd
¢
allows us to conclude T�v → v inW 1,p

¡
Rd
¢
for all v ∈W 1,p

¡
Rd
¢

which completes the proof that ũ� → u in W 1,p (Ω) as �→ 0.
Proof 2. As in the first proof it suffices to show that any u ∈ W 1,p

0 (Ω)
may be approximated by v ∈W 1,p (Ω) with supp(v) @ Ω. As above extend u
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to Ωc by 0 so that ũ ∈W 1,p
¡
Rd
¢
. Using the notation in the proof of 48.24, it

suffices to show ui := φiũ ∈W 1,p
¡
Rd
¢
may be approximated by ui ∈W 1,p (Ω)

with supp(ui) @ Ω. Using the change of variables Theorem 48.16, the problem
may be reduced to working with wi = ui ◦x−1i on B = R(xi). But in this case
we need only define w�

i (y) := w�
i (y − �ed) for � > 0 sufficiently small. Then

supp(w�
i ) ⊂ Hd∩B and as we have already seen w�

i → wi in W 1,p
¡
Hd
¢
. Thus

u�i := w�
i ◦ xi ∈W 1,p (Ω) , u�i → ui as � ↓ 0 with supp(ui) @ Ω.

48.5 Extension Theorems

Proposition 48.30. Let k ∈ N0, p ∈ [1,∞] and suppose Ω is any open subset
of Rd. Then the extension by zero map,

u ∈W k,p
0 (Ω)→ 1Ωu ∈W k,p(Rd),

is a contraction. Recall W k,p
0 (Ω) was defined in Definition 48.27) above.

Proof. The result holds for u ∈ C∞c (Ω) and hence for all u ∈W k,p
0 (Ω).

Lemma 48.31. Let R > 0, B := B(0, R) ⊂ Rd, B± := {x ∈ B : ±xd > 0}
and Γ := {x ∈ B : xd = 0} . Suppose that u ∈ Ck(B \Γ )∩C(B) and for each
|α| ≤ k, ∂αu extends to a continuous function vα on B. Then u ∈ Ck(B) and
∂αu = vα for all |α| ≤ k.

Proof. For x ∈ Γ and i < d, then by continuity, the fundamental theorem
of calculus and the dominated convergence theorem,

u(x+∆ei)− u(x) = lim
y→x

y∈B\Γ
[u(y +∆ei)− u(y)] = lim

y→x

y∈B\Γ

Z ∆

0

∂iu(y + sei)ds

= lim
y→x

y∈B\Γ

Z ∆

0

vei(y + sei)ds =

Z ∆

0

vei(x+ sei)ds

and similarly, for i = d,

u(x+∆ed)− u(x) = lim
y→x

y∈Bsgn(∆)\Γ

[u(y +∆ed)− u(y)]

= lim
y→x

y∈Bsgn(∆)\Γ

Z ∆

0

∂du(y + sed)ds

= lim
y→x

y∈Bsgn(∆)\Γ

Z ∆

0

ved(y + sed)ds =

Z ∆

0

ved(x+ sed)ds.
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These two equations show, for each i, ∂iu(x) exits and ∂iu(x) = vei(x). Hence
we have shown u ∈ C1 (B) .
Suppose it has been proven for some l ≥ 1 that ∂αu(x) exists and is

given by vα(x) for all |α| ≤ l < k. Then applying the results of the previous
paragraph to ∂αu(x) with |α| = l shows that ∂i∂αu(x) exits and is given by
vα+ei(x) for all i and x ∈ B and from this we conclude that ∂αu(x) exists
and is given by vα(x) for all |α| ≤ l+ 1. So by induction we conclude ∂αu(x)
exists and is given by vα(x) for all |α| ≤ k, i.e. u ∈ Ck(B).

Lemma 48.32. Given any k + 1 distinct points, {ci}ki=0 , in R\ {0} , the
(k + 1)× (k + 1) matrix C with entries Cij := (ci)

j is invertible.

Proof. Let a ∈ Rk+1 and define p(x) :=Pk
j=0 ajx

j . If a ∈ Nul(C), then

0 =
kX

j=0

(ci)
j aj = p (ci) for i = 0, 1, . . . , k.

Since deg (p) ≤ k and the above equation says that p has k+1 distinct roots,
we conclude that a ∈ Nul(C) implies p ≡ 0 which implies a = 0. Therefore
Nul(C) = {0} and C is invertible.

Lemma 48.33. Let B, B± and Γ be as in Lemma 48.31 and {ci}ki=0 , be
k + 1 distinct points in (∞,−1] for example ci = − (i+ 1) will work. Also
let a ∈ Rk+1 be the unique solution (see Lemma 48.32 to Ctra = 1 where 1
denotes the vector of all ones in Rk+1, i.e. a satisfies

1 =
kX

j=0

(ci)
j
ai for j = 0, 1, 2 . . . , k. (48.23)

For u ∈ Ck
c (Hd)1 with supp(u) ⊂ B ∩Hd and x = (y, z) ∈ Rd define

ũ(x) = ũ(y, z) =

½
u(y, z) if z ≥ 0Pk

i=0 aiu(y, ciz) if z ≤ 0.
(48.24)

Then ũ ∈ Ck
c (Rd) with supp(ũ) ⊂ B and moreover there exists a constant M

independent of u such that

kũkWk,p(B) ≤M kukWk,p(B+) . (48.25)

Proof. By Eq. (48.23) with j = 0,

kX
i=0

aiu(y, ci0) = u(y, 0)
kX
i=0

ai = u(y, 0).

1 Or more generally, one may assume u ∈ Ck(Hd) ∩ Cc

³
Hd
´
such that each ∂αu

for |α| ≤ k extends to a continuous function on Hd.
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This shows that ũ in Eq. (48.24) is well defined and that ũ ∈ C
¡
Hd
¢
. Let

K− := {(y, z) : (y,−z) ∈ supp(u)} . Since ci ∈ (∞,−1], if x = (y, z) /∈ K−

and z < 0 then (y, ciz) /∈ supp(u) and therefore ũ(x) = 0 and therefore
supp(ũ) is compactly contained inside of B. Similarly if α ∈ Nd0 with |α| ≤ k,
Eq. (48.23) with j = αd implies

vα(x) :=

½
(∂αu) (y, z) if z ≥ 0Pk

i=0 aic
αd
i (∂αu) (y, ciz) if z ≤ 0.

is well defined and vα ∈ C
¡
Rd
¢
. Differentiating Eq. (48.24) shows ∂αũ(x) =

vα(x) for x ∈ B \ Γ and therefore we may conclude from Lemma 48.31 that
ũ ∈ Ck

c (B) ⊂ Ck
¡
Rd
¢
and ∂αũ = vα for all |α| ≤ k.

We now verify Eq. (48.25) as follows. For |α| ≤ k,

k∂αũkpLp(B−) =
Z
Rd
1z<0

¯̄̄̄
¯
kX
i=0

aic
αd
i (∂αu) (y, ciz)

¯̄̄̄
¯
p

dydz

≤ C

Z
Rd
1z<0

kX
i=0

|(∂αu) (y, ciz)|p dydz

= C

Z
Rd
1z>0

kX
i=0

1

|ci| |(∂
αu) (y, z)|p dydz

= C

Ã
kX
i=0

1

|ci|

!
k∂αukpLp(B+)

where C :=
³Pk

i=0 |aicαdi |q
´p/q

. Summing this equation on |α| ≤ k shows

there exists a constant M 0 such that kũkWk,p(B−) ≤ M 0 kukWk,p(B+) and
hence Eq. (48.25) holds with M =M 0 + 1.

Corollary 48.34. Let k ≥ 1, B, B±, {ci}ki=0 be as in Lemma 48.33 and
suppose that u ∈ W k,∞(Hd) with supp(u) ⊂ B ∩ Hd. By item 2. of Lemma
48.23, by modifying u on a null set we may assume that u ∈ BCk−1 ¡Hd

¢
with

∂αu ∈ C
³
Hd
´
for all |α| < k. Then the function ũ defined in Eq. (48.24) in

W k,∞(Rd), with supp(ũ) ⊂ B and Eq. (48.25) is still valid.

Proof. By Lemma 48.33, ũ ∈ Ck−1(Rd). Let φ ∈ C∞c
¡
Rd
¢
and |α| = k−1

and i ∈ {1, 2, . . . , d} , then by standard integration by parts

hũ, ∂α∂iφi = (−1)|α| h∂αũ, ∂iφi
= (−1)|α| h1B+∂αũ, ∂iφi+ (−1)|α| h1B−∂αũ, ∂iφi.

Making use of Proposition 48.26 and the change of variables theorem,
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hũ, ∂α∂iφi = − (−1)|α| h1B+∂i∂
αũ, φi− (−1)|α| h1B−∂i∂αũ, φi

= − (−1)|α| h∂i∂αũ, φi
wherein we have used the fact that ∂αũ|∂B+ = ∂αũ|∂B− for all |α| < k to see
that the boundary terms from the integrals cancel. Hence it follows that ∂α∂iũ
exists weakly and is given by the expected formula, namely by differentiating
Eq. (48.24) away from Γ and piecing the results together. The verification of
Eq. (48.25) is as before.

Theorem 48.35 (Extension Theorem). Suppose k ≥ 1 and Ω ⊂o Rd such
that Ω̄ is a compact manifold with Ck — boundary. Given U ⊂o Rd such that
Ω̄ ⊂ U, there exists a bounded linear (extension) operator E : W k,p (Ω) →
W k,p

¡
Rd
¢
such that

1. Eu = u a.e. in Ω and
2. supp(Eu) ⊂ U.

Proof. As in the proof of Theorem 48.24, choose a covering {Vi}Ni=0 of Ω̄
such that V̄0 ⊂ Ω, ∪Ni=0V̄i ⊂ U and for each i ≥ 1, there is Ck — diffeomorphism
xi : Vi → R(xi) ⊂o Rd such that

xi (∂Ω ∩ Vi) = R(xi) ∩ bd(Hd) and xi (Ω ∩ Vi) = R(xi) ∩Hd = B+

where B+ is as in Lemma 48.33 and Corollary 48.34, refer to Figure 48.6.
Further choose φi ∈ C∞c (Vi, [0, 1]) such that

PN
i=0 φi = 1 on a neighborhood

of Ω̄ and set yi := xi|∂Ω∩Vi for i ≥ 1. Given u ∈ Ck
¡
Ω̄
¢
if p < ∞ (u ∈

W k,∞(Ω) if p = ∞) and i ≥ 1, the function vi := (φiu) ◦ x−1i may be
viewed as a function in Ck(Hd) ∩ Cc(Hd) (W k,∞(Hd)) with supp(u) ⊂ B.
Let ṽi ∈ Ck

c (B)
¡
W k,∞(B)

¢
be defined as in Eq. (48.24) above and define

ũ := φ0u +
PN

i=1 ṽi ◦ xi ∈ Ck
c

¡
Rd
¢ ¡

W k,∞ ¡Rd¢¢ . Notice that ũ = u on Ω̄,
supp(u) ⊂ U and by Lemma 48.20,

kũkWk,p(Rd) ≤ kφ0ukWk,p(Rd) +
NX
i=1

kṽi ◦ xikWk,p(Rd)

≤ kφ0ukWk,p(Ω) +
NX
i=1

kṽikWk,p(R(xi))

≤ C (φ0) kukWk,p(Ω) +
NX
i=1

kvikWk,p(B+)

= C (φ0) kukWk,p(Ω) +
NX
i=1

°°(φiu) ◦ x−1i °°
Wk,p(B+)

≤ C (φ0) kukWk,p(Ω) +
NX
i=1

Ci kukWk,p(Ω) .
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This completes the proof for p = ∞ and shows for p < ∞ that the map u ∈
Ck(Ω̄) → Eu := ũ ∈ Ck

c (U) is bounded as map from W k,p (Ω) to W k,p (U) .
As usual, we now extend E using the B.L.T. Theorem 2.68 to a bounded linear
map fromW k,p (Ω) toW k,p (U) . So for general u ∈W k,p (Ω) , Eu =W k,p (U)
— limn→∞ ũn where un ∈ Ck(Ω̄) and u =W k,p (Ω) — limn→∞ un. By passing
to a subsequence if necessary, we may assume that ũn converges a.e. to Eu
from which it follows that Eu = u a.e. on Ω̄ and supp(Eu) ⊂ U.

48.6 Exercises

Exercise 48.36. Show the norm in Eq. (48.1) is equivalent to the norm

|f |Wk,p(Ω) :=
X
|α|≤k

k∂αfkLp(Ω) .

Solution 48.37. 48.36This is a consequence of the fact that all norms on
lp ({α : |α| ≤ k}) are equivalent. To be more explicit, let aα = k∂αfkLp(Ω) ,
then X

|α|≤k
|aα| ≤

X
|α|≤k

|aα|p
1/pX

|α|≤k
1q

1/q

whileX
|α|≤k

|aα|p
1/p

≤
 pX
|α|≤k

X
|β|≤k

|aβ |
p1/p

≤ [# {α : |α| ≤ k}]1/p
X
|β|≤k

|aβ | .
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Sobolev Inequalities

49.1 Morrey’s Inequality

Notation 49.1 Let Sd−1 be the sphere of radius one centered at zero inside
Rd. For a set Γ ⊂ Sd−1, x ∈ Rd, and r ∈ (0,∞), let

Γx,r ≡ {x+ sω : ω ∈ Γ such that 0 ≤ s ≤ r}.

So Γx,r = x+ Γ0,r where Γ0,r is a cone based on Γ, see Figure 49.1 below.

Γ

Γ

Fig. 49.1. The cone Γ0,r.

Notation 49.2 If Γ ⊂ Sd−1 is a measurable set let |Γ | = σ(Γ ) be the surface
“area” of Γ.
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Notation 49.3 If Ω ⊂ Rd is a measurable set and f : Rd → C is a measurable
function let

fΩ :=

Z
−
Ω

f(x)dx :=
1

m(Ω)

Z
Ω

f(x)dx.

By Theorem 9.35,Z
Γx,r

f(y)dy =

Z
Γ0,r

f(x+ y)dy =

Z r

0

dt td−1
Z
Γ

f(x+ tω) dσ(ω) (49.1)

and letting f = 1 in this equation implies

m(Γx,r) = |Γ | rd/d. (49.2)

Lemma 49.4. Let Γ ⊂ Sd−1 be a measurable set such that |Γ | > 0. For
u ∈ C1(Γx,r), Z

−
Γx,r

|u(y)− u(x)|dy ≤ 1

|Γ |
Z

Γx,r

|∇u(y)|
|x− y|d−1 dy. (49.3)

Proof.Write y = x+sω with ω ∈ Sd−1, then by the fundamental theorem
of calculus,

u(x+ sω)− u(x) =

Z s

0

∇u(x+ tω) · ω dt

and therefore,Z
Γ

|u(x+ sω)− u(x)|dσ(ω) ≤
Z s

0

Z
Γ

|∇u(x+ tω)|dσ(ω)dt

=

Z s

0

td−1dt
Z
Γ

|∇u(x+ tω)|
|x+ tω − x|d−1

dσ(ω)

=

Z
Γx,s

|∇u(y)|
|y − x|d−1 dy ≤

Z
Γx,r

|∇u(y)|
|x− y|d−1 dy,

wherein the second equality we have used Eq. (49.1). Multiplying this inequal-
ity by sd−1 and integrating on s ∈ [0, r] givesZ
Γx,r

|u(y)− u(x)|dy ≤ rd

d

Z
Γx,r

|∇u(y)|
|x− y|d−1 dy =

m(Γx,r)

|Γ |
Z

Γx,r

|∇u(y)|
|x− y|d−1 dy

which proves Eq. (49.3).

Corollary 49.5. Suppose d < p ≤ ∞, Γ ∈ BSd−1 such that |Γ | > 0, r ∈
(0,∞) and u ∈ C1(Γx,r). Then
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|u(x)| ≤ C(|Γ |, r, d, p) kukW 1,p(Γx,r) (49.4)

where

C(|Γ |, r, d, p) := 1

|Γ |1/p max
Ã
d−1/p

r
,

µ
p− 1
p− d

¶1−1/p!
· r1−d/p.

Proof. For y ∈ Γx,r,

|u(x)| ≤ |u(y)|+ |u(y)− u(x)|
and hence using Eq. (49.3) and Hölder’s inequality,

|u(x)| ≤
Z
−
Γx,r

|u(y)|dy + 1

|Γ |
Z

Γx,r

|∇u(y)|
|x− y|d−1 dy

≤ 1

m(Γx,r)
kukLp(Γx,r) k1kLp(Γx,r)

+
1

|Γ | k∇ukLp(Γx,r)k
1

|x− ·|d−1 kLq(Γx,r) (49.5)

where q = p
p−1 as before. Now

k 1

| · |d−1 k
q
Lq(Γ0,r)

=

Z r

0

dt td−1
Z
Γ

¡
td−1

¢−q
dσ(ω)

= |Γ |
Z r

0

dt
¡
td−1

¢1− p
p−1 = |Γ |

Z r

0

dt t−
d−1
p−1

and since

1− d− 1
p− 1 =

p− d

p− 1
we find

k 1

| · |d−1 kLq(Γ0,r) =
µ
p− 1
p− d

|Γ | r p−dp−1

¶1/q
=

µ
p− 1
p− d

|Γ |
¶ p−1

p

r1−
d
p . (49.6)

Combining Eqs. (49.5), Eq. (49.6) along with the identity,

1

m(Γx,r)
k1kLq(Γx,r) =

1

m(Γx,r)
m(Γx,r)

1/q =
¡|Γ | rd/d¢−1/p , (49.7)

shows

|u(x)| ≤ kukLp(Γx,r)
¡|Γ | rd/d¢−1/p + 1

|Γ | k∇ukLp(Γx,r)
µ
p− 1
p− d

|Γ |
¶1−1/p

r1−d/p

=
1

|Γ |1/p
"
kukLp(Γx,r)

d−1/p

r
+ k∇ukLp(Γx,r)

µ
p− 1
p− d

¶1−1/p#
r1−d/p.

≤ 1

|Γ |1/p max
Ã
d−1/p

r
,

µ
p− 1
p− d

¶1−1/p!
kukW 1,p(Γx,r) · r1−d/p.



1022 49 Sobolev Inequalities

Corollary 49.6. For d ∈ N and p ∈ (d,∞] there are constants α = αd and
β = βd such that if u ∈ C1(Rd) then for all x, y ∈ Rd,

|u(y)−u(x)| ≤ 2βα1/p
µ
p− 1
p− d

¶ p−1
p

k∇ukLp(B(x,r)∩B(y,r)) ·|x−y|(1−
d
p) (49.8)

where r := |x− y| .
Proof. Let r := |x− y| , V := Bx(r) ∩ By(r) and Γ,Λ ⊂ Sd−1 be chosen

so that x+ rΓ = ∂Bx(r) ∩By(r) and y + rΛ = ∂By(r) ∩Bx(r), i.e.

Γ =
1

r
(∂Bx(r) ∩By(r)− x) and Λ =

1

r
(∂By(r) ∩Bx(r)− y) = −Γ.

Also let W = Γx,r ∩ Λy,r, see Figure 49.2 below. By a scaling,

Γ

Γ

Λ Λ Γ

Λ

Fig. 49.2. The geometry of two intersecting balls of radius r := |x− y| . Here
W = Γx,r ∩ Λy,r and V = B(x, r) ∩B(y, r).

βd :=
|Γx,r ∩ Λy,r|
|Γx,r| =

|Γx,1 ∩ Λy,1|
|Γx,1| ∈ (0, 1)

is a constant only depending on d, i.e. we have |Γx,r| = |Λy,r| = β|W |. Inte-
grating the inequality

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|
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over z ∈W gives

|u(x)− u(y)| ≤
Z
−
W

|u(x)− u(z)|dz +
Z
−
W

|u(z)− u(y)|dz

=
β

|Γx,r|

Z
W

|u(x)− u(z)|dz +
Z
W

|u(z)− u(y)|dz


≤ β

|Γx,r|

 Z
Γx,r

|u(x)− u(z)|dz +
Z

Λy,r

|u(z)− u(y)|dz

 .

Hence by Lemma 49.4, Hölder’s inequality and translation and rotation in-
variance of Lebesgue measure,

|u(x)− u(y)| ≤ β

|Γ |

 Z
Γx,r

|∇u(z)|
|x− z|d−1 dz +

Z
Λy,r

|∇u(z)|
|z − y|d−1 dz


≤ β

|Γ |

Ã
k∇ukLp(Γx,r)k 1

|x−·|d−1 kLq(Γx,r)
+k∇ukLp(Λy,r)k 1

|y−·|d−1 kLq(Λy,r)

!

≤ 2β

|Γ | k∇ukLp(V )k
1

| · |d−1 kLq(Γ0,r) (49.9)

where q = p
p−1 is the conjugate exponent to p. Combining Eqs. (49.9) and

(49.6) gives Eq. (49.8) with α := |Γ |−1.
Theorem 49.7 (Morrey’s Inequality). If d < p ≤ ∞, u ∈ W 1,p(Rd),
then there exists a unique version u∗ of u (i.e. u∗ = u a.e.) such that u∗ is
continuous. Moreover u∗ ∈ C0,1−

d
p (Rd) and

ku∗k
C
0,1− d

p (Rd)
≤ CkukW 1,p(Rd) (49.10)

where C = C(p, d) is a universal constant. Moreover, the estimates in Eqs.
(49.3), (49.4) and (49.8) still hold when u is replaced by u∗.

Proof. For p <∞ and u ∈ C1c (Rd), Corollaries 49.5 and 49.6 imply

kukBC(Rd) ≤ CkukW 1,p(Rd) and
|u(y)− u(x)|
|x− y|1− d

p

≤ Ck∇ukLp(Rd)

which implies [u]1− d
p
≤ Ck∇ukLp(Rd) ≤ CkukW 1,p(Rd)and hence

kuk
C
0,1− d

p (Rd)
≤ CkukW 1,p(Rd). (49.11)
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Now suppose u ∈ W 1,p(Rd), choose (using Exercise 29.32) un ∈ C1c (Rd)
such that un → u inW 1,p(Rd). Then by Eq. (49.11), kun−umk

C
0,1−d

p (Rd)
→ 0

as m,n →∞ and therefore there exists u∗ ∈ C0,1−
d
p (Rd) such that un → u∗

in C0,1−
d
p (Rd). Clearly u∗ = u a.e. and Eq. (49.10) holds.

If p =∞ and u ∈W 1,∞ ¡Rd¢ , then by Proposition 29.29 there is a version
u∗ of u which is Lipschitz continuous. Now in both cases, p <∞ and p =∞,
the sequence um := u ∗ ηm = u∗ ∗ ηm ∈ C∞

¡
Rd
¢
and um → u∗ uniformly on

compact subsets of Rd. Using Eq. (49.3) with u replaced by um along with a
(by now) standard limiting argument shows that Eq. (49.3) still holds with u
replaced by u∗. The proofs of Eqs. (49.4) and (49.8) only relied on Eq. (49.3)
and hence go through without change. Similarly the argument in the first
paragraph only relied on Eqs. (49.4) and (49.8) and hence Eq. (49.10) is also
valid for p =∞.

Corollary 49.8 (Morrey’s Inequality). Suppose Ω ⊂o Rd such that Ω is
compact C1-manifold with boundary and d < p ≤ ∞. Then for u ∈ W 1,p(Ω),

there exists a unique version u∗ of u such that u∗ ∈ C0,1−
d
p (Rd) and we further

have
ku∗k

C
0,1− d

p (Ω)
≤ CkukW 1,p(Ω), (49.12)

where C = C(p, d,Ω).

Proof. Let U be a precompact open subset of Rd and E : W 1,p(Ω) →
W 1,p(Rd) be an extension operator as in Theorem 48.35. For u ∈ W 1,p (Ω)

with d < p ≤ ∞, Theorem 49.7 implies there is a version U∗ ∈ C0,1−
d
p (Rd) of

Eu. Letting u∗ := U∗|Ω, we have and moreover,
ku∗k

C
0,1−d

p (Ω)
≤ kU∗k

C
0,1− d

p (Rd)
≤ CkEukW 1,p(Rd) ≤ C kukW1,p(Ω) .

The following example shows that L∞(Rd) 6⊆ W 1,d(Rd), i.e. W 1,d(Rd)
contains unbounded elements. Therefore Theorem 49.7 and Corollary 49.8
are not valid for p = d. It turns out that for p = d, W 1,d

¡
Rd
¢
embeds into

BMO(Rd) — the space of functions with “bounded mean oscillation.”

Example 49.9. Let u(x) = ψ(x) log log
³
1 + 1

|x|
´
where ψ ∈ C∞c (Rd) is chosen

so that ψ(x) = 1 for |x| ≤ 1. Then u /∈ L∞(Rd) while u ∈ W 1,d(Rd). Let us
check this claim. Using Theorem 9.35, one easily shows u ∈ Lp(Rd). A short
computation shows, for |x| < 1, that

∇u(x) = 1

log
³
1 + 1

|x|
´ 1

1 + 1
|x|
∇ 1

|x|

=
1

1 + 1
|x|

1

log
³
1 + 1

|x|
´ µ
− 1

|x| x̂
¶
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where x̂ = x/ |x| and so again by Theorem 9.35,Z
Rd

|∇u(x)|ddx ≥
Z
|x|<1

 1

|x|2 + |x|
1

log
³
1 + 1

|x|
´
d

dx

≥ σ(Sd−1)
Z 1

0

Ã
2

r log
¡
1 + 1

r

¢!d

rd−1dr =∞.

49.2 Rademacher’s Theorem

Theorem 49.10. Suppose that u ∈W 1,p
loc (Ω) for some d < p ≤ ∞. Then u is

differentiable almost everywhere and w-∂iu = ∂iu a.e. on Ω.

Proof.We clearly may assume that p <∞. For v ∈W 1,p
loc (Ω) and x, y ∈ Ω

such that B(x, r) ∩B(y, r) ⊂ Ω where r := |x− y| , the estimate in Corollary
49.6, gives

|v(y)− v(x)| ≤ Ck∇ukLp(B(x,r)∩B(y,r)) · |x− y|(1− d
p)

= Ck∇vkLp(B(x,r)∩B(y,r)) · r(1−
d
p). (49.13)

Let u now denote the unique continuous version of u ∈ W 1,p
loc (Ω). The by

the Lebesgue differentiation Theorem 20.12, there exists an exceptional set
E ⊂ Ω such that m(E) = 0 and

lim
r↓0

Z
−

B(x,r)

|∇u(y)−∇u(x)|pdy = 0 for x ∈ Ω \E.

Fix a point x ∈ Ω \E and let v(y) := u(y)−u(x)−∇u(x) · (y−x) and notice
that ∇v(y) = ∇u(y)−∇u(x). Applying Eq. (49.13) to v then implies

|u(y)− u(x)−∇u(x) · (y − x)|
≤ Ck∇u(·)−∇u(x)kLp(B(x,r)∩B(y,r)) · r(1−

d
p)

≤ C

ÃZ
B(x,r)

|∇u(y)−∇u(x)|pdy
!1/p

· r(1−d
p )

= Cσ
¡
Sd−1

¢1/p
rd/p

 Z
−

B(x,r)

|∇u(y)−∇u(x)|pdy


1/p

· r(1− d
p)

= Cσ
¡
Sd−1

¢1/p Z
−

B(x,r)

|∇u(y)−∇u(x)|pdy


1/p

· |x− y|

which shows u is differentiable at x and ∇u(x) = w-∇u(x).
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Theorem 49.11 (Rademacher’s Theorem). Let u be locally Lipschitz con-
tinuous on Ω ⊂o Rd. Then u is differentiable almost everywhere and w-
∂iu = ∂iu a.e. on Ω.

Proof. By Proposition 29.29 ∂(w)i u exists weakly and is in ∂iu ∈ L∞(Rd)
for i = 1, 2, . . . , d. The result now follows from Theorem 49.10.

49.3 Gagliardo-Nirenberg-Sobolev Inequality

In this section our goal is to prove an inequality of the form:

kukLq ≤ Ck∇ukLp(Rd) for u ∈ C1c (Rd). (49.14)

For λ > 0, let uλ(x) = u(λx). Then

kuλkqLq =
Z
Rd
|u(λx)|qdx =

Z
Rd
|u(y)|q dy

λd

and hence kuλkLq = λ−d/qkukLq . Moreover, ∇uλ(x) = λ(∇u)(λx) and thus

k∇uλkLp = λk(∇u)λkLp = λλ−d/pk∇ukLp .

If (49.14) is to hold for all u ∈ C1c (Rd) then we must have

λ−d/qkukLq = kuλkLq ≤ Ck∇uλkLp(Rd) = Cλ1−d/pk∇ukLp for all λ > 0

which is only possible if

1− d/p+ d/q = 0, i.e. 1/p = 1/d+ 1/q. (49.15)

Notation 49.12 For p ∈ [1, d], let p∗ := dp
d−p with the convention that p

∗ =
∞ if p = d. That is p∗ = q where q solves Eq. (49.15).

Theorem 49.13. Let p = 1 so 1∗ = d
d−1 , then

kuk1∗ = kuk d
d−1
≤

dY
i=1

µZ
Rd
|∂iu(x)|dx

¶ 1
d

≤ d−
1
2 k∇uk1 (49.16)

for all u ∈W 1,1(Rd).

Proof. Since there exists un ∈ C1c (Rd) such that un → u in W 1,1(Rd),
a simple limiting argument shows that it suffices to prove Eq. (49.16) for
u ∈ C1c (Rd). To help the reader understand the proof, let us give the proof for
d ≤ 3 first and with the constant d−1/2 being replaced by 1. After that the
general induction argument will be given. (The adventurous reader may skip
directly to the paragraph containing Eq. (49.17).
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(d = 1, p∗ =∞) By the fundamental theorem of calculus,

|u(x)| =
¯̄̄̄Z x

−∞
u0(y)dy

¯̄̄̄
≤
Z x

−∞
|u0(y)| dy ≤

Z
R
|u0(x)| dx.

Therefore kukL∞ ≤ ku0kL11 , proving the d = 1 case.
(d = 2, p∗ = 2) Applying the same argument as above to y1 → u(y1, x2)

and y2 → u(x1, y2),,

|u(x1, x2)| ≤
Z ∞
−∞

|∂1u(y1, x2)| dy1 ≤
Z ∞
−∞

|∇u(y1, x2)| dy1 and

|u(x1, x2)| ≤
Z ∞
−∞

|∂2u(x1, y2)| dy2 ≤
Z ∞
−∞

|∇u(x1, y2)| dy2

and therefore

|u(x1, x2)|2 ≤
Z ∞
−∞

|∂1u(y1, x2)|dy1 ·
Z ∞
−∞

|∂2u(x1, y2)| dy2.

Integrating this equation relative to x1 and x2 gives

kuk2L2 =
Z
R2
|u(x)|2dx ≤

µZ ∞
−∞

|∂1u(x)| dx
¶µZ ∞

−∞
|∂2u(x)| dx

¶
≤
µZ ∞
−∞

|∇u(x)| dx
¶2

which proves the d = 2 case.
(d = 3, p∗ = 3/2) Let x1 = (y1, x2, x3), x

2 = (x1, y2, x3), and x3 =
(x1, x2, y3). Then as above,

|u(x)| ≤
Z ∞
−∞

|∂iu(xi)|dyi for i = 1, 2, 3

1 Actually we may do better here by observing

|u(x)| = 1

2

¯̄̄̄Z x

−∞
u0(y)dy −

Z ∞

x

u0(y)dy
¯̄̄̄

≤ 1

2

Z
R

¯̄
u0(x)

¯̄
dx

and this leads to an improvement in Eq. (49.17) to

kuk1∗ ≤ 1

2

dY
i=1

µZ
Rd
|∂iu(x)|dx

¶ 1
d

≤ 1

2
d−

1
2 k∇uk1 .
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and hence

|u(x)| 32 ≤
3Y
i=1

µZ ∞
−∞

|∂iu(xi)|dyi
¶ 1

2

.

Integrating this equation on x1 gives,Z
R
|u(x)| 32 dx1 ≤

µZ ∞
−∞

|∂1u(x1)|dy1
¶ 1

2
Z 3Y

i=2

µZ ∞
−∞

|∂iu(xi)|dyi
¶ 1

2

dx1

≤
µZ ∞
−∞

|∂1u(x)|dx1
¶ 1

2
3Y
i=2

µZ ∞
−∞

|∂iu(xi)|dx1dyi
¶ 1

2

wherein the second equality we have used the Hölder’s inequality with p =
q = 2. Integrating this result on x2 and using Hölder’s inequality givesZ

R2
|u(x)| 32 dx1dx2

≤
µZ

R2
|∂2u(x)|dx1dx2

¶ 1
2
Z
R
dx2

µZ ∞
−∞

|∂1u(x)|dx1
¶ 1

2

×µZ
R2
|∂3u(x3)|dx1dy3

¶ 1
2

≤
µZ

R2
|∂2u(x)|dx1dx2

¶ 1
2
µZ

R2
|∂1u(x)|dx1dx2

¶ 1
2
µZ

R3
|∂3u(x)|dx

¶ 1
2

.

One more integration of x3 and application of Hölder’s inequality, impliesZ
R3
|u(x)| 32 dx ≤

3Y
i=1

µZ
R3
|∂iu(x)|dx

¶ 1
2

≤
µZ

R3
|∇u(x)|dx

¶ 3
2

proving the d = 3 case.
For general d (p∗ = d

d−1 ), as above let x
i = (x1, . . . , xi−1, yi, xi+1 . . . , xd).

Then

|u(x)| ≤
Z ∞
−∞

|∂iu(xi)|dyi

and

|u(x)| d
d−1 ≤

dY
i=1

µZ ∞
−∞

|∂iu(xi)|dyi
¶ 1

d−1
. (49.17)

Integrating this equation relative to x1 and making use of Hölder’s inequality
in the form °°°°°

dY
i=2

fi

°°°°°
1

≤
dY
i=2

kfikd−1 (49.18)

(see Corollary 10.3) we find
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R
|u(x)| d

d−1 dx1 ≤
µZ

R
∂1u(x)dx1

¶ 1
d−1 Z

R
dx1

dY
i=2

µZ
R
|∂iu(xi)|dyi

¶ 1
d−1

≤
µZ

R
∂1u(x)dx1

¶ 1
d−1 dY

i=2

µZ
R2
|∂iu(xi)|dx1dyi

¶ 1
d−1

=

µZ
R
∂1u(x)dx1

¶ 1
d−1

µZ
R2
|∂2u(x)|dx1dx2

¶ 1
d−1

×
dY
i=3

µZ
R2
|∂iu(xi)|dx1dyi

¶ 1
d−1

.

Integrating this equation on x2 and using Eq. (49.18) once again implies,Z
R2
|u(x)| d

d−1 dx1dx2

≤
µZ

R2
|∂2u(x)|dx1dx2

¶ 1
d−1 Z

R
dx2

µZ
R
∂1u(x)dx1

¶ 1
d−1

×
dY
i=3

µZ
R2
|∂iu(xi)|dx1dyi

¶ 1
d−1

≤
µZ

R2
|∂2u(x)|dx1dx2

¶ 1
d−1

µZ
R2
|∂1u(x)|dx1dx2

¶ 1
d−1

×
dY
i=3

µZ
R3
|∂iu(xi)|dx1dx2dyi

¶ 1
d−1

.

Continuing this way inductively, one showsZ
Rk
|u(x)| d

d−1 dx1dx2 . . . dxk

≤
kY
i=1

µZ
Rk
|∂iu(x)|dx1dx2 . . . dxk

¶ 1
d−1

×
dY

i=k+1

µZ
R3
|∂iu(xi)|dx1dx2 . . . dxkdyk+1

¶ 1
d−1

and in particular when k = d,Z
Rd
|u(x)| d

d−1 dx ≤
µ
1

2

¶ d
d−1 dY

i=1

µZ
Rd
|∂iu(x)|dx1dx2 . . . dxd

¶ 1
d−1

(49.19)

≤
dY
i=1

µZ
Rd
|∇u(x)|dx

¶ 1
d−1

=

µZ
Rd
|∇u(x)|dx

¶ d
d−1

.



1030 49 Sobolev Inequalities

This estimate may now be improved on by using Young’s inequality (see

Exercise 49.33) in the form
dQ
i=1

ai ≤ 1
d

Pd
i=1 a

d
i . Indeed by Eq. (49.19) and

Young’s inequality,

kuk d
d−1
≤

dY
i=1

µZ
Rd
|∂iu(x)|dx

¶ 1
d

≤ 1
d

dX
i=1

µZ
Rd
|∂iu(x)|dx

¶

=
1

d

Z
Rd

dX
i=1

|∂iu(x)|dx ≤ 1
d

Z
Rd

√
d |∇u(x)| dx

wherein the last inequality we have used Hölder’s inequality for sums,

dX
i=1

|ai| ≤
Ã

dX
i=1

1

!1/2Ã dX
i=1

|ai|2
!1/2

=
√
d |a| .

The next theorem generalizes Theorem 49.13 to an inequality of the form
in Eq. (49.14).

Theorem 49.14. If p ∈ [1, d) then,

kukLp∗ ≤ d−1/2
p(d− 1)
d− p

k∇ukLp for all u ∈W 1,p(Rd). (49.20)

Proof. As usual since C1c (Rd) is dense in W 1,p
¡
Rd
¢
it suffices to prove

Eq. (49.20) for u ∈ C1c (Rd). For u ∈ C1c (Rd) and s > 1, |u|s ∈ C1c (Rd) and
∇ |u|s = s|u|s−1sgn(u)∇u. Applying Eq. (49.16) with u replaced by |u|s and
then using Holder’s inequality gives

k|u|sk1∗ ≤ d−
1
2 k∇ |u|sk1 = sd−

1
2 k|u|s−1∇ukL1

≤ s√
d
k∇ukLp · k|u|s−1kLq (49.21)

where q = p
p−1 . We will now choose s so that s1

∗ = (s− 1)q, i.e.

s =
q

q − 1∗ =
1

1− 1∗ 1q
=

1

1− d
d−1

³
1− 1

p

´
=

p (d− 1)
p (d− 1)− d (p− 1) =

p (d− 1)
d− p

= p∗
d− 1
d

.

For this choice of s, s1∗ = p∗ = (s− 1)q and Eq. (49.21) becomes·Z
Rd
|u|p∗dm

¸1/1∗
≤ s√

d
k∇ukLp ·

·Z
Rd
|u|p∗dm

¸1/q
. (49.22)
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Since

1

1∗
− 1

q
=

d− 1
d
− p− 1

p
=

p(d− 1)− d(p− 1)
dp

=
d− p

pd
=
1

p∗
,

Eq. (49.22) implies Eq. (49.20).

Corollary 49.15. Suppose Ω ⊂ Rd is bounded open set with C1-boundary,
then for all p ∈ [1, d) and 1 ≤ q ≤ p∗ there exists C = C(Ω, p, q) such that

kukLq(Ω) ≤ CkukW1,p(Ω).

Proof. Let U be a precompact open subset of Rd such that Ω̄ ⊂ U and
E : W 1,p (Ω) → W 1,p

¡
Rd
¢
be an extension operator as in Theorem 48.35.

Then for u ∈ C1(Ω) ∩W 1,p(Ω),

kukLp∗ (Ω) ≤ CkEukLp∗(Rd) ≤ Ck∇(Eu)kLp(Rd) ≤ CkukW 1,p(Ω),

i.e.
kukLp∗(Ω) ≤ CkukW 1,p(Ω) (49.23)

Since C1(Ω) is dense in W 1,p(Ω), Eq. (49.23) holds for all u ∈ W 1,p(Ω).
Finally for all 1 ≤ q < p∗,

kukLq(Ω) ≤ kukLP∗ (Ω) · k1kLr(Ω) = kukLp∗ (λ(Ω))
1
r

≤ C(λ(Ω))
1
r kukW 1,p(Ω)

where 1
r +

1
p∗ =

1
q .

49.4 Sobolev Embedding Theorems Summary

Let us summarize what we have proved up to this point in the following
theorem.

Theorem 49.16. Let p ∈ [1,∞] and u ∈W 1,p
¡
Rd
¢
. Then

1.Morrey’s Inequality. If p > d, then W 1,p /→ C0,1−
d
p and

ku∗k
C
0,1− d

p (Rd)
≤ CkukW 1,p(Rd).

2. When p = d there is an L∞ — like space called BMO (which is not defined
in these notes) such that W 1,p /→ BMO.
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3. GNS Inequality. If 1 ≤ p < d, then W 1,p /→ Lp
∗

kukLp∗ ≤ d−1/2
p(d− 1)
d− p

k∇ukLp

where p∗ = dp
d−p or equivalently

1
p∗ =

1
p − 1

d .

Our next goal is write out the embedding theorems forW k,p(Ω) for general
k and p.

Notation 49.17 Given a number s ≥ 0, let

s+ =

½
s if n /∈ N0

s+ δ if n ∈ N0
where δ > 0 is some arbitrarily small number. When s = k + α with k ∈ N0
and 0 ≤ α < 1 we will write Ck,α(Ω) simply as Cs(Ω). Warning, although
Ck,1(Ω) ⊂ Ck+1(Ω) it is not true that Ck,1(Ω) = Ck+1(Ω).

Theorem 49.18 (Sobolev Embedding Theorems). Suppose Ω = Rd or
Ω ⊂ Rd is bounded open set with C1-boundary, p ∈ [1,∞), k, l ∈ N with l ≤ k.

1. If p < d/l then W k,p (Ω) /→W k−l,q (Ω) provided q := dp
d−pl , i.e. q solves

1

q
=
1

p
− l

d
> 0

and there is a constant C <∞ such that

kukWk−l,q(Ω) ≤ CkukWk,p(Ω) for all u ∈W k,p (Ω) .

2. If p > d/k, then W k,p (Ω) /→ Ck−(d/p)+ (Ω) and there is a constant C <
∞ such that

kuk
Ck−(d/p)+(Ω) ≤ CkukWk,p(Ω) for all u ∈W k,p (Ω) .

Proof. 1. (p < d/l) If u ∈ W k,p (Ω) , then ∂αu ∈ W 1,p (Ω) for all |α| ≤
k−1. Hence by Corollary 49.15, ∂αu ∈ Lp

∗
(Ω) for all |α| ≤ k−1 and therefore

W k,p (Ω) /→W k−1,p∗ (Ω) and there exists a constant C1 such that

kukWk−1,p1 (Ω) ≤ C kukWk,p(Ω) for all u ∈W k,p (Ω) . (49.24)

Define pj inductively by, p1 := p∗ and pj := p∗j−1. Since
1
pj
= 1

pj−1
− 1

d it is

easily checked that 1
pl
= 1

p − l
d > 0 since p < d/l. Hence using Eq. (49.24)

repeatedly we learn that the following inclusion maps are all bounded:

W k,p (Ω) /→W k−1,p1 (Ω) /→W k−2,p2 (Ω) . . . /→W k−l,pl (Ω) .

This proves the first item of the theorem. The following lemmas will be used
in the proof of item 2.
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Lemma 49.19. Suppose j ∈ N and p ≥ d and j > d/p (i.e. j ≥ 1 if p > d
and j ≥ 2 if p = d) then

W j,p (Ω) /→ Cj−(d/p)+ (Ω)

and there is a constant C <∞ such that

kuk
Cj−(d/p)+(Ω) ≤ C kukW j,p(Ω) . (49.25)

Proof. By the usual methods, it suffices to show that the estimate in Eq.
(49.25) holds for all u ∈ C∞

¡
Ω̄
¢
.

For p > d and |α| ≤ j − 1,
k∂αukC0,1−d/p(Ω) ≤ C k∂αukW1,p(Ω) ≤ C kukW j,p(Ω)

and hence

kukCj−d/p(Ω) := kukCj−1,1−d/p(Ω) ≤ C kukW j,p(Ω)

which is Eq. (49.25).
When p = d (so now j ≥ 2), choose q ∈ (1, d) be close to d so that j > d/q

and q∗ = qd
d−q > d. Then

W j,d (Ω) /→W j,q (Ω) /→W j−1,q∗ (Ω) /→ Cj−2,1−d/q∗ (Ω) .

Since d/q∗ ↓ 0 as q ↑ d, we conclude that W j,d (Ω) /→ Cj−2,α (Ω) for any
α ∈ (0, 1) which we summarizes by writing

W j,d (Ω) /→ Cj−(d/d) (Ω) .

Proof. Continuation of the proof of Theorem 49.18. Item 2.,
(p > d/k) . If p ≥ d, the result follows from Lemma 49.19. So nos suppose
that d > p > d/k and choose the largest l such that 1 ≤ l < k and d/l > p
and let q = dp

d−pl , i.e. q solves q ≥ d and

1

q
=
1

p
− l

d
or

d

q
=

d

p
− l

Then

W k,p (Ω) /→W k−l,q (Ω) /→ Ck−l−(d/q)+ (Ω) = C
k−l−( dp−l)+ (Ω) = C

k−( dp)+ (Ω)

as desired.

Remark 49.20 (Rule of thumb.). Assign the “degrees of regularity” k− (d/p)+
to the space W k,p and k + α to the space Ck,α. If

X,Y ∈ ©W k,p : k ∈ N0, p ∈ [1,∞]
ª ∪ ©Ck,α : k ∈ N0, α ∈ [0, 1]

ª
with degreg(X) ≥ degreg(Y ), then X /→ Y.
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Example 49.21. 1. W k,p /→ W k−c,q iff k − d
p ≥ k − c − d

q iff c ≥ d
p − d

q iff
1
q ≥ 1

p − c
d .

2. W k,p ⊂ C0,α iff k −
³
d
p

´
+
≥ α.

49.5 Compactness Theorems

Lemma 49.22. Suppose Km : X → Y are compact operators and kK −
KmkL(X,Y ) → 0 as n→∞ then K is compact.

Proof. Let {xn}∞n=1 ⊂ X be given such that kxnk ≤ 1. By Cantor’s diago-
nalization scheme we may choose {x0n} ⊂ {xn} such that ym := lim

n→∞Kmx
0
n ∈

Y exists for all m. Hence

kKx0n −Kx0ck = kK (x0n − x0c)k ≤ kK (x0n − x0c)k
≤ kK −Kmk kx0n − x0ck+ kKm (x

0
n − x0c)k

≤ kK −Kmk+ kKm (x
0
n − x0c)k

and therefore,

lim sup
l,n→∞

kKx0n −Kx0ck ≤ kK −Kmk→ 0 as m→∞.

Lemma 49.23. Let η ∈ C∞c (Rd), Cηf = η ∗ f, Ω ⊂ Rd be a bounded open set
with C1-boundary, U be an open precompact subset of Rd such that Ω̄ ⊂ U
and E :W 1,1(Ω)→W 1,1(Rd) be an extension operator as in Theorem 48.35.
Then to every bounded sequence {ũn}∞n=1 ⊂W 1,1 (Ω) there has a subsequence
{u0n}∞n=1 such that CηEu

0
n is uniformly convergent to a function in Cc

¡
Rd
¢
.

Proof. Let un := Eũn and C := sup kunkW 1,1(Rd) which is finite by
assumption. So {un}∞n=1 ⊂ W 1,1(Rd) is a bounded sequence such that
supp(un) ⊂ U ⊂ Ū @@ Rd for all n. Since η is compactly supported there
exists a precompact open set V such that Ū ⊂ V and vn := η∗un ∈ C∞c (V ) ⊂
C∞c

¡
Rd
¢
for all n. Since,

kvnkL∞ ≤ kηkL∞ kunkL1 ≤ kηkL∞ kunkL1 ≤ CkηkL∞and
kDvnkL∞ = kη ∗DunkL∞ ≤ kηkL∞ kDunkL1 ≤ CkηkL∞ ,

it follows by the Arzela-Ascoli theorem that {vn}∞n=1 has a uniformly conver-
gent subsequence.

Lemma 49.24. Let η ∈ C∞c (B(0, 1), [0,∞)) such that
R
Rd ηdm = 1, ηm(x) =

mnη(mx) and Kmu = (CηmEu)|Ω. Then for all p ∈ [1, d) and q ∈ [1, p∗),
lim

m→∞ kKm − ikB(W1,p(Ω),Lq(Ω)) = 0

where i :W 1,p(Ω)→ Lq(Ω) is the inclusion map.
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Proof. For u ∈ C1c (U) let vm := ηm ∗ u− u, then

|vm(x)| ≤ |ηm ∗ u(x)− u(x)| =
¯̄̄̄Z
Rd

ηm(y)(u(x− y)− u(x))dy

¯̄̄̄
=

¯̄̄̄Z
Rd

η(y)
h
u(x− y

m
)− u(x)

i
dy

¯̄̄̄
≤ 1

m

Z
Rd

dy |y| η(y)
Z 1

0

dt
¯̄̄
∇u(x− t

y

m
)
¯̄̄

and so by Minikowski’s inequality for integrals,

kvmkLr ≤
1

m

Z
Rd

dy |y| η(y)
Z 1

0

dt
°°°∇u(·− t

y

m
)
°°°
Lr

≤ 1

m

µZ
Rd

|y| η(y)dy
¶
k∇ukLr ≤

1

m
kukW 1,r(Rd) . (49.26)

By the interpolation inequality in Corollary 10.25, Theorem 49.14 and Eq.
(49.26) with r = 1,

kvmkLq ≤ kvmkλL1 kvmk1−λLp∗

≤ 1

mλ
kukλW 1,1(Rd)

·
d−1/2

p(d− 1)
d− p

k∇vmkLp
¸1−λ

≤ Cm−λ kukλW1,1(Rd) kvmk1−λW 1,p(Rd)

≤ Cm−λ kukλW1,1(Rd) kvmk1−λW 1,p(Rd)

≤ C(p, |U |)m−λ kukλW 1,p(Rd) kvmk1−λW 1,p(Rd)

where λ ∈ (0, 1) is determined by
1

q
=

λ

1
+
1− λ

p∗
= λ

µ
1− 1

p∗

¶
+
1

p∗
.

Now using Proposition 11.12,

kvmkW 1,p(Rd) = kηm ∗ u− ukW1,p(Rd)

≤ kηm ∗ ukW1,p(Rd) + kukW 1,p(Rd) ≤ 2 kukW 1,p(Rd) .

Putting this all together shows

kKmu− ukLq(Ω) ≤ kKmu−EukLq = kvmkLq

≤ C(p, |U |)m−λ kukλW 1,p(Rd)

³
2 kukW 1,p(Rd)

´1−λ
≤ C(p, |U |)m−λ kEukW 1,p(Rd)

≤ C(p, |U |)m−λ kukW 1,p(Ω)
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from which it follows that

kKm − ikB(W 1,p(Ω),Lq(Ω)) ≤ Cm−λ → 0 as m→∞.

Theorem 49.25 (Rellich - Kondrachov Compactness Theorem). Sup-
pose Ω ⊂ Rd is a precompact open subset with C1-boundary, p ∈ [1, d) and
1 ≤ q < p∗ then W 1,p(Ω) is compactly embedded in Lq(Ω).

Proof. If {un}∞n=1 is contained in the unit ball in W 1,p (Ω) , then by
Lemma 49.23 {Kmun}∞n=1 has a uniformly convergent subsequence and hence
is convergent in Lq(Ω). This shows Km : W 1,p(Ω) → Lq(Ω) is compact for
every m. By Lemma 49.24, Km → i in the L

¡
W 1,p (Ω) , Lq (Ω)

¢
— norm and

so by Lemma 49.22 i :W 1,p (Ω)→ Lq (Ω) is compact.

Corollary 49.26. The inclusion of W k,p(Ω) into W k−c,q(Ω) is compact pro-
vided l ≥ 1 and 1

q >
1
p − l

d =
d−pl
dp > 0, i.e. q < dp

d−pl .

Proof. Case (i) Suppose c = 1, q ∈ [1, p∗) and {un}∞n=1 ⊂ W k,p(Ω) is
bounded. Then {∂αun}∞n=1 ⊂ W 1,p(Ω) is bounded for all |α| ≤ k − 1 and
therefore there exist a subsequence {ũn}∞n=1 ⊂ {un}∞n=1 such that ∂αũn is
convergent in Lq(Ω) for all |α| ≤ k − 1. This shows that {ũn} is W k−1,q(Ω)
— convergent and so proves this case.
Case (ii) c > 1. Let p̃ be defined so that 1

p̃ =
1
p − c−1

d . Then

W k,p(Ω) ⊂W k−c+1,p̃(Ω) ⊂⊂W k−c,q(Ω).

and therefore W k,p(Ω) ⊂⊂W k−c,q(Ω).

Example 49.27. It is necessary to assume that The inclusion of L2([0, 1]) /→
L1([0, 1]) is continuous (in fact a contraction) but not compact. To see this,
take {un}∞n=1 to be the Haar basis for L2. Then un → 0 weakly in both L2

and L1 so if {un}∞n=1 were to have a convergent subsequence the limit would
have to be 0 ∈ L1. On the other hand, since |un| = 1, kunk2 = kunk1 = 1 and
any subsequential limit would have to have norm one and in particular not be
0.

Lemma 49.28. Let Ω be a precompact open set such that Ω̄ is a manifold
with C1 — boundary. Then for all p ∈ [1,∞), W 1,p(Ω) is compactly embedded
in Lp(Ω). Moreover if p > d and 0 ≤ β < 1− d

p , then W 1,p(Ω) is compactly
embedded in C0,β(Ω). In particular, W 1,p(Ω) ⊂⊂ L∞(Ω) for all d < p ≤ ∞.
Proof. Case 1, p ∈ [1, d). By Theorem 49.25, W 1,p(Ω) ⊂⊂ Lq(Ω) for all

1 ≤ q < p∗. Since p∗ > p we may choose q = p to learn W 1,p(Ω) ⊂⊂ Lp(Ω).
Case 2, p ∈ [d,∞). For any p0 ∈ [1, d), we have

W 1,p(Ω) /→W 1,p0(Ω) ⊂⊂ Lp
∗
0 (Ω).
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Since p∗0 =
p0d
d−po ↑ ∞ as p0 ↑ d, we see that W 1,p(Ω) ⊂⊂ Lq(Ω) for all q <∞.

Moreover by Morrey’s inequality (Corollary 49.8) and Proposition5.13 we have
W 1,p(Ω) /→ C0,1−

d
p (Ω) ⊂⊂ C0,β(Ω) which completes the proof.

Remark 49.29. Similar proofs may be given to show W k,p ⊂⊂ Ck− d
p−δ for all

δ > 0 provided k − d
p > 0 and k − d

p − δ > 0.

Lemma 49.30 (Poincaré Lemma). Assume 1 ≤ p ≤ ∞, Ω is a precompact
open connected subset of Rd such that Ω is a manifold with C1-boundary.
Then exist C = C(Ω, ρ) such that

ku− uΩkLp(Ω) ≤ Ck∇ukLp(Ω) for all u ∈W 1,p(Ω), (49.27)

where uΩ :=
R−
Ω
udm is the average of u on Ω as in Notation 49.3.

Proof. For sake of contradiction suppose there is no C <∞ such that Eq.
(49.27) holds. Then there exists a sequence {un}∞n=1 ⊂W 1,p(Ω) such that

kun − (un)ΩkLp(Ω) > nk∇unkLp(Ω) for all n.
Let

un :=
un − (un)Ω

kun − (un)ΩkLp(Ω) .

Then un ∈ W 1,p(Ω), (un)Ω = 0, kunkLp(Ω) = 1 and 1 = kunkLp(Ω) >

nk∇unkLp(Ω) for all n. Therefore k∇unkLp(Ω) < 1
n and in particular

sup
n
kunkW 1,p(Ω) < ∞ and hence by passing to a subsequence if necessary

there exists u ∈ Lp (Ω) such that un → u in Lp(Ω). Since ∇un → 0 in
Lp(Ω), it follows that un is convergent in W 1,p(Ω) and hence u ∈ W 1,p(Ω)
and ∇u = limn→∞∇un = 0 in Lp(Ω). Since ∇u = 0, u ∈ W k,p(Ω) for all
k ∈ N and hence u ∈ C∞ (Ω) and ∇u = 0 and Ω is connected implies u is
constant. Since 0 = limn→∞(un)Ω = uΩ we must have u ≡ 0 which is clearly
impossible since kukLp(Ω) = limn→∞ kunkLp(Ω) = 1.
Theorem 49.31 (Poincaré Lemma). Let Ω be a precompact open subset
of Rd and p ∈ [1,∞). Then

kukLp ≤ diam(Ω)k∇ukLp for all u ∈W 1,p
0 (Ω). (49.28)

Proof. Let diam(Ω) = M. By translating Ω if necessary we may assume
Ω ⊂ [−M,M ]d. For 1 ≤ p < ∞ we may assume u ∈ C∞c (Ω) since C∞c (Ω) is
dense in W 1,p

0 (Ω). Then by the fundamental theorem of calculus,

|u(x)| = 1

2

¯̄̄̄
¯
Z x1

−M
∂1u(y, x2, . . . , xd)dy −

Z M

x1

∂1u(y, x2, . . . , xd)dy

¯̄̄̄
¯

≤ 1
2

Z M

−M
|∂1u(y, x2, . . . , xd)|dy =M

Z M

−M
|∂1u(y, x2, . . . , xd)| dy

2M
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and hence by Jensen’s inequality,

|u(x)|p ≤Mp

Z M

−M
|∂1u(y, x2, . . . , xd)|p dy

2M

Integrating this equation over x implies,

kukpLp ≤Mp

Z
Ω

|∂1u(x)|pdx ≤Mp

Z
Ω

|∇u(x)|pdx

which gives Eq. (49.28).

49.6 Fourier Transform Method

See L2 — Sobolev spaces for another proof of the following theorem.

Theorem 49.32. Suppose s > t ≥ 0, {un}∞n=1 is a bounded sequence (say
by 1) in Hs(Rd) such that K = ∪nsupp(un) @@ Rd. Then there exist a
subsequence {vn}∞n=1 ⊂ {un}∞n=1 which is convergent in Ht(Rd).

Proof. Since¯̄
∂αξ ûn(ξ)

¯̄
=

¯̄̄̄
∂αξ

Z
Rd

e−iξ·xun(x)dx
¯̄̄̄
=

¯̄̄̄Z
Rd
(−ix)αe−iξ·xun(x)dx

¯̄̄̄
≤ kxαkL2(K)kunkL2 ≤ CαkunkHs(Rd) ≤ Cα

ûn and all of it’s derivatives are uniformly bounded. By the Arzela-Ascoli
theorem and Cantor’s Diagonalization argument, there exists a subsequence
{vn}∞n=1 ⊂ {un}∞n=1 such that v̂n and all of its derivatives converge uniformly
on compact subsets in ξ —space. If v̂(ξ) := limn→∞ v̂n(ξ), then by the domi-
nated convergence theorem,Z

|ξ|≤R
(1 + |ξ|2)s|v̂(ξ)|2dξ = lim

n→∞

Z
|ξ|≤R

(1 + |ξ|2)s|v̂n(ξ)|2dξ

≤ lim sup
n→∞

kvnk2Hs(Rd) ≤ 1.

Since R is arbitrary this implies v̂ ∈ L2((1 + |ξ|2)sdξ) and kvkHs(Rd) ≤ 1. Set
gn := v − vn while v = F−1v̂. Then {gn}∞n=1 ⊂ Hs(Rd) and we wish to show
gn → 0 in Ht(Rd). Let dµt (ξ) = (1 + |ξ|2)tdξ, then for any R <∞,

kgnk2Ht =

Z
|ĝ(ξ)− ĝn(ξ)|2 dµt (ξ)

=

Z
|ξ|≤R

|ĝ(ξ)− ĝn(ξ)|2dµt (ξ) +
Z
|ξ|≥R

|ĝ(ξ)− ĝn(ξ)|2dµt (ξ) .
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The first term goes to zero by the dominated convergence theorem, hence

lim sup
n→∞

kgnk2Ht ≤ lim sup
n→∞

Z
|ξ|≥R

|ĝ(ξ)− ĝn(ξ)|2dµt (ξ)

= lim sup
n→∞

Z
|ξ|≥R

|ĝ − ĝn(ξ)|2 (1 + |ξ|
2)s

(1 + |ξ|2)s−t dξ

≤ lim sup
n→∞

1

(1 +R2)s−t

Z
|ξ|≥R

|ĝ − ĝn(ξ)|2dµs (ξ)

≤ lim sup
n→∞

1

(1 +R2)s−t
kgn − gk2Ht

≤ 4
µ

1

1 +R2

¶s−t
→ 0 as R→∞.

49.7 Other theorems along these lines

Another theorem of this form is derived as follows. Let ρ > 0 be fixed and
g ∈ Cc ((0, 1) , [0, 1]) such that g(t) = 1 for |t| ≤ 1/2 and set τ(t) := g(t/ρ).
Then for x ∈ Rd and ω ∈ Γ we haveZ ρ

0

d

dt
[τ(t)u(x+ tω)] dt = −u(x)

and then by integration by parts repeatedly we learn that

u(x) =

Z ρ

0

∂2t [τ(t)u(x+ tω)] tdt =

Z ρ

0

∂2t [τ(t)u(x+ tω)] d
t2

2

= −
Z ρ

0

∂3t [τ(t)u(x+ tω)] d
t3

3!
= . . .

= (−1)m
Z ρ

0

∂mt [τ(t)u(x+ tω)] d
tm

m!

= (−1)m
Z ρ

0

∂mt [τ(t)u(x+ tω)]
tm−1

(m− 1)!dt.

Integrating this equation on ω ∈ Γ then implies
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|Γ |u(x) = (−1)m
Z
γ

dω

Z ρ

0

∂mt [τ(t)u(x+ tω)]
tm−1

(m− 1)!dt

=
(−1)m
(m− 1)!

Z
γ

dω

Z ρ

0

tm−d∂mt [τ(t)u(x+ tω)] td−1dt

=
(−1)m
(m− 1)!

Z
γ

dω

Z ρ

0

tm−d
mX
k=0

µ
m

k

¶h
τ (m−k)(t)

¡
∂kωu

¢
(x+ tω)

i
td−1dt

=
(−1)m
(m− 1)!

Z
γ

dω

Z ρ

0

tm−d
mX
k=0

µ
m

k

¶
ρk−m

h
g(m−k)(t)

¡
∂kωu

¢
(x+ tω)

i
td−1dt

=
(−1)m
(m− 1)!

mX
k=0

µ
m

k

¶
ρk−m

Z
Γx,ρ

|y − x|m−d
h
g(m−k)(|y − x|)

³
∂k[y−xu

´
(y)
i
dy

and hence

u(x) =
(−1)m

|Γ | (m− 1)!
mX
k=0

µ
m

k

¶
ρk−m

Z
Γx,ρ

|y − x|m−d
h
g(m−k)(|y − x|)

³
∂k[y−xu

´
(y)
i
dy

and hence by the Hölder’s inequality,

|u(x)| ≤ C(g)
(−1)m

|Γ | (m− 1)!
mX
k=0

µ
m

k

¶
ρk−m

"Z
Γx,ρ

|y − x|q(m−d) dy
#1/q "Z

Γx,ρ

¯̄̄³
∂k[y−xu

´
(y)
¯̄̄p
dy

#1/p
.

From the same computation as in Eq. (48.4) we findZ
Γx,ρ

|y − x|q(m−d) dy = σ (Γ )

Z ρ

0

rq(m−d)rd−1dr = σ (Γ )
ρq(m−d)+d

q (m− d) + d

= σ (Γ )
ρ
pm−d
p−1

pm− d
(p− 1).

provided that pm− d > 0 (i.e. m > d/p) wherein we have used

q (m− d) + d =
p

p− 1 (m− d) + d =
p (m− d) + d (p− 1)

p− 1 =
pm− d

p− 1 .

This gives the estimate"Z
Γx,ρ

|y − x|q(m−d) dy
#1/q

≤
·
σ (Γ ) (p− 1)

pm− d

¸ p−1
p

ρ
pm−d
p =

·
σ (Γ ) (p− 1)

pm− d

¸ p−1
p

ρm−d/p.

Thus we have obtained the estimate that

|u(x)| ≤ C(g)

|Γ | (m− 1)!
·
σ (Γ ) (p− 1)

pm− d

¸ p−1
p

×

ρm−d/p
mX
k=0

µ
m

k

¶
ρk−m

°°°∂k[y−xu°°°Lp(Γx,p) .
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49.8 Exercises

Exercise 49.33. Let ai ≥ 0 and pi ∈ [1,∞) for i = 1, 2, . . . , d satisfyPd
i=1 p

−1
i = 1, then

dY
i=1

ai ≤
dX
i=1

1

pi
apii .

Hint: This may be proved by induction on d making use of Lemma 1.27.
Alternatively see Example 10.11, where this is already proved using Jensen’s
inequality.

Solution 49.34 (49.33). We may assume that ai > 0, in which case

dY
i=1

ai = e
Pd

i=1 ln ai = e
Pd

i=1
1
pi
ln a

pi
i ≤

dX
i=1

1

pi
eln a

pi
i =

dX
i=1

1

pi
apii .

This was already done in Example 10.11.
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50

2nd order differential operators

Notations 50.1 Let Ω be a precompact open subset of Rd, Aij = Aji, Ai, A0 ∈
BC∞(Ω) for i, j = 1, . . . , d,

p(x, ξ) := −
dX

i,j=1

Aijξiξj +
dX
i=1

Aiξi +A0

and

L = p(x, ∂) = −
dX

i,j=1

Aij∂i∂j +
dX
i=1

Ai∂i +A0.

We also let

L† = −
dX

i,j=1

∂i∂jMAij −
dX
i=1

∂iMAi +A0.

Remark 50.2. The operators L and L† have the following properties.

1. The operator L† is the formal adjoint of L, i.e.

(Lu, v) = (u,L†v) for all u, v ∈ D(Ω) = C∞c (Ω).

2. We may view L as an operator on D0(Ω) via the formula u ∈ D0(Ω) →
Lu ∈ D0(Ω) where

hLu, φi := hu,L†φi for all φ ∈ C∞c (Ω) .

3. The restriction of L to Hk+2(Ω) gives a bounded linear transformation

L : Hk+2(Ω)→ Hk(Ω) for k ∈ N0.
Indeed, L may be written as

L = −
dX

i,j=1

MAij∂i∂j +
dX
i=1

MAi∂i +MA0 .
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Now ∂i : H
k(Ω) → Hk+1(Ω) is bounded and Mψ : H

k(Ω) → Hk(Ω) is
bounded where ψ ∈ BC∞(Ω). Therefore, for k ∈ N0, L : Hk+2(Ω) →
Hk(Ω) is bounded.

Definition 50.3. For u ∈ D0(Ω), let

kukH−1(Ω) := sup
06=φ∈D(Ω)

|hu, φi|
kφkH1

0 (Ω)

and
H−1(Ω) :=

©
u ∈ D0(Ω) : kukH−1(Ω) <∞

ª
.

Example 50.4. Let Ω = Rd and S ⊂ Ω be the unit sphere in Rd. Then define
σ ∈ D0 (Ω) by

hσ, φi :=
Z
S

φdσ.

Let us shows that σ ∈ H−1 (Ω) . For this let T : H1(Ω) → L2(S, dσ) denote
the trace operator, i.e. the unique bounded linear operator such that Tφ = φ|S
for all φ ∈ C∞c

¡
Rd
¢
. Since T is bounded,

|hσ, φi| ≤ σ (S)1/2 kTφkL2(S) ≤ σ (S)1/2 kTkL(H1(Ω),L2(S)) kφkH−1(Ω) .

This shows σ ∈ H−1 (Ω) and kσkH−1(Ω) ≤ σ (S)1/2 kTkL(H1(Ω),L2(S)) .

Lemma 50.5. Suppose Ω is an open subset of Rd such that Ω̄ is a manifold
with C0 — boundary and Ω = Ω̄o, then the map u ∈ £H1

0 (Ω)
¤∗ → u|D(Ω) ∈

H−1(Ω) is a unitary map of Hilbert spaces.

Proof. By definition C∞c (Ω) is dense in H1
0 (Ω) , and hence it follows

that the map u ∈ £H1
0 (Ω)

¤∗ → u|D(Ω) ∈ H−1(Ω) is isometric. If u ∈ H−1(Ω),

it has a unique extension to H1
0 (Ω) = C∞c (Ω)

H1(Ω)
and this provides the

inverse map.
If we identify L2(Ω) = H0(Ω) with elements of D0(Ω) via u→ (u, ·)L2(Ω),

then

D0(Ω) ⊃ H−1(Ω) ⊃ H0(Ω) = L2(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .

Proposition 50.6. The following mapping properties hold:

1. If χ ∈ BC1(Ω). Then Mχ : H
−1(Ω)→ H−1(Ω) is a bounded operator.

2. If V =
Pd

i=1MAi∂i +MA0 with Ai, A0 ∈ BC1(Ω̄), then V : L2(Ω) →
H−1(Ω) is a bounded operator.

3. The map L : D0(Ω) → D0(Ω) restricts to a bounded linear map from
H1(Ω) to H−1(Ω). Also
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Proof. Let us begin by showing Mχ : H
1
0 (Ω) → H1

0 (Ω) is a bounded
linear map. In order to do this choose χn ∈ C∞c

¡
Rd
¢
such that χn → χ in

BC1(Ω). Then for φ ∈ C∞c (Ω) , χnφ ∈ C∞c (Ω) ⊂ H1
0 (Ω) and there is a

constant K <∞ such that

kχnφk2H1
0 (Ω)

≤ K kχnkBC1(Ω) kφk2H1
0 (Ω)

.

By density this estimate holds for all φ ∈ H1
0 (Ω) and by replacing χn by

χn − χm we also learn that

k(χn − χm)φk2H1
0 (Ω)

≤ K kχn − χmkBC1(Ω) kφk2H1
0 (Ω)

→ 0 as m,n→∞.

By completeness of H1
0 (Ω) it follows that χφ ∈ H1

0 (Ω) for all φ ∈ H1
0 (Ω) and

kχnφk2H1
0 (Ω)

≤ K kχkBC1(Ω) kφk2H1
0 (Ω)

.

1. If u ∈ H−1 (Ω) and φ ∈ H1
0 (Ω), then by definition, hMχu, φi = hu, χφi

and therefore,

|hMχu, φi| = |hu, χφi| ≤ kukH−1(Ω)kχφkH1
0 (Ω)

≤ K kχkBC1(Ω) kukH−1(Ω)kφkH1
0 (Ω)

which implies Mχu ∈ H−1 (Ω) and

kMχukH−1(Ω) ≤ K kχkBC1(Ω) kukH−1(Ω).
2. For u ∈ L2 (Ω) and φ ∈ C∞c (Ω)

|h∂iu, φi| = |hu, ∂iφi| ≤ kukL2(Ω) · k∂iφkL2(Ω)
≤ kukL2(Ω) kφkH1

0 (Ω)

and therefore k∂iukH−1(Ω) ≤ kukL2(Ω) . For general V =
Pd

i=1MAi∂i +
MA0 , we have

kAukH−1(Ω) ≤
dX
i=1

K kAikBC1(Ω) k∂iukH−1(Ω) + kA0k∞ kukL2(Ω)

≤
"

dX
i=1

K kAikBC1(Ω) + kA0k∞
#
kukL2(Ω) .

3. Since V : H1(Ω) → L2(Ω) and i : L2(Ω) /→ H−1(Ω) are both bounded
maps, to prove L = −Pd

i,j=1MAij∂i∂j + V is bounded from H1(Ω) →
H−1(Ω) it suffices to show MAij∂i∂j : H

1(Ω) → H−1(Ω) is a bounded.
But MAij∂i∂j : H

1(Ω)→ H−1(Ω) is bounded since it is the composition
of the following bounded maps:

H1(Ω)
∂j→ L2(Ω)

∂i→ H−1(Ω)
MAij→ H−1(Ω).
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Lemma 50.7. Suppose χ ∈ BC∞(Ω) then

1. [L,Mχ] = V is a first order differential operator acting on D0(Ω) which
necessarily satisfies V : Hk(Ω)→ Hk−1(Ω) for k = 0, 1, 2, . . . etc.

2. If u ∈ Hk(Ω), then

[L,Mχ]u ∈ Hk−1(Ω) for k = 0, 1, 2, . . .

and
k[L,Mχ]ukHk−1(Ω) ≤ Ck(χ)kukHk(Ω).

Proof. On smooth functions u ∈ C∞ (Ω) ,

L (χu) = χLu− 2
dX

i,j=1

Aij∂iχ · ∂ju+
 dX

i=1

Ai∂iχ−
dX

i,j=1

Aij∂i∂jχ

 · u
and therefore

[L,Mχ]u = −2
dX

i,j=1

Aij∂iχ · ∂ju+
 dX

i=1

Ai∂iχ−
dX

i,j=1

Aij∂i∂jχ

 · u
=: V u.

Similarly,

L† (χu) = −
dX

i,j=1

∂i∂j [χAiju]−
dX
i=1

∂i(χAiu) +A0χu

= χL†u− 2
dX

i,j=1

∂iχ · ∂j [Aiju]

−
dX
i=1

Ai∂iχ · u−
 dX
i,j=1

Aij∂i∂jχ

u. (50.1)

Noting that

V †u = 2
dX

i,j=1

∂j [∂iχ ·Aiju] +

 dX
i=1

Ai∂iχ−
dX

i,j=1

Aij∂i∂jχ

 · u
= 2

dX
i,j=1

∂iχ · ∂j [Aiju] +

 dX
i=1

Ai∂iχ+
dX

i,j=1

Aij∂i∂jχ

 · u,
Eq. (50.1) may be written as
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[L†,Mχ] = −V †.

Now suppose k = 0, then in this case for φ ∈ D (Ω) ,

|h[L,Mχ]u, φi| =
¯̄hu, [Mχ, L

†]φi¯̄ = ¯̄hu, V †φi¯̄
≤ kukL2(Ω)kV †φkL2(Ω) ≤ CkukL2(Ω)kφkH1

0 (Ω)
.

This implies k[L,Mχ]ukH−1(Ω) ≤ CkukL2 and in particular [L,Mχ]u ∈
H−1(Ω). For k > 0, [L,Mχ]u = V u with V as above and therefore by
Proposition48.6, there exists C < ∞ such that kV ukHk−1(Ω) ≤ C kukHk(Ω) .

Definition 50.8. The operator L is uniformly elliptic on Ω if there exists
� > 0 such that (Aij(x)) ≥ �I for all x ∈ Ω, i.e. Aij(x)ξiξj ≥ � |ξ|2 for all
x ∈ Ω and ξ ∈ Rd.
Suppose now that L is uniformly elliptic. Let us outline the results to be

proved below.

50.1 Outline of future results

1. We consider L with Dirichlet boundary conditions meaning we will view
L as a mapping from H1

0 (Ω) → H−1(Ω) =
£
H1
0 (Ω)

¤∗
. Proposition 51.13

below states there exists C = C(L) < ∞ such that (L + C) : H1
0 (Ω) →

H−1(Ω) is an isomorphism of Hilbert spaces. The proof uses the Dirichlet
form

E(u, v) := hLu, vi for u, v ∈ H1
0 (Ω).

Notice for v ∈ D(Ω) and u ∈ H1
0 (Ω),

E(u, v) = hLu, vi = hu,L†vi
=

Z
Ω

u (−∂i∂j(Aijv)− ∂i (Aiv) +A0v) dm

=

Z
Ω

[∂iu · ∂j(Aijv)− u∂i (Aiv) + uA0v] dm

=

Z
Ω

[Aij∂iu · ∂jv + (Ai + ∂jAij) ∂iu · v +A0uv] dm.

Since the last expression is continuous for (u, v) ∈ H1
0 (Ω) × H1

0 (Ω), we
have shown

E(u, v) =
Z
Ω

[Aij∂iu · ∂jv + (Ai + ∂jAij) ∂iu · v +A0uv] dm

for all u, v ∈ H1
0 (Ω).
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2. To implement other boundary conditions, we will need to consider L acting
on subspaces of H2(Ω) which are determined by the boundary conditions.
Rather than describe the general case here, let us consider an example
where L = −∆ and the boundary condition is ∂u

∂n = ρu on ∂Ω where
∂nu = ∇u ·n, n is the outward normal on ∂Ω and ρ : ∂Ω → R is a smooth
function. In this case, let

D :=

½
u ∈ H2(Ω) :

∂u

∂n
= ρu on ∂Ω

¾
.

We will eventually see that D is a dense subspace of H1(Ω). For u ∈ D
and v ∈ H1 (Ω) ,

(−∆u, v) =

Z
Ω

∇u ·∇v dm−
Z
∂Ω

v∂nu dσ

=

Z
Ω

∇u ·∇v dm−
Z
∂Ω

ρuv dσ =: E(u, v). (50.2)

The latter expression extends by continuity to all u ∈ H1(Ω). Given E
as in Eq. (50.2) let −∆E : H1 (Ω) → £

H1(Ω)
¤∗
be defined by −∆Eu :=

E(u, ·) so that −∆Eu is an extension of −∆u as a linear functional on
H1
0 (Ω) to one onH

1(Ω) ⊃ H1
0 (Ω). It will be shown below that there exists

C <∞ such that (−∆E + C) : H1(Ω)→ £
H1(Ω)

¤∗
is an isomorphism of

Hilbert spaces.
3. The Dirichlet form E in Eq. (50.2) may be rewritten in a way as to avoid
the surface integral term. To do this, extend the normal vector field n
along ∂Ω to a smooth vector field on Ω̄. Then by integration by parts,Z

∂Ω

ρuv dσ =

Z
∂Ω

n2i ρuv dσ =

Z
Ω

∂i [niρuv] dm

=

·Z
Ω

∇ · (ρn) uv + ρni∂iu · v + ρniu · ∂iv
¸
dm.

In this way we see that the Dirichlet form E in Eq. (50.2) may be written
as

E(u, v) =
Z
Ω

[∇u ·∇v + ai0∂iu · v + a0iu∂iv + a00uv] dm (50.3)

with a00 = ∇ · (ρn) , ai0 = ρni = a0i. This should motivate the next
section where we consider generalizations of the form E in Eq. (50.3).



51

Dirichlet Forms

In this section Ω will be an open subset of Rd.

51.1 Basics

Notation 51.1 (Dirichlet Forms) For α, β ∈ Nd0 with |α| , |β| ≤ 1, suppose
aα,β ∈ BC∞

¡
Ω̄
¢
and ρ ∈ BC∞

¡
Ω̄
¢
with ρ > 0, let

E(u, v) =
X

|α|,|β|≤1

Z
Ω

aαβ∂
αu · ∂βv dµ (51.1)

where dµ := ρdm. We will also write (u, v) :=
R
Ω
uv dµ and L2 for L2(Ω,µ).

In the sequel we will often write ai,β for aei,β, aα,j for aα,ej and aij for aei,ej .

Proposition 51.2. Let E be as in Notation 51.1 then
|E(u, v)| ≤ CkukH1kvkH1 for all u, v ∈ H1

where C is a constant depending on d and upper bounds for
n
kaαβkBC(Ω̄) : |α| , |β| ≤ 1

o
.

Proof. To simplify notation in the proof, let k·k denote the L2(Ω,µ) —
norm. Then

|E(u, v)| ≤ C
X
ij

{k∂iuk k∂jvk+ k∂iuk kvk+ kuk k∂ivk+ kuk kvk}

≤ CkukH1 · kvkH1 .

Notation 51.3 Given E as in Notation 51.1, let LE and L†E be the bounded
linear operators from H1(Ω) to

£
H1(Ω)

¤∗
defined by

LEu := E (u, ·) and L†Eu := E (·, u) .
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It follows directly from the definitions that hLEu, vi = hu,L†Evi for all
u, v ∈ H1(Ω). The Einstein summation convention will be used below when
convenient.

Proposition 51.4. Suppose Ω is a precompact open subset of Rd such that Ω̄
is a manifold with C2 — boundary, Then for all u ∈ H2(Ω) and v ∈ H1 (Ω) ,

hLEu, vi = E(u, v) = (Lu, v) +
Z
∂Ω

Bu · v ρdσ (51.2)

and for all u ∈ H1(Ω) and v ∈ H2 (Ω) ,

hu,L†Evi = E(u, v) = (u,L†v) +
Z
∂Ω

u ·B†v ρdσ, (51.3)

where

B = njaij∂i + nja0j = n · a∇+ n · a0,·, (51.4)

B† = ni [aij∂j + ai0] = an ·∇+ n · a·,0, (51.5)

Lu := ρ−1
X

|α|,|β|≤1
(−1)|β| ∂β [ρaαβ∂αu] (51.6)

and
L†v := ρ−1

X
|α|,|β|≤1

(−1)|α|∂α £ρaαβ∂βv¤ (51.7)

We may also write L, L† as

L = −aij∂j∂i +
¡
ai0 − a0j − ρ−1∂j [ρaij ]

¢
∂i +

¡
a00 − ρ−1∂j [ρa0j ]

¢
, (51.8)

L† = −aij∂i∂j +
¡
a0j − aj0 − ρ−1∂i [ρaij ]

¢
∂j +

¡
a00 − ρ−1∂i [ρai0]

¢
. (51.9)

Proof. Suppose u ∈ H2(Ω) and v ∈ H1 (Ω) , then by integration by parts,

E(u, v) =
X

|α|,|β|≤1

Z
Ω

(−1)|β| ρ−1∂β [ρaαβ∂αu] · v dµ+
X
|α|≤1

dX
j=1

Z
∂Ω

nj [aαj∂
αu] · v ρdσ

= (Lu, v) +

Z
∂Ω

Bu · v ρdσ,

where
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Lu = ρ−1
X

|α|,|β|≤1
(−1)|β| ∂β [ρaαβ∂αu] = −ρ−1

X
|α|≤1

dX
j=1

∂j (ρaαj∂
αu) +

X
|α|≤1

aα0∂
αu

= −ρ−1
dX

i,j=1

∂j (ρaij∂iu)− ρ−1
dX

j=1

∂j (ρa0ju) +
dX
i=1

ai0∂iu+ a00u

= −
dX

i,j=1

aij∂j∂iu− ρ−1
dX

i,j=1

(∂j [ρaij ]) ∂iu−
dX

j=1

a0j∂ju

− ρ−1
dX

j=1

(∂j [ρa0j ])u+
dX
i=1

ai0∂iu+ a00u

and

Bu =
X
|α|≤1

dX
j=1

nj (aαj∂
αu) =

dX
i,j=1

njaij∂iu+
dX

j=1

nja0ju.

Similarly for u ∈ H1(Ω) and v ∈ H2 (Ω) ,

E(u, v) =
X

|α|,|β|≤1

Z
Ω

u · (−1)|α|ρ−1∂α £ρaαβ∂βv¤ dµ+
dX
i=1

X
|β|≤1

Z
Ω

u · ni
£
aiβ∂

βv
¤
ρdσ

= (u,L†v) +
Z
∂Ω

u ·B†v ρdσ,

where B†v = ni [aij∂j + ai0] and

L†v = −ρ−1∂i (ρaij∂jv) + a0j∂jv − ρ−1∂i (ρai0v) + a00v

= −aij∂i∂jv − ρ−1 (∂i [ρaij ]) ∂jv

+ a0j∂jv − ai0∂iv − ρ−1 (∂i [ρai0]) v + a00v

=
£−aij∂i∂j + ¡a0j − aj0 − ρ−1∂i [ρaij ]

¢
∂j + a00 − ρ−1∂i [ρai0]

¤
v.

Proposition 51.4 shows that to the Dirichlet form E there is an associated
second order elliptic operator L along with boundary conditions B as in Eqs.
(51.6) and (51.4). The next proposition shows how to reverse this procedure
and associate a Dirichlet form E to a second order elliptic operator L with
boundary conditions.

Proposition 51.5 (Following Folland p. 240.). Let Aj , A0ρ ∈ BC∞ (Ω)
and Aij = Aji ∈ BC∞ (Ω) with (Aij) > 0 and ρ > 0 and let

L = −Aij∂i∂j +Ai∂i +A0 (51.10)

and (u, v) :=
R
Ω
uvρdm. Also suppose α : ∂Ω → R and V : ∂Ω → Rd are

smooth functions such that V (x) · n(x) > 0 for all x ∈ ∂Ω and let B0u :=
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V ·∇u+αu. Then there exists a Dirichlet form E as in Notation 51.1 and β ∈
C∞ (∂Ω → (0,∞)) such that Eq. (51.2) holds with Bu = βB0u. In particular
if u ∈ H2(Ω), then Bu = 0 iff B0u = 0 on ∂Ω.

Proof. Since mixed partial derivatives commute on H2(Ω), the term
aij∂j∂i in Eq. (51.8) may be written as

1

2
(aij + aji) ∂j∂i.

With this in mind we must find coefficients {aα,β : |α| , |β| ≤ 1} as in Notation
51.1, such that

Aij =
1

2
(aij + aji) , (51.11)

Ai =
¡
ai0 − a0j − ρ−1∂j [ρaij ]

¢
, (51.12)

A0 = a00 − ρ−1∂j [ρa0j ] , (51.13)

atrn = βV and (51.14)

nia0i = βα. (51.15)

Eq. (51.11) will be satisfied if

aij = Aij + cij

where cij = −cji are any functions in BC∞(Ω). Dotting Eq. (51.14) with n
shows that

β =
atrn · n
V · n =

n · an
V · n =

n ·An
V · n (51.16)

and Eq. (51.14) may now be written as

w := An− n ·An
V · n V = cn (51.17)

which means we have to choose c = (cij) so that Eq. (51.17) holds. This is
easily done, since w·n = 0 by construction we may define cξ := w(n·ξ)−n(w·ξ)
for ξ ∈ Rd. Then c is skew symmetric and cn = w as desired. Since cij are
smooth functions on ∂Ω, a partition of unity argument shows that cij = −cji
may be extended to element of C∞(Ω̄). (These extensions are highly non-
unique but it does not matter.) With these choices, Eq. (51.11) and Eq. (51.14)
now hold with β as in Eq. (51.16). We now choose a0i ∈ C∞(Ω̄) such that
a0i = βαni on ∂Ω. Once these choices are made, it should be clear that Eqs.
(51.13) and (51.14) may be solved uniquely for the functions a0j and a00.

51.2 Weak Solutions for Elliptic Operators

For the rest of this subsection we will assume ρ = 1. This can be done here
by absorbing ρ into the coefficient aαβ.



51.2 Weak Solutions for Elliptic Operators 1055

Definition 51.6. The Dirichlet for E is uniformly elliptic on Ω if there
exists � > 0 such that (aij(x)) ≥ �I for all x ∈ Ω, i.e. aij(x)ξiξj ≥ � |ξ|2 for
all x ∈ Ω and ξ ∈ Rd.
Assumption 4 For the remainder of this chapter, it will be assumed that E
is uniformly elliptic on Ω.

Lemma 51.7. If ξ2 ≤ Aξ +B then ξ2 ≤ A2 + 2B.

Proof. ξ2 ≤ 1
2A

2 + 1
2ξ
2 +B. Therefore 1

2ξ
2 ≤ 1

2A
2 +B or ξ2 ≤ A2 + 2B.

Theorem 51.8. Keeping the notation and assumptions of Proposition 51.2
along with Assumption 4, then

E(u, u) + C�kukL2(Ω) ≥ �

2
kukH1(Ω), (51.18)

where C� =
2C2

� + C + �
2 .

Proof. To simplify notation in the proof, let k·k denote the L2(Ω) — norm.
Since Z

Ω

aij∂iu · ∂ju dm ≥ �

Z
Ω

|∇u|2dx = �k∇uk2L2 ,

E(u, u) ≥ �k∇uk2L2 − C(k∇uk kuk+ kuk2)
and so

k∇uk2 ≤ C

�
kukk∇uk+

µ
1

�
E(u, u) + C

�
kuk2

¶
.

Therefore by Lemma 51.7 with A = C
� kuk, B =

¡
1
�E(u, u) + C

� kuk2
¢
and

ξ = k∇uk,

k∇uk2 ≤ C2

�2
kuk2 + 2

�
(E(u, u) + C

�
kuk2)

=
2

�
E(u, u) +

µ
C2

�2
+
2C

�

¶
kuk2.

Hence
�

2
k∇uk2 ≤ E(u, u) +

µ
2C2

�
+ C

¶
kuk2

which, after adding �
2 kuk2 to both sides of this equation, gives Eq. (51.18).

The following theorem is an immediate consequence of Theorem 51.8 and
the Lax-Milgram Theorem 53.9.

Corollary 51.9. The quadratic form

Q(u, v) := E(u, v) + C�(u, v)

satisfies the assumptions of the Lax Milgram Theorem 53.9 on H1(Ω) or any
closed subspace X of H1(Ω).
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Theorem 51.10 (Weak Solutions). Let E be as in Notation 51.1 and C�

be as in Theorem 51.8,

Q(u, v) := E(u, v) + C�(u, v) for u, v ∈ H1(Ω)

and X be a closed subspace of H1(Ω). Then the maps L : X → X∗ and
L† : X → X∗ defined by

Lv := Q(v, ·) = (LE + C) v and

L†v := Q(·, v) =
³
L†E + C

´
v

are linear isomorphisms of Hilbert spaces satisfying°°L−1°°
L(X∗,X) ≤

2

�
and

°°(L†)−1°°
L(X∗,X) ≤

2

�
.

In particular for f ∈ X∗, there exist a unique solution u ∈ X to Lu = f and
this solution satisfies the estimate

kukH1(Ω) ≤ 2
�
kfkX∗ .

Remark 51.11. If X ⊃ H1
0 (Ω) and u ∈ X then for φ ∈ C∞c (Ω) ⊂ X,

hLu, φi = Q(u, φ) = (u,
¡
L† + C

¢
φ) = h(L+ C)u, φi.

That is to say Lu|C∞c (Ω) = (L+ C)u. In particular any solution u ∈ X to
Lu = f ∈ X∗ solves

(L+ C)u = f |C∞c (Ω) ∈ D0 (Ω) .
Remark 51.12. Suppose that Γ ⊂ ∂Ω is a measurable set such that σ (Γ ) > 0
and XΓ :=

©
u ∈ H1(Ω) : 1Γu|∂Ω = 0

ª
. If u ∈ H2 (Ω) solves Lu = f for some

f ∈ L2(Ω) ⊂ X∗, then by Proposition 51.4,

(f, u) := hLu, vi = E(u, v) + C(u, v) = ((L+ C)u, v) +

Z
∂Ω

Bu · v dσ (51.19)

for all v ∈ XΓ ⊂ H1(Ω). Taking v ∈ D (Ω) ⊂ XΓ in Eq. (51.19) shows
(L+ C)u = f a.e. andZ

∂Ω

Bu · v dσ = 0 for all v ∈ XΓ .

Therefore we may conclude, u solves

(L+ C)u = f a.e. with

Bu(x) = 0 for σ — a.e. x ∈ ∂Ω \ Γ and

u(x) = 0 for σ — a.e. x ∈ Γ.
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The following proposition records the important special case of Theorem
51.10 when X = H1

0 (Ω) and hence X
∗ = H−1(Ω). The point to note here is

that Lu = (L+ C)u when X = H1
0 (Ω), i.e. Lu equals [(L+ C)u] extended

by continuity to a linear functional on X∗ =
£
H1
0 (Ω

¤∗
.

Proposition 51.13. Assume L is elliptic as above. Then there exist C > 0
sufficiently large such that (L + C) : H1

0 (Ω) → H−1(Ω) is bijective with
bounded inverse. Moreover

k(L+ C)−1kL(H1
0 (Ω),H

−1(Ω)) ≤ 2/�

or equivalently

kukH1
0 (Ω)

≤ 2
�
k(L+ C)ukH−1(Ω) for all u ∈ H1

0 (Ω).

Our next goal, see Theorem 52.15, is to prove the elliptic regularity result,
namely if X = H1

0 (Ω) or X = H1(Ω) and u ∈ X satisfies Lu ∈ Hk(Ω), then
u ∈ Hk+2(Ω) ∩X.





52

Elliptic Regularity

Assume that Ω̄ is a compact manifold with C2 — boundary and satisfying
Ω̄o = Ω and let E be the Dirichlet form defined in Notation 51.1 and L
be as in Eq. (51.6) or Eq. (51.8). We will assume E or equivalently that L
is uniformly elliptic on Ω. This section is devoted to proving the following
elliptic regularity theorem.

Theorem 52.1 (Elliptic Regularity Theorem). Suppose X = H1
0 (Ω) or

H1(Ω) and E is as above. If u ∈ X such that LEu ∈ Hk(Ω) for some k ∈
N0 ∪ {−1} , then u ∈ Hk+2(Ω) and

kukHk+2(Ω) ≤ C(kLEukHk(Ω) + kukL2(Ω)). (52.1)

52.1 Interior Regularity

Theorem 52.2 (Elliptic Interior Regularity). To each χ ∈ C∞c (Ω) there
exist a constant C = C(χ) such that

kχukH1(Ω) ≤ C{kLukH−1(Ω) + kukL2(Ω)} for all u ∈ H1(Ω). (52.2)

In particular, if W is a precompact open subset of Ω, then

kukH1(W ) ≤ C{kLukH−1(Ω) + kukL2(Ω)}. (52.3)

Proof. For u ∈ H1(Ω), χu ∈ H1
0 (Ω) and hence by Proposition 51.13,

Proposition 50.6 and Lemma 50.7,

kχukH1(Ω) ≤ 2
�
k(L+ C�) (χu) kH−1(Ω)

=
2

�
kχ(L+ C�)u+ [L,Mχ]ukH−1(Ω)

≤ 2
�
C(χ)

©k(L+ C�)ukH−1(Ω) + kukL2(Ω)
ª

≤ 2
�
C(χ)

©kLukH−1(Ω) + C�kukH−1(Ω) + kukL2(Ω)
ª
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from which Eq. (52.2) follows. To prove Eq. (52.3), choose χ ∈ C∞c (Ω, [0, 1])
such that χ = 1 on a neighborhood of W̄ in which case

kukH1(W ) = kχukH1(W ) ≤ kχukH1(Ω) ≤ C{kLukH−1(Ω) + kukL2(Ω)}.

Exercise 52.3. Let v ∈ Rd with |v| = 1, u ∈ L2 (Ω) and W be an open set
such that W̄ @@ Ω. For all h 6= 0 sufficiently show°°∂hvu°°H−1(W )

≤ kukL2(Ω) .

Notice that ∂hvu ∈ L2(W ) ⊂ H−1(W ).

Solution 52.4 (52.3). Let W1 be a precompact open subset of Ω such that
W̄ ⊂W1 ⊂ W̄1 ⊂ Ω. Then for φ ∈ D (W ) and h close to zero,¯̄h∂hv u, φi¯̄ = ¯̄hu, ∂−hv φi¯̄ ≤ kukL2(W1)

°°∂−hv φ
°°
L2(W1)

≤ kukL2(W1)
k∂vφkL2(Ω) (Theorem 48.13)

≤ kukL2(Ω) kφkH1(Ω) .

Hence°°∂hvu°°H−1(W )
= sup

n¯̄h∂hvu, φi¯̄ : φ ∈ D (W ) with kφkH1(Ω) = 1
o

≤ kukL2(Ω) .

Theorem 52.5 (Interior Regularity). Suppose L is 2nd order uniformly
elliptic operator on Ω and u ∈ H1(Ω) satisfies Lu ∈ Hk(Ω)1 for some k =
−1, 0, 1, 2, . . . , then u ∈ Hk+2

loc (Ω). Moreover, if W ⊂⊂ Ω then there exists
C = Ck(W ) <∞ such that

kukHk+2(W ) ≤ C(kLukHk(Ω) + kukL2(Ω)). (52.4)

Proof. The proof is by induction on k with Theorem 52.2 being the case
k = −1. Suppose that the interior regularity theorem holds for −1 ≤ k ≤ k0.
We will now complete the induction proof by showing it holds for k = k0+1.
So suppose that u ∈ H1(Ω) such that Lu ∈ Hk0+1(Ω) and W = W0 ⊂ Ω

is fixed. Choose open sets W1, W2 and W3 such that W̄0 ⊂ W1 ⊂ W̄1 ⊂
W2 ⊂ W̄2 ⊂ W3 ⊂ W̄3 ⊂ Ω as in Figure 52.1. The idea now is to apply the
induction hypothesis to the function ∂hv u where v ∈ Rd and ∂hv is the finite
difference operator in Definition 29.14. For the remainder of the proof h 6= 0
will be assumed to be sufficiently small so that the following computations
make sense. To simplify notation let Dh = ∂hv .

1 A priori, Lu ∈ H−1(Ω) ⊂ D0 (Ω)).
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Ω

Fig. 52.1. The sets Wi for i = 0, 1, 2.

For h small, Dhu ∈ H1(W3) and DhLu ∈ Hk0+1(W3) and by Exercise
52.3 for k0 = −1 and Theorem 48.13 for k0 ≥ 0,

kDhLukHk0 (W1) ≤ kLukHk0+1(W2). (52.5)

We now compute LDhu as

LDhu = DhLu+ [L,Dh]u, (52.6)

where

[L,Dh]u = LDhu−DhLu

= P (x, ∂)Dhu(x)−DhP (x, ∂)u(x)

= P (x, ∂)

µ
u(x+ hv)− u(x)

h

¶
− P (x+ hv, ∂)u(x+ hv)− P (x, ∂)u(x)

h

=
P (x, ∂)− P (x+ hv,D)

h
u(x+ hv) = Lhτhv u(x),

τhv u(x) = u(x+ hv)

and

Lhu :=
X
|α|≤2

Aα(x)−Aα(x+ he)

h
∂αu.

The meaning of Eq. (52.6) and the above computations require a bit more
explanation in the case k0 = −1 in which case Lu ∈ L2(Ω). What is being
claimed is that

LDhu = DhLu+ Lhτhv u

as elements of H−1(W3). By definition this means that
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−hu,D−hL†φi = hLDhu, φi = hDhLu+ Lhτhv u, φi
= −hu,L†D−hφi+ hτhv u,

¡
Lh
¢†
φi.

So the real identity which needs to be proved here is that
£
D−h, L†

¤
φ =

−τ−hv

¡
Lh
¢†
φ for all φ ∈ D (W3) . This can be done as above or it can be in-

ferred (making use of the properties L† is the formal adjoint of L and −D−h is
the formal adjoint of Dh) from the computations already done in the previous
paragraph with u being a smooth function.
Since Lh is a second order differential operator with coefficients which

have bounded derivatives to all orders with bounds independent of h small,
[L,Dh]u = Lhτhv u ∈ Hk0(W1) and there is a constant C <∞ such that

k[L,Dh]ukHk0 (W1) = kLhτhv ukHk0 (W1)

≤ Ckτhv ukHk0+2(W2) ≤ CkukHk0+2(W3). (52.7)

Combining Eqs. (52.5 — 52.7) implies that LDhu ∈ Hk0(W2) and

kLDhukHk0 (W1) . kLukHk0+1(W2) + kukHk0+2(W3).

Therefore by the induction hypothesis, Dhu ∈ Hk0+2(W0) and°°Dhu
°°
Hk0+2(W0)

. kLDhukHk0 (W1) + kDhukL2(W1)

. kLukHk0+1(W2) + kukHk0+2(W3) + kukH1(W2)

. kLukHk0+1(W2) + kukHk0+2(W3)

. kLukHk0+1(Ω) + kLukHk0 (Ω) + kukL2(Ω) (by induction)

. kLukHk0+1(Ω) + kukL2(Ω) .

So by Theorem 48.13, ∂vu ∈ Hk0+2(W0) for all v = ei with i = 1, 2, . . . , d and

k∂iukHk0+2(W ) = k∂iukHk0+2(W0)
. kLukHk0+1(Ω) + kukL2(Ω) .

Thus u ∈ Hk0+3(W0) and Eq. (52.4) holds.

Corollary 52.6. Suppose L is as above and u ∈ H1(Ω) such that Lu ∈
BC∞(Ω) then u ∈ C∞(Ω).

Proof. Choose Ω0 ⊂⊂ Ω so Lu ∈ BC∞(Ω0). Therefore Lu ∈ Hk(Ω0)
for all k = 0, 1, 2, . . . . Hence u ∈ Hk+2

loc (Ω0) for all k = 0, 1, 2, . . . . Then by
Sobolev embedding Theorem 49.18, u ∈ C∞(Ω0). Since Ω0 is an arbitrary
precompact open subset of Ω, u ∈ C∞(Ω).



52.2 Boundary Regularity Theorem 1063

52.2 Boundary Regularity Theorem

Example 52.7. Let Ω = D(0, 1) and u(z) = (1 + z) log(1 + z). Since u(z) is
holomorphic on Ω it is also harmonic, i.e. ∆u = 0 ∈ Hk(Ω) for all k. However
we will now show that while u ∈ H1(Ω) it is not in H2(Ω). Because u is
holomorphic,

ux =
∂u

∂z
= 1 + log(1 + z) and uy = i

∂u

∂z
= i+ i log(1 + z)

from which it is easily shown u ∈ H1(Ω). On the other hand,

uxx =
∂2

∂z2
u =

1

1 + z

and Z
Ω

¯̄̄̄
1

1 + z

¯̄̄̄2
dx dy =

Z
Ω+1

¯̄̄̄
1

z

¯̄̄̄2
dx dy

≥
Z
C

¯̄̄̄
1

z

¯̄̄̄2
dx dy =

π

2

Z 1

0

1

r2
rdr =∞,

where C is the cone in Figure 52.2. This shows u /∈ H2(Ω) and the problems
come from the bad behavior of u near −1 ∈ ∂Ω.

Fig. 52.2. The cone used in showing u not in H2(Ω).

This example shows that in order to get an elliptic regularity result which
is valid all the way up to the boundary, it is necessary to impose some sort of
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boundary conditions on the solution which will rule out the bad behavior of
the example. Since the Dirichlet form contains boundary information, we will
do this by working with E rather than the operator L on D0 (Ω) associated to
E . Having to work with the quadratic form makes life a bit more difficult.

Notations 52.8 Let

1. Nr := {x ∈ Hn : |x| < r}.
2. X = H1

0 (Nr) or X be the closed subspace H1(Nr) given by

X =
©
u ∈ H1(Nr) : u|∂Hn∩N̄r

= 0
ª
. (52.8)

3. For s ≤ r let Xs = {u ∈ X : u = 0 on Hn \Nρ for some ρ < s}.

ρ

Fig. 52.3. Nested half balls.

Remark 52.9. 1. If φ ∈ C∞(Hn
) and vanishes on Hn \ Nρ for some ρ < r

then φu ∈ Xr for all u ∈ X.
2. If u ∈ Xr then ∂αhu ∈ Xr for all α such that αd = 0 and |h| sufficiently
small.

Lemma 52.10 (Commutator). If ψ ∈ C∞(Nr) then for γ ∈ Nd−10 × {0}
there exists Cγ(ψ) <∞ such that

k[ψ, ∂γh ]fkL2(Nρ) ≤ Cγ(ψ)
X
α<γ

k∂αfkL2(Nr). (52.9)

for all f ∈ L2(Nr) with ∂αf ∈ L2(Nr) for α < γ.

Proof. The proof will be by induction on |γ| . If γ = ei for some i < d,
then

∂ih (ψf) (x) :=
ψ(x+ hei)f(x+ hei)− ψ(x)f(x)

h

=
[ψ(x+ hei)− ψ(x)] f(x+ hei) + ψ(x) [f(x+ hei)− f(x)]

h

= ∂ihψ(x)f(x+ hei) + ψ(x)∂ihf(x)
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which gives
[∂ih, ψ]f = (∂

i
hψ)τ

i
hf. (52.10)

This then implies that

k[ψ, ∂ih]fkL2(Nρ) ≤ C(ψ)kfkL2(Nr).

Now suppose |γ| > 1 with γ = ei+γ
0 so that ∂γh = ∂γ

0
h ∂ih with|γ0| = |γ|−1.

Then
[ψ, ∂γh ] = [ψ, ∂

γ0
h ]∂

i
h + ∂γ

0
h [ψ, ∂

i
h]

and therefore by the induction hypothesis and Theorems 48.13 and 48.15,

k[ψ, ∂γh ]fkL2 ≤ Cγ0(ψ)
X
α<γ0

k∂α∂ihfkL2 + k∂γ
0
[ψ, ∂ih]fkL2

≤ Cγ0(ψ)
X
α<γ0

k∂α+eifkL2 + k∂γ
0 £
(∂ihψ)τ

i
hf
¤ kL2 . (52.11)

But

∂γ
0 £
(∂ihψ)τ

i
hf
¤
=

X
β1+β2=γ0

γ0!
β1!β2!

(∂ih∂
β1ψ)τ ih∂

β2f

and hence
k∂γ0 £(∂ihψ)τ ihf¤ k ≤ C

X
β≤γ0

k∂βfkL2 . (52.12)

Combining Eqs. (52.11) and (52.12) gives the desired result,

k[ψ, ∂γh ]fkL2 ≤ Cγ(ψ)
X
α<γ

k∂αfkL2 .

Lemma 52.11 (Warmup for Proposition 52.12). Let aαβ ∈ BC∞
¡
Hd
¢

with (aij) ≥ �δij for some � > 0,

hLu, vi = E(u, v) =
Z
Hd

X
|α|,|β|≤1

aαβ∂
αu · ∂βv dx, (52.13)

X = H1
0 (Hd) or H1(Hd). There exists C < ∞ such that if u ∈ X such that

Lu =: f ∈ L2(Hd), then u ∈ H2
¡
Rd
¢
and

kukH2(Hd) ≤ C(kfkL2(Hd) + kukX∗). (52.14)

Proof. If Lu = f ∈ X∗ then (L+ C)u = f +Cu, so by the Lax-Milgram
method,

kukX . kf + CukX∗ ≤ kfkX∗ + C kukX∗ . kLukX∗ + kukX∗ .
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We wish to prove ∂iu ∈ H1(Hd) for all i < d and

k∂iukH1(Hd) . kLukL2(Hd) + kukX∗ .

To do this consider

hL∂hi u, vi =
Z
Hd

X
|α|,|β|≤1

aαβ∂
h
i ∂

αu · ∂βv dx

=

Z
Hd

X
|α|,|β|≤1

©
∂hi (aαβ∂

αu) +
£
aαβ, ∂

h
i

¤
∂αu

ª · ∂βv dx

=: −hLu, ∂−hi vi−
Z
Hd

X
|α|,|β|≤1

(∂ihaαβ)τ
i
h∂

αu · ∂βv dx

= −hLu, ∂−hi vi− E∂iha(τ
i
hu, v = −(f, ∂−hi v)− E∂iha(τ

i
hu, v)

= (∂hi f, v)− E∂iha(τ
i
hu, v)

wherein we have made use of Eq. (52.10) in the third equality. From this it
follows that

L∂hi u = ∂hi Lu− E∂iha(τ
i
hu, ·) ∈ X∗

and °°L∂hi u°°X∗ ≤ °°∂hi Lu°°X∗ + °°°E∂iha(τ ihu, ·)°°°X∗ . kLukL2 + kukX
. kLukL2 + kLukX∗ + kukX∗ . kLukL2 + kukX∗ .

Therefore,°°∂hi u°°X . °°L∂hi u°°X∗ + °°∂hi u°°X∗ . kLukL2 + kukX∗ + kukL2
. kLukL2 + kukX∗ .

Since h is small but arbitrary we conclude that ∂iu ∈ X and

k∂iukX . kLukL2 + kukX∗ for all i < d.

Finally if i = d, we have that f = Lu =Pα6=2ed Aα∂
αu+ ∂2du which implies

(writing Ad,d for A2ed)

∂2du = A−1d,d

f −
X
α 6=2ed

Aα∂
αu

 ∈ L2

because we have shown that ∂i∂ju ∈ L2 if {i, j} 6= {d} . Moreover we have the
estimate that
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°°∂2du°°L2 .
°°°°°°f −

X
α6=2ed

Aα∂
αu

°°°°°°
L2

. kfkL2 +
X
α6=2ed

k∂αukL2

. kfkL2 +
X
j<d

°°∂ju°°
X∗ . kLukL2(Hd) + kukX∗ .

Thus we have shown that u ∈ X ∩H2(Hd) and

kukH2(Hd) . kLukL2(Hd) + kukX∗ .

If we try to use the above proof inductively to get higher regularity we run
into a snag. To see this suppose now that f ∈ H1. Then as above

L∂hj u = ∂hj Lu− E∂jha(τ
j
hu, ·) = ∂hj f − E∂jha(τ

j
hu, ·).

Let ∂jha = b and τ jhu = w and consider

Eb(w, v) =
Z
Hd

bα,β∂
αw · ∂βvdm.

Since w ∈ H2 we may integrate by parts to find

Eb(w, v) =
Z
Hd
(−1)|β| ∂β (bα,β∂αw) · vdm−

Z
∂Hd

bα,d∂
αw · vdσ.

This shows that Eb(w, ·) is representable by (−1)|β| ∂β (bα,β∂αw) ∈ L2 plus
the boundary term

v →
Z
∂Hd

bα,d∂
αw · vdσ.

To continue on by this method, we would have to show that the boundary
term is representable by an element of L2. This should be the case since
v|∂Hd ∈ H−1/2

¡
Hd
¢
while ∂αw ∈ H1/2

¡
Hd
¢
with bounds. However we have

not proven such statements so we will proceed by a different but closely related
approach.

Proposition 52.12 (Local Tangential Boundary Regularity). Let aα,β ∈
C∞

¡
N̄t

¢
with aij ξi ξj ≥ 2�|ξ|2,

Q(u, v) =

Z
Nt

X
|α|,|β|≤1

aαβ∂
αu · ∂βv dx, (52.15)

X = H1(Nt) or X be the closed subspace of H1 (Nt) defined in Eq. (52.8) of
Notation 52.8. Suppose k ∈ N0, u ∈ X and f ∈ Hk(Nt) satisfy,

Q(u, v) =

Z
Nt

fv dx for all v ∈ Xt. (52.16)



1068 52 Elliptic Regularity

Given ρ < t, there exists C < ∞ such that for all γ ∈ Nd−10 × {0} with
|γ| ≤ k + 1, ∂γu ∈ H1(Nρ) and

k∂γukH1(Nρ) ≤ C(kfkHk(Nt) + kukH1(Nt)) (52.17)

Proof. Let ρ < r < s < t and consider the half nested balls as in Figure
52.4 below. The proof will be by induction on j = |γ| . When j = 0 the

ρ

φ

ρ

Fig. 52.4. A collection of nested half balls along with the cutoff function φ.

assertion is trivial. Assume now there exists j ∈ [1, k + 1] ∩ N such that
∂γu ∈ H1(Ns) for all |γ| < j with γd = 0 and

k∂γukH1(Ns) ≤ C(kfkHk(Nt) + kukH1(Nt)).

Fix φ ∈ C∞c (N t) such that φ = 0 on N̄t \ N̄r and φ = 1 in a neighborhood
ofNρ. Suppose γ is a multi-index such that |γ| = j and γd = 0. Then ∂

γ
h(φu) ∈

Xr for h sufficiently small.
With out loss of generality we may assume γ1 > 0 and write γ = e1 + γ0

and ∂γh = ∂1h∂
γ0
h . For v ∈ Xr,
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Q(∂γh(φu), v) =

Z
Nt

X
|α|,|β|≤1

aαβ∂
α∂γh(φu) · ∂βv =

Z
Nt

X
|α|,|β|≤1

aαβ∂
γ
h∂

α(φu) · ∂βv

=
X

|α|,|β|≤1

Z
Nt

∂γh(aαβ∂
α (φu)) · ∂βv

+

E1z }| {X
|α|,|β|≤1

Z
Nt

[aαβ, ∂
γ
h ]∂

α(φu) · ∂βv

=
X

|α|,|β|≤1

Z
Nt

∂γh(aαβφ∂
αu) · ∂βv

+

E2z }| {X
|α|,|β|≤1

Z
Nt

∂γh(aαβ[∂
α, φ]u) · ∂βv +E1

=
X

|α|,|β|≤1
(−1)|γ|

Z
Nt

aαβ∂
αu · φ∂β∂γ−hv +E1 +E2

=
X

|α|,|β|≤1
(−1)|γ|

Z
Nt

aαβ∂
αu · ∂β £φ∂γ−hv¤+E1 +E2

+

E3z }| {X
|α|,|β|≤1

(−1)|γ|
Z
Nt

aαβ∂
αu · £φ, ∂β¤ ∂γ−hv

= (−1)|γ|Q(u, φ∂γ−hv) +E1 +E2 +E3

= (−1)|γ|
Z
Nt

φf∂γ−hv +E1 +E2 +E3

= E1 +E2 +E3

E4z }| {
−
Z
Nt

∂γ
0

h [φf ] · ∂1−hv.

= E1 +E2 +E3 +E4.

To summarize,
Q(∂γh(φu), v) = E1 +E2 +E3 +E4

where
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E1 :=
X

|α|,|β|≤1

Z
Nt

[aαβ, ∂
γ
h ]∂

α(φu) · ∂βv

E2 :=
X

|α|,|β|≤1

Z
Nt

∂γh(aαβ [∂
α, φ]u) · ∂βv

E3 :=
X

|α|,|β|≤1
(−1)|γ|

Z
Nt

aαβ∂
αu · £φ, ∂β¤∂γ−hv and

E4 := −
Z
Nt

∂γ
0

h [φf ] · ∂1−hv.

To finish the proof we will estimate each of the terms Ei for i = 1, . . . , 4.
Using Lemma 52.10,

|E1| ≤
X

|α|,|β|≤1

Z
Nt

¯̄
[aαβ, ∂

γ
h ]∂

α(φu) · ∂βv¯̄
≤ kvkH1(Nr)

X
|α|,|β|≤1

k[aαβ, ∂γh ]∂α(φu)kL2(Nr)

≤ kvkH1(Nr)

X
|α|,|β|≤1

X
δ<γ

Cγ(aαβ)k∂δ∂α(φu)kL2(Nr)

. kvkH1(Nr)

X
δ<γ

k∂δukH1(Nr)

. kvkH1(Ns)

³
kfkHk(Ns)

+ kukH1(Ns)

´
(by induction).

For E2,

|E2| =
¯̄̄̄
¯̄ X
|β|≤1,|α|=1

Z
Nt

∂γh(aαβ (∂
αφ)u) · ∂βv

¯̄̄̄
¯̄

≤ kvkH1(Nr)

X
|β|≤1,|α|=1

k∂γh [aαβ(∂αφ)u]kL2(Nr)

≤ CkvkH1(Nr)

X
|β|≤1,|α|=1

k∂γ [aαβ(∂αφ)u]kL2(Nr)

≤ CkvkH1(Nr)

X
δ≤γ

k∂δukL2(Nr)

≤ CkvkH1(Nr)

X
|δ|≤j−1,δn=0

k∂δukH1(Nr)

≤ CkvkH1(Ns)(kfkHk(Ns) + kukH1(Ns)) (by induction).

For E3,
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|E3| ≤
X

|α|≤1,|β|=1

¯̄̄̄Z
Nt

aαβ∂
αu · ¡∂βφ¢ ∂γ−hv ¯̄̄̄

=
X

|α|≤1,|β|=1

¯̄̄̄Z
Nt

∂γ
0

h

£
aαβ∂

αu · ¡∂βφ¢¤ · ∂i−hv ¯̄̄̄
≤

X
|α|≤1,|β|=1

kvkH1(Nr)k∂γ
0 £
aαβ∂

αu · ¡∂βφ¢¤ kL2(Nr)

≤ CkvkH1(Nr)

X
|α|≤1

X
δ≤γ0

k∂δ+αukL2(Nr)

≤ CkvkH1(Nr)

X
δ≤γ0

k∂δukH1(Nr)

≤ CkvkH1(Ns)(kfkHk(Ns) + kukH1(Ns)) (by the induction hypothesis).

Finally for E4,

|E4| =
¯̄̄̄Z
Nt

∂γ
0

h [φf ] · ∂1−hv
¯̄̄̄
≤ k∂1−hvkL2(Nr) k∂γ

0
h (φf)kL2(Nr)

≤ kvkH1(Nr) k∂γ
0
(φf)kL2(Nr)

≤ kvkH1(Ns) kφfkHj−1(Nr) ≤ CkvkH1(Ns)kfkHk(Ns).

Putting all of these estimates together proves, whenever |γ| = j,

|Q(∂γh(φu), v)| ≤ CkvkH1(Ns)(kfkHk(Ns) + kukH1(Ns)) (52.18)

for all v ∈ Xs. In particular we may take v = ∂γh(φu) ∈ Xs in the above
inequality to learn

Q (∂γh(φu), ∂
γ
h(φu)) ≤ Ck∂γh(φu)kH1(Ns)(kfkHk(Ns) + kukH1(Ns)). (52.19)

But by coercivity of Q,

k∂γh(φu)k2H1(Ns)
≤ C

h
Q(∂γh(φu), ∂

γ
h(φu)) + k∂γh(φu)k2L2(Ns)

i
. k∂γh(φu)kH1(Ns)(kfkHk(Ns) + kukH1(Ns))

+ k∂γh(φu)kH1(Ns)k∂γh(φu)kL2(Ns)

. k∂γh(φu)kH1(Ns)

µkfkHk(Ns) + kukH1(Ns)

+k∂γh(φu)kL2(Ns)

¶
(52.20)

and hence

k∂γh(φu)kH1(Ns) . kfkHk(Ns) + kukH1(Ns) + k∂γh(φu)kL2(Ns). (52.21)

Now
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k∂γh(φu)kL2(Ns) = k∂ih∂γ
0

h (φu)kL2(Ns)

≤ k∂γ0h (φu)kH1(Ns) ≤ k∂γ
0
(φu)kH1(Ns)

≤ C
X
α≤γ0

k∂αukH1(Ns) by the chain rule

≤ C(kfkHk(Nt) + kukH1(Nt)) by induction.

This last estimated combined with Eq. (52.21) shows

k∂γh(φu)kH1(Ns) . kfkHk(Nt) + kukH1(Nt)

and therefore ∂γ(φu) ∈ H1 (Ns) and

k∂γ(φu)kH1(Ns) . kfkHk(Nt) + kukH1(Nt).

This proves the proposition since φ ≡ 1 on Nρ so

k∂γukH1(Nρ) = k∂γ(φu)kH1(Nρ) ≤ k∂γ(φu)kH1(Ns)

. kfkHk(Nt) + kukH1(Nt).

Theorem 52.13 (Local Boundary Regularly). As in Proposition 52.12,
let aα,β ∈ C∞

¡
N̄t

¢
with aij ξi ξj ≥ 2�|ξ|2,

Q(u, v) =
X

|α|,|β|≤1

Z
Nt

aαβ∂
αu · ∂βv dx

and X = H1
0 (Nt) or X ⊂ H1(Nt) as in Eq. (52.8) . If f ∈ Hk(Nt) for some

k ≥ 0 and u ∈ X solves Q

Q(u, v) = (f, v) for all v ∈ Xt

then for all ρ < t, u ∈ Hk+2(Nρ) and there exists C <∞ such that

kukHk+2(Nρ) ≤ C(kfkHk(Nt) + kukH1(Nt)
).

Proof. The theorem will be proved by showing ∂γu ∈ L2(Nρ) for all
|γ| ≤ k + 2 and

k∂γukL2(Nρ) . kfkHk(Nt) + kukH1(Nt). (52.22)

The proof of Eq. (52.22) will be by induction on j = γd. The case j = 0, 1
follows from Proposition 52.12. Suppose j = γd ≥ 2 and γ0 = γ − 2ed so
∂γ = ∂γ

0
∂2d. Now letting

L =
X

|α|,|β|≤1
(−1)|β|∂βaαβ∂α =

X
|α|≤2

Aα∂
α,
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then Lu = f in the distributional sense. Writing Ã for A(0,0,...,0,2),

f = Ã∂2du+
X

|α|≤2,αd<2
Aα∂

αu

so that
∂2du =

1

Ã
(f −

X
|α|≤2,αd<2

Aα∂
αu)

and

∂γu = ∂γ
0
∂2du = ∂γ

0

 1
Ã
f −

X
|α|≤2,αd<2

Aα

Ã
∂αu

 . (52.23)

Now by the product ruleX
|α|≤2,αd<2

∂γ
0
µ
Aα

Ã
∂αu

¶
:=

X
|α|≤2,αd<2,δ≤γ0

µ
γ0

δ

¶
∂(γ

0−δ+α)
µ
Aα

Ã

¶
· ∂(δ+α)u.

(52.24)
Since (γ0 + α)d < j, the induction hypothesis (i.e. Eq. (52.22) is valid for
|γ| < j) shows the right member of Eq. (52.24) is in L2(Nρ) and gives the
estimate°°°°°°

X
|α|≤2,αd<2

∂γ
0
µ
Aα

Ã
∂αu

¶°°°°°°
L2(Nρ)

.
X

|α|≤2,αd<2,δ≤γ0

°°°∂(δ+α)u°°°
L2(Nρ)

. kfkHk(Nt) + kukH1(Nt)
.

Combining this with Eq. (52.23) gives ∂γu ∈ L2(Nρ) and

k∂γukL2(Nρ) . kfkH|γ0|(Nt)
+

°°°°°°
X

|α|≤2,αd<2
∂γ

0
µ
Aα

Ã
∂αu

¶°°°°°°
L2(Nρ)

. kfkHk(Nt) + kfkHk(Nt) + kukH1(Nt)
. kfkHk(Nt) + kukH1(Nt)

.

(52.25)

The following assumptions an notation will be in force for the remainder
of this chapter.

Assumption 5 Let Ω be a bounded open subset such that Ω̄o = Ω and Ω̄ is
a C∞ — manifold with boundary, X be either H1

0 (Ω) or H
1(Ω) and E be a

Dirichlet form as in Notation 51.1 which is assumed to be elliptic. Also if W
is an open subset of Rd let

XW := {v ∈ X : supp(v) @@W ∩ Ω̄}.
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Lemma 52.14. For each p ∈ ∂Ω there exists precompact open neighborhoods
V and W in Rd such that V̄ ⊂W, for each k ∈ N there is a constant Ck <∞
such that if u ∈ X and f ∈ Hk(Ω) satisfies

E(u, v) =
Z
Ω

fv dx for all v ∈ XW (52.26)

then u ∈ Hk+2(V ∩Ω) and
kukHk+2(V ∩Ω) ≤ C(kfkHk(Ω) + kukH1(Ω)) (52.27)

Proof. LetW be an open neighborhood of p such that there exists a chart
ψ :W → B(0, r) with inverse φ := ψ−1 : B(0, r)→W satisfying:

1. The maps ψ and φ has bounded derivatives to all orders.
2. ψ(W ∩Ω) = B(0, r) ∩Hd = Nr and ψ (W ∩ bd(Ω)) = B(0, r) ∩ bd(Hd)).

Now let ρ < r and define V := φ(B(0, ρ)), see Figure 52.5.

ρ

ρ

ψ

Ω

Fig. 52.5. Flattening out the boundary of Ω in a neighborhood of p.

Suppose that u ∈ X satisfies Eq. (52.26) and v ∈ XW . Then making the
change of variables x = φ(y),Z

Ω

fvdm =

Z
Nr

f (φ(y)) v (φ(y))J(y)dy =

Z
Nr

f̃(y)ṽ(y)dy
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where J(y) := |detφ0(y)| , f̃(y) := J(y)f (φ(y)) and ṽ(y) = v (φ(y)) . By the
change of variables theorem, φ∗v := v ◦ φ is the generic element of Xr(Nr)
and f̃ ∈ Hk(Nr). We also define a quadratic form on X(Nr) by

Q(ũ, ṽ) :=
X

|α|,|β|≤1

Z
W

aαβ∂
α (ũ ◦ ψ) · ∂β (ṽ ◦ ψ) dm.

Again by making change of variables (using Theorem 48.16 along with the
change of variables theorem for integrals) this quadratic form may be written
in the standard form,

Q(ũ, ṽ) =
X

|α|,|β|≤1

Z
Nr

ãα,β∂
αũ · ∂β ṽ dm.

This new form is still elliptic. To see this let Γ denote the matrix (aij) , then

dX
i,j=1

aij∂i (ũ ◦ ψ) · ∂j (ṽ ◦ ψ) = Γ∇ (ũ ◦ ψ) ·∇ (ũ ◦ ψ)

= Γ [ψ0]tr∇ũ ◦ ψ · [ψ0]tr∇ṽ ◦ ψ
which shows

ãij = Γ [ψ0]tr ei · [ψ0]tr ei
and

dX
i,j=1

ãijξiξj = Γ [ψ0]tr ξ · [ψ0]tr ξ ≥ �
¯̄̄
[ψ0]tr ξ

¯̄̄2
≥ �δ |ξ|2

where

δ = inf

½¯̄̄
[ψ0(x)]tr ξ

¯̄̄2
: |ξ| = 1 & x ∈W

¾
> 0.

Then Eq. (52.26) implies

Q(ũ, ṽ) =

Z
Nr

f̃(y)ṽ(y)dy for all ṽ ∈ Xr.

Therefore by local boundary regularity Theorem 52.13, ũ ∈ Hk+2(Nρ) and
there exists C <∞ such that

kũkHk+2(Nρ) ≤ C(kf̃kHk(Nt) + kũkH1(Nt)
). (52.28)

Invoking the change of variables Theorem 48.16 again shows u ∈ Hk(V ) and
the estimate in Eq. (52.28) implies the estimated in Eq. (52.27).

Theorem 52.15 (Elliptic Regularity). Let Ω be a bounded open subset
such that Ω̄o = Ω and Ω̄ is a C∞ — manifold with boundary, X be either
H1
0 (Ω) or H

1(Ω) and E be a Dirichlet form as in Notation 51.1. If k ∈ N and
u ∈ X such that LEu ∈ Hk(Ω) then u ∈ Hk+2(Ω) and

kukHk+2(Ω) ≤ C(kfkHk(Ω) + kukX∗) ≤ C(kfkHk(Ω) + kukL2(Ω)). (52.29)
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Proof. Cover ∂Ω with {Vi}Ni=1 and {Wi}Ni=1 as in the above Lemma 52.14
such that V̄i @@ Wi. Also choose a precompact open subset V0 contained in
Ω such that {Vi}Ni=0 covers Ω. Choose W0 such that V 0 ⊂ W0 and W̄0 ⊂ Ω.
If LEu =: f ∈ Hk (Ω) , then by Lemma 52.14 for i ≥ 1 and Theorem 52.5 for
i = 0, u ∈ Hk+2(Vi) and there exist Ci <∞ such that

kukHk+2(Vi∩Ω) ≤ Ci(kfkHk(Wi∩Ω) + kukH1(Wi∩Ω)). (52.30)

Summing Eq. (52.30) on i implies u ∈ Hk+2(Ω) and

kukHk+2(Ω) ≤ C(kfkHk(Ω) + kukX). (52.31)

Finally

kuk2X ≤ C(E(u, u) + ku||2H−1(Ω))
= C((f, u)L2(Ω) + ku||2H−1(Ω))
≤ C(kfkL2(Ω)kukL2(Ω) + ku||2H−1(Ω))

≤ C(
1

2δ
kfk2L2(Ω) +

δ

2
kuk2X + ku||2H−1(Ω))

for any δ > 0. Choosing δ so that Cδ = 1, we find

1

2
kuk2X ≤ C(

1

2δ
kfk2L2(Ω) + ku||2H−1(Ω))

which implies with a new constant C that

kukX ≤ C
¡kfkL2(Ω) + ku||H−1(Ω)¢ . (52.32)

Combining Eqs. (52.31) and (52.32) implies Eq. (52.29).



53

Unbounded operators and quadratic forms

53.1 Unbounded operator basics

Definition 53.1. If X and Y are Banach spaces and D is a subspace of X,
then a linear transformation T from D into Y is called a linear transformation
(or operator) from X to Y with domain D.We will sometimes wr If D is dense
in X, T is said to be densely defined.

Notation 53.2 If S and T are operators from X to Y with domains D(S)
and D(T ) and if D(S) ⊂ D(T ) and Sx = Tx for x ∈ D(S), then we say T is
an extension of S and write S ⊂ T.

We note that X × Y is a Banach space in the norm

khx, yik =
p
kxk2 + kyk2.

If H and K are Hilbert spaces, then H×K and K×H become Hilbert spaces
by defining

(hx, yi, hx0, y0i)H×K := (x, x0)H + (y, y0)K
and

(hy, xi, hy0, x0i)K×H := (x, x0)H + (y, y0)K .
Definition 53.3. If T is an operator fromX to Y with domain D, the graphof
T is

Γ (T ) := {hx,Dxi : x ∈ D(T )} ⊂ H ×K.

Note that Γ (T ) is a subspace of X × Y .

Definition 53.4. An operator T : X → Y is closedif Γ (T ) is closed in X×Y.
Remark 53.5. It is easy to see that T is closed iff for all sequences xn ∈ D
such that there exists x ∈ X and y ∈ Y such that xn → x and Txn → y
implies that x ∈ D and Tx = y.
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LetH be a Hilbert space with inner product (·, ·) and norm kvk :=p(v, v).
As usual we will write H∗ for the continuous dual of H and H∗ for the
continuous conjugate linear functionals on H. Our convention will be that
(·, v) ∈ H∗ is linear while (v, ·) ∈ H∗ is conjugate linear for all v ∈ H.

Lemma 53.6. Suppose that T : H → K is a densely defined operator between
two Hilbert spaces H and K. Then

1. T ∗ is always a closed but not necessarily densely defined operator.
2. If T is closable, then T̄ ∗ = T ∗.
3. T is closable iff T ∗ : K → H is densely defined.
4. If T is closable then T̄ = T ∗∗.

Proof. Suppose {vn} ⊂ D(T ) is a sequence such that vn → 0 in H and
Tvn → k in K as n → ∞. Then for l ∈ D(T ∗), by passing to the limit in
the equality, (Tvn, l) = (vn, T ∗l) we learn (k, l) = (0, T ∗l) = 0. Hence if T ∗ is
densely defined, this implies k = 0 and hence T is closable. This proves one
direction in item 3. To prove the other direction and the remaining items of
the Lemma it will be useful to express the graph of T ∗ in terms of the graph
of T. We do this now.
Recall that k ∈ D(T ∗) and T ∗k = h iff (k, Tx)K = (h, x)H for all x ∈

D(T ). This last condition may be written as (k, y)K − (h, x)H = 0 for all
hx, yi ∈ Γ (T ).
Let V : H×K → K×H be the unitary map defined by V hx, yi = h−y, xi.

With this notation, we have hk, hi ∈ Γ (T ∗) iff hk, hi ⊥ V Γ (T ), i.e.

Γ (T ∗) = (V Γ (T ))⊥ = V (Γ (T )⊥), (53.1)

where the last equality is a consequence of V being unitary. As a consequence
of Eq. (53.1), Γ (T ∗) is always closed and hence T ∗ is always a closed operator,
and this proves item 1. Moreover if T is closable, then

Γ (T ∗) = V Γ (T )⊥ = V Γ (T )
⊥
= V Γ (T̄ )⊥ = Γ (T̄ ∗)

which proves item 2.
Now suppose T is closable and k ⊥ D(T ∗). Then

hk, 0i ∈ Γ (T ∗)⊥ = V Γ (T )⊥⊥ = V Γ (T ) = V Γ (T̄ ),

where T̄ denotes the closure of T. This implies that h0, ki ∈ Γ (T̄ ). But T̄
is a well defined operator (by the assumption that T is closable) and hence
k = T̄0 = 0. Hence we have shown D(T ∗)⊥ = {0} which implies D(T ∗) is
dense in K. This completes the proof of item 3.
4. Now assume T is closable so that T ∗ is densely defined. Using the

obvious analogue of Eq. (53.1) for T ∗ we learn Γ (T ∗∗) = UΓ (T ∗)⊥ where
Uhy, xi = h−x, yi = −V −1hy, xi. Therefore,

Γ (T ∗∗) = UV (Γ (T )⊥)⊥ = −Γ (T ) = Γ (T ) = Γ (T̄ )

and hence T̄ = T ∗∗.
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Lemma 53.7. Suppose that H and K are Hilbert spaces, T : H → K is
a densely defined operator which has a densely defined adjoint T ∗. Then
Nul(T ∗) = Ran(T )⊥ and Nul(T̄ ) = Ran(T ∗)⊥ where T̄ denotes the closure
of T.

Proof. Suppose that k ∈ Nul(T ∗) and h ∈ D(T ), then (k, Th) =
(T ∗k, h) = 0. Since h ∈ D(T ) is arbitrary, this proves that Nul(T ∗) ⊂
Ran(T )⊥. Now suppose that k ∈ Ran(T )⊥. Then 0 = (k, Th) for all h ∈ D(T ).
This shows that k ∈ D(T ∗) and that T ∗k = 0. The assertion Nul(T̄ ) =
Ran(T ∗)⊥ follows by replacing T by T ∗ in the equality, Nul(T ∗) = Ran(T )⊥.

Definition 53.8. A quadratic form q on H is a dense subspace D(q) ⊂ H
called the domain of q and a sesquilinear form q : D(q) × D(q) → C.
(Sesquilinear means that q(·, v) is linear while q(v, ·) is conjugate linear
on D(q) for all v ∈ D(q).) The form q is symmetric if q(v, w) = q(w, v)
for all v, w ∈ D(q), q is positive if q(v) ≥ 0 (here q(v) = q(v, v)) for all
v ∈ D(q), and q is semi-bounded if there exists M0 ∈ (0,∞) such that
q(v, v) ≥ −M0kvk2 for all v ∈ D(q).

53.2 Lax-Milgram Methods

For the rest of this section q will be a sesquilinear form on H and to simplify
notation we will write X for D(q).
Theorem 53.9 (Lax-Milgram). Let q : X ×X → C be a sesquilinear form
and suppose the following added assumptions hold.

1. X is equipped with a Hilbertian inner product (·, ·)X .
2. The form q is bounded on X, i.e. there exists a constant C < ∞ such
that |q(v, w)| ≤ CkvkX · kwkX for all v,w ∈ X.

3. The form q is coercive, i.e. there exists � > 0 such that |q(v, v)| ≥ �kvk2X
for all v ∈ X.

Then the maps L : X → X∗ and L† : X → X∗ defined by Lv := q(v, ·)
and L†v := q(·, v) are linear and (respectively) conjugate linear isomorphisms
of Hilbert spaces. Moreover

kL−1k ≤ �−1 and k(L†)−1k ≤ �−1.

Proof. The operator L is bounded because

kLvkX∗ = sup
w 6=0

|q(v, w)|
kwkX ≤ CkvkX . (53.2)

Similarly L† is bounded with °°L†°° ≤ C.
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Let β : X → X∗ denote the linear Riesz isomorphism defined by β(x) =
(x, ·)X for x ∈ X. Define R := β−1L : X → X so that L = βR, i.e.

Lv = q(v, ·) = (Rv, ·)X for all v ∈ X.

Notice that R is a bounded linear map with operator bound less than C by
Eq. (53.2). Since¡L†v¢ (w) = q(w, v) = (Rw, v)X = (w,R

∗v)X for all v, w ∈ X,

we see that L†v = (·, R∗v)X , i.e. R∗ = β̄−1L†, where β̄(x) := (x, ·)X = (·, x)X .
Since β and β̄ are linear and conjugate linear isometric isomorphisms, to finish
the proof it suffices to show R is invertible and that kR−1kX ≤ �−1.
Since

|(v,R∗v)X | = |(Rv, v)X | = |q(v, v)| ≥ �kvk2X , (53.3)

one easily concludes that Nul(R) = {0} = Nul(R∗). By Lemma 53.7,
Ran(R) = Nul(R∗)⊥ = {0}⊥ = X and so we have shown R : X → X is
injective and has a dense range. From Eq. (53.3) and the Schwarz inequality,
�kvk2X ≤ kRvkXkvkX , i.e.

kRvkX ≥ �kvkX for all v ∈ X. (53.4)

This inequality proves the range of R is closed. Indeed if {vn} is a sequence
in X such that Rvn → w ∈ X as n→∞ then Eq. (53.4) implies

�kvn − vmkX ≤ kRvn −RvmkX → 0 as m,n→∞.

Thus v := limn→∞ vn exists in X and hence w = Rv ∈ Ran(R) and so

Ran(R) = Ran(R)
X
= X. So R : X → X is a bijective map and hence

invertible. By replacing v by R−1v in Eq. (53.4) we learn R−1 is bounded
with operator norm no larger than �−1.

Theorem 53.10. Let q be a bounded coercive sesquilinear form on X as in
Theorem 53.9. Further assume that the inclusion map i : X → H is bounded
and let L and L† be the unbounded linear operators on H defined by:

D(L) := {v ∈ X : w ∈ X → q(v, w) is H - continuous} ,
D(L†) := {w ∈ X : v ∈ X → q(v, w) is H - continuous}

and for v ∈ D(L) and w ∈ D(L†) define Lv ∈ H and L†w ∈ H by requiring

q(v, ·) = (Lv, ·) and q(·, w) = (·, L†w).
Then D(L) and D(L†) are dense subspaces of X and hence of H. The oper-
ators L−1 : H → D(L) ⊂ H and (L†)−1 : H → D(L†) ⊂ H are bounded
when viewed as operators from H to H with norms less than or equal to
�−1 kik2L(X,H) . Furthermore, L∗ = L† and (L†)∗ = L and in particular both L
and L† = L∗ are closed operators.
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Proof. Let α : H → X∗ be defined by α(v) = (v, ·)|X . If (v, ·)X is perpen-
dicular to α(H) = i∗ (H∗) ⊂ X∗, then

0 = ((v, ·)X , α(w))
X∗ = ((v, ·)X , (w, ·))X∗ = (v, w) for all w ∈ H.

Taking w = v in this equation shows v = 0 and hence the orthogonal comple-
ment of α(H) in X∗ is {0} which implies α(H) = i∗ (H∗) is dense in X∗.
Using the notation in Theorem 53.9, we have v ∈ D(L) iff Lv ∈ i∗ (H∗) =

α(H) iff v ∈ L−1 (α(H)) and for v ∈ D(L), Lv = (Lv, ·)|X = α(Lv). This and
a similar computation shows

D(L) = L−1(i∗ (H∗)) = L−1 (α(H)) and D(L†) := (L†)−1(i∗ (H∗)) = (L†)−1(ᾱ(H))
and for v ∈ D(L) and w ∈ D(L†) we have Lv = (Lv, ·)|X = α(Lv) and L†w =
(·, L†w)|X = ᾱ(L†w). The following commutative diagrams summarizes the
relationships of L and L and L† and L†,

X
L→ X∗

i ↑ ↑ α

D(L)
L→ H

and
X

L†→ X∗

i ↑ ↑ ᾱ

D(L†) L
†→ H

where in each diagram i denotes an inclusion map. Because L and L† are
invertible, L : D(L)→ H and L† : D(L†)→ H are invertible as well. Because
both L and L† are isomorphisms of X onto X∗ and X∗ respectively and α(H)
is dense in X∗ and ᾱ(H) is dense in X∗, the spaces D(L) and D(L†) are dense
subspaces of X, and hence also of H.
For the norm bound assertions let v ∈ D(L) ⊂ X and use the coercivity

estimate on q to find

�kvk2H ≤ � kik2L(X,H) kvk2X ≤ kik2L(X,H) |q(v, v)| = kik2L(X,H) |(Lv, v)H |
≤ kik2L(X,H) kLvkHkvkH .

Hence �kvkH ≤ kik2L(X,H) kLvkH for all v ∈ D(L). By replacing v by L−1v
(for v ∈ H) in this last inequality, we find

kL−1vkH ≤
kik2L(X,H)

�
kvkH , i..e kL−1kB(H) ≤ �−1 kik2L(X,H) .

Similarly one shows that k(L†)−1kB(H) ≤ �−1 kik2L(X,H) as well.
For v ∈ D(L) and w ∈ D(L†),

(Lv,w) = q(v, w) = (v, L†w) (53.5)

which shows L† ⊂ L∗. Now suppose that w ∈ D(L∗), then
q(v, w) = (Lv,w) = (v, L∗w) for all v ∈ D(L).
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By continuity if follows that

q(v,w) = (v, L∗w) for all v ∈ X

and therefore by the definition of L†, w ∈ D(L†) and L†w = L∗w, i.e. L∗ ⊂ L†.
Since we have shown L† ⊂ L∗ and L∗ ⊂ L†, L† = L∗. A similar argument
shows that

¡
L†
¢∗
= L. Because the adjoints of operators are always closed,

both L =
¡
L†
¢∗
and L† = L∗ are closed operators.

Corollary 53.11. If q in Theorem 53.10 is further assumed to be symmetric
then L is self-adjoint, i.e. L∗ = L.

Proof. This simply follows from Theorem 53.10 upon observing that L =
L† when q is symmetric.

53.3 Close, symmetric, semi-bounded quadratic forms
and self-adjoint operators

Definition 53.12. A symmetric, sesquilinear quadratic form q : X ×X → C
is closed if whenever {vn}∞n=1 ⊂ X is a sequence such that vn → v in H and

q(vn − vm) := q(vn − vm, vn − vm)→ 0 as m,n→∞

implies that v ∈ X and limn→∞ q(v − vn) = 0. The form q is said to be
closable iff for all {vn} ⊂ X such that vn → 0 ∈ H and q(vn − vm) → 0 as
m,n→∞ implies that q(vn)→ 0 as n→∞.

Example 53.13. Let H and K be Hilbert spaces and T : H → K be a densely
defined operator. Set q(v, w) := (Tv, Tw)K for v, w ∈ X := D(q) := D(T ).
Then q is a positive symmetric quadratic form on H which is closed iff T is
closed and is closable iff T is closable.

For the remainder of this section let q : X × X → C be a symmet-
ric, sesquilinear quadratic form which is semi-bounded and satisfies q(v) ≥
−M0 kvk2 for all v ∈ X and some M0 <∞.

Notation 53.14 For v, w ∈ X and M > M0 let (v, w)M := q(v, w) +
M(v, w). Notice that

kvk2M = q(v) +Mkvk2 = q(v) +M0kvk2 + (M −M0) kvk2
≥ (M −M0) kvk2, (53.6)

from which it follows that (·, ·)M is an inner product on X and i : X → H

is bounded by (M −M0)
−1/2

. Let HM denote the Hilbert space completion of
(X, (·, ·)M ).
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Formally, HM = C/ ∼, where C denotes the collection of k · kM—
Cauchy sequences in X and ∼ is the equivalence relation, {vn} ∼ {un} iff
limn→∞ kvn − unkM = 0. For v ∈ X, let i(v) be the equivalence class of the
constant sequence with elements v. Notice that if {vn} and {un} are in C, then
limm,n→∞(vn, um)M exists. Indeed, let C be a finite upper bound for kunkM
and kvnkM . (Why does this bound exist?) Then

|(vn, um)M − (vk, ul)M | = |(vn − vk, um)M + (vk, um − ul)M |
≤ C{kvn − vkkM + kum − ulkM} (53.7)

and this last expression tends to zero as m,n, k, l →∞. Therefore, if v̄ and ū
denote the equivalence class of {vn} and {un} in C respectively, we may define
(v̄, ū)M := limm,n→∞(vn, um)M . It is easily checked that HM with this inner
product is a Hilbert space and that i : X → HM is an isometry.

Remark 53.15. The reader should verify that all of the norms, {k · kM :M > M0} ,
on X are equivalent so that HM is independent of M > M0.

Lemma 53.16. The inclusion map i : X → H extends by continuity to a
continuous linear map ı̂ from HM into H. Similarly, the quadratic form q : X×
X → C extends by continuity to a continuous quadratic form q̂ : HM ×HM →
C. Explicitly, if v̄ and ū denote the equivalence class of {vn} and {un} in C
respectively, then ı̂(v̄) = H − limn→∞ vn and q̂(v̄, ū) = limm,n→∞ q(vn, un).

Proof. This routine verification is left to the reader.

Lemma 53.17. Let q be as above and M > M0 be given.

1. The quadratic form q is closed iff (X, (·, ·)M ) is a Hilbert space.
2. The quadratic form q is closable iff the map ı̂ : HM → H is injective. In
this case we identify HM with ı̂(HM ) ⊂ H and therefore we may view q̂
as a quadratic form on H. The form q̂ is called the closure of q and as
the notation suggests is a closed quadratic form on H.

A more explicit description of q̂ is as follows. The domain D(q̂) consists
of those v ∈ H such that there exists {vn} ⊂ X such that vn → v in H and
q (vn − vm) → 0 as m,n → ∞. If v, w ∈ D(q̂) and vn → v and wn → w as
just described, then q̂(v, w) := limn→∞ q(vn, wn).
Proof. 1. Suppose q is closed and {vn}∞n=1 ⊂ X is a k·kM — Cauchy

sequence. By the inequality in Eq. (53.6), {vn}∞n=1 is k·kH — Cauchy and
hence v := limn→∞ vn exists in H. Moreover,

q(vn − vm) = kvn − vmk2M −M kvn − vmk2H → 0

and therefore, because q is closed, v ∈ D(q) = X and limn→∞ q(v − vn) = 0

and hence limn→∞ kvn − vk2M = 0. The converse direction is simpler and will
be left to the reader.
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2. The proof that q is closable iff the map ı̂ : HM → H is injective will be
complete once the reader verifies that the following assertions are equivalent.
1) ı̂ : H1 → H is injective, 2) ı̂(v̄) = 0 implies v̄ = 0, 3) if vn

H→ 0 and
q(vn − vm)→ 0 as m,n→∞ implies that q(vn)→ 0 as n→∞.
By construction HM equipped with the inner product (·, ·)M := q̂(·, ·) +

M(·, ·) is complete. So by item 1. it follows that q̂ is a closed quadratic form
on H if q is closable.

Example 53.18. Suppose H = L2([−1, 1]), D(q) = C ([−1, 1]) and q(f, g) :=
f(0)ḡ(0) for all f, g ∈ D(q). The form q is not closable. Indeed, let fn(x) =
(1+x2)−n, then fn → 0 ∈ L2 as n→∞ and q(fn−fm) = 0 for all m,n while
q(fn − 0) = q(fn) = 19 0 as n→∞. This example also shows the operator
T : H → C defined by D(T ) = C ([−1, 1]) with Tf = f(0) is not closable.
Let us also compute T ∗ for this example. By definition λ ∈ D(T ∗) and

T ∗λ = f iff (f, g) = λTg = λg(0) for all g ∈ C ([−1, 1]) . In particular this
implies (f, g) = 0 for all g ∈ C ([−1, 1]) such that g(0) = 0. However these
functions are dense in H and therefore we conclude that f = 0 and hence
D(T ∗) = {0}!!
Exercise 53.19. Keeping the notation in Example 53.18, show Γ (T ) = H×C
which is clearly not the graph of a linear operator S : H → C.

Proposition 53.20. Suppose that A : H → H is a densely defined positive
symmetric operator, i.e. (Av,w) = (v,Aw) for all v, w ∈ D(A) and (v,Av) ≥
0 for all v ∈ D(A). Define qA(v, w) := (v,Aw) for v, w ∈ D(A). Then qA
is closable and the closure q̂A is a non-negative, symmetric closed quadratic
form on H.

Proof. Let (·, ·)1 = (·, ·) + qA(·, ·) on D(A)×D(A), vn ∈ D(A) such that
H-limn→∞ vn = 0 and

qA(vn − vm) = (A(vn − vm), (vn − vm))→ 0 as m,n→∞.

Then

lim sup
n→∞

qA(vn) ≤ lim
n→∞ kvnk

2
1 = lim

m,n→∞(vm, vn)1 = lim
m,n→∞{(vm, vn)+(vm, Avn)} = 0,

where the last equality follows by first letting m → ∞ and then n → ∞.
Notice that the above limits exist because of Eq. (53.7).

Lemma 53.21. Let A be a positive self-adjoint operator on H and define
qA(v, w) := (v,Aw) for v, w ∈ D(A) = D(qA). Then qA is closable and the
closure of qA is

q̂A(v,w) = (
√
Av,
√
Aw) for v, w ∈ X := D(q̂A) = D(

√
A).
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Proof. Let q̂(v, w) = (
√
Av,
√
Aw) for v, w ∈ X = D(√A). Since √A is

self-adjoint and hence closed, it follows from Example 53.13 that q̂ is closed.
Moreover, q̂ extends qA because if v, w ∈ D(A), then v, w ∈ D(A) = D((

√
A)2)

and q̂(v, w) = (
√
Av,
√
Aw) = (v,Aw) = qA(v,w). Thus to show q̂ is the

closure of qA it suffices to show D(A) is dense in X = D(√A) when equipped
with the Hilbertian norm, kwk21 = kwk2 + q̂(w).
Let v ∈ D(√A) and define vm := 1[0,m](A)v. Then using the spectral

theorem along with the dominated convergence theorem one easily shows that
vm ∈ X = D(A), limm→∞ vm = v and limm→∞

√
Avm =

√
Av. But this is

equivalent to showing that limm→∞ kv − vmk1 = 0.
Theorem 53.22. Suppose q : X × X → C is a symmetric, closed, semi-
bounded (say q(v, v) ≥ −M0kvk2) sesquilinear form. Let L : H → H be the
possibly unbounded operator defined by

D(L) := {v ∈ X : q(v, ·) is H — continuous}
and for v ∈ D(L) let Lv ∈ H be the unique element such that q(v, ·) =
(Lv, ·)|X . Then
1. L is a densely defined self-adjoint operator on H and L ≥ −M0I.
2. D(L) is a form core for q, i.e. the closure of D(L) is a dense subspace
in (X, k·kM ). More explicitly, for all v ∈ X there exists vn ∈ D(L) such
that vn → v in H and q(v − vn)→ 0 as n→∞.

3. For and M ≥M0, D(q) = D
¡√

L+MI
¢
.

4. Letting qL(v, w) := (Lv,w) for all v, w ∈ D(L), we have qL is closable
and q̂L = q.

Proof. 1. From Lemma 53.17, (X, (·, ·)X := (·, ·)M ) is a Hilbert space for
any M > M0. Applying Theorem 53.10 and Corollary 53.11 with q being
(·, ·)X gives a self-adjoint operator LM : H → H such that

D(LM ) := {v ∈ X : (v, ·)X is H — continuous}
and for v ∈ D(LM ),

(LMv, w)H = (v, w)X = q(v, w) +M(v, w) for all w ∈ X. (53.8)

Since (v, ·)X is H — continuous iff q(v, ·) is H — continuous it follows that
D(LM ) = D(L) and moreover Eq. (53.8) is equivalent to

((LM −MI) v, w)H = q(v, w) for all w ∈ X.

Hence it follows that L := LM −MI and so L is self-adjoint. Since (Lv, v) =
q(v, v) ≥ −M0 kvk2 , we see that L ≥ −M0I.
2. The density of D(L) = D(LM ) in (X, (·, ·)M ) is a direct consequence of

Theorem 53.10.
3. For
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v, w ∈ D(Q) := D
³p

LM

´
= D

³√
L+MI

´
= D

³p
L+M0I

´
let Q(v, w) :=

¡√
LMv,

√
LMw

¢
. For v, w ∈ D(L) we have

Q(v, w) = (LMv, w) = (Lv,w) +M (v, w) = q(v, w) +M (v,w) = (v, w)M .

By Lemma 53.21, Q is a closed, non-negative symmetric form on H and
D(L) = D (LM ) is dense in (D(Q), Q) . Hence if v ∈ D(Q) there exists
vn ∈ D(L) such that Q(v − vn) → 0 and this implies q(vm − vn) → 0 as
m,n → ∞. Since q is closed, this implies v ∈ D(q) and furthermore that
Q(v, w) = (v, w)M for all v, w ∈ D(Q).
Conversely, by item 2., if v ∈ X = D(q), there exists vn ∈ D(L) such that

kv − vmkM → 0. From this it follows that Q (vm − vn) → 0 as m,n → ∞
and therefore since Q is closed, v ∈ D(Q) and again Q(v, w) = (v,w)M for all
v,w ∈ D(q). This proves item 3. and also shows that

q(v, w) =
³√

L+MIv,
√
L+MIw

´
−M(v, w) for all v, w ∈ X

where X := D ¡√LM¢ .
4. Since qL ⊂ q, qL is closable and the closure of qL is still contained in q.

Since qL = Q−L (·, ·) on D(L) and the closure of Q|D(L) = (·, ·)M , it is easy
to conclude that the closure of qL is q as well.

Notation 53.23 Let P denote the collection of positive self-adjoint operators
on H and Q denote the collection of positive and closed symmetric forms on
H.

Theorem 53.24. The map A ∈ P → q̂A ∈ Q is bijective, where q̂A(v,w) :=
(
√
Av,
√
Aw) with D(q̂A) = D(√A) is the closure of the quadratic form

qA(v, w) := (Av,w) for v, w ∈ D (q) := D(A). The inverse map is given
by q ∈ Q→ Aq ∈ P where Aq is uniquely determined by

D(Aq) = {v ∈ D(q) : q(v, ·) is H - continuous} and
(Aqv, w) = q(v, w) for v ∈ D(Aq) and w ∈ D(q).

Proof. From Lemma 53.21, q̂A ∈ Q and q̂A is the closure of qA. From
Theorem 53.22 Aq ∈ P and

q (·, ·) =
³p

Aq·,
p
Aq·
´
= q̂Aq .

So to finish the proof it suffices to show A ∈ P → q̂A ∈ Q is injective.
However, again by Theorem 53.22, if q ∈ Q and A ∈ P such that q = q̂A, then
v ∈ D(Aq) and Aqv = w iff

(
√
Av,
√
A·) = q(v, ·) = (Aqv, ·)|X .

But this implies
√
Av ∈ D

³√
A
´
and Aqv =

√
A
√
Av = Av. But by the

spectral theorem, D
³√

A
√
A
´
= D(A) and so we have proved Aq = A.
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53.4 Construction of positive self-adjoint operators

The main theorem concerning closed symmetric semi-bounded quadratic
forms q is Friederich’s extension theorem.

Corollary 53.25 (The Friederich’s extension). Suppose that A : H → H
is a densely defined positive symmetric operator. Then A has a positive self-
adjoint extension Â. Moreover, Â is the only self-adjoint extension of A such
that D(Â) ⊂ D(q̂A).
Proof. By Proposition 53.20, q := q̂A exists in Q. By Theorem 53.24,

there exists a unique positive self-adjoint operator B on H such that q̂B = q.
Since for v ∈ D(A), q(v,w) = (Av,w) for all w ∈ X, it follows from Eq. (??)
and (??) that v ∈ D(B) and Bv = Av. Therefore Â := B is a self-adjoint
extension of A.
Suppose that C is another self-adjoint extension of A such that D(C) ⊂ X.

Then q̂C is a closed extension of qA. Thus q = q̂A ⊂ q̂C , i.e. D(q̂A) ⊂ D(q̂C)
and q̂A = q̂C on D(q̂A)×D(q̂A). For v ∈ D(C) and w ∈ D(A), we have that

q̂C(v, w) = (Cv,w) = (v,Cw) = (v,Aw) = (v,Bw) = q(v, w).

By continuity it follows that

q̂C(v,w) = (Cv,w) = (v,Bw) = q(v, w)

for all w ∈ D(B). Therefore, v ∈ D(B∗) = D(B) and Bv = B∗v = Cv. That
is C ⊂ B. Taking adjoints of this equation shows that B = B∗ ⊂ C∗ = C.
Thus C = B.

Corollary 53.26 (von Neumann). Suppose that D : H → K is a closed
operator, then A = D∗D is a positive self-adjoint operator on H.

Proof. The operator D∗ is densely defined by Lemma 53.6. The quadratic
form q(v,w) := (Dv,Dw) for v, w ∈ X := D(D) is closed (Example 53.13)
and positive. Hence by Theorem 53.24 there exists an A ∈ P such that q = q̂A,
i.e.

(Dv,Dw) =
³√

Av,
√
Aw
´
for all v, w ∈ X = D(D) = D(

√
A). (53.9)

Recalling that v ∈ D (A) ⊂ X and Av = g happens iff

(Dv,Dw) = q(v,w) = (g, w) for all w ∈ X

and this happens iff Dv ∈ D(D∗) and D∗Dv = g. Thus we have shown
D∗D = A which is self-adjoint and positive.
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53.5 Applications to partial differential equations

Let U ⊂ Rn be an open set, ρ ∈ C1(U → (0,∞)) and for i, j = 1, 2, . . . , n let
aij ∈ C1(U,R). Take H = L2(U, ρdx) and define

q(f, g) :=

Z
U

nX
i,j=1

aij(x)∂if(x)∂jg(x) ρ(x) dx

for f, g ∈ X = C2c (U).

Proposition 53.27. Suppose that aij = aji and that
Pn

i,j=1 aij(x)ξiξj ≥ 0
for all ξ ∈ Rn. Then q is a symmetric closable quadratic form on H. Hence
there exists a unique self-adjoint operator Â on H such that q̂ = q̂Â. Moreover
Â is an extension of the operator

Af(x) = − 1

ρ(x)

nX
i,j=1

∂j(ρ(x)aij(x)∂if(x))

for f ∈ D(A) = C2c (U).

Proof. A simple integration by parts argument shows that q(f, g) =
(Af, g)H = (f,Ag)H for all f, g ∈ D(A) = C2c (U). Thus by Proposition 53.20,
q is closable. The existence of Â is a result of Theorem 53.24. In fact Â is the
Friederich’s extension of A as in Corollary 53.25.
Given the above proposition and the spectral theorem, we now know that

(at least in some weak sense) we may solve the general heat and wave equa-
tions: ut = −Au for t ≥ 0 and utt = −Au for t ∈ R. Namely, we will take

u(t, ·) := e−tÂu(0, ·)
and

u(t, ·) = cos(t
p
Â)u(0, ·) + sin(t

p
Â)p

Â
ut(0, ·)

respectively. In order to get classical solutions to the equations we would have
to better understand the operator Â and in particular its domain and the
domains of the powers of Â. This will be one of the topics of the next part of
the course dealing with Sobolev spaces.

Remark 53.28. By choosing D(A) = C2c (U) we are essentially using Dirichlet
boundary conditions for A and Â. If U is a bounded region with C2—boundary,
we could have chosen (for example VERIFY THIS EXAMPLE)

D(A) = {f ∈ C2(U) ∩ C1(Ū) : with ∂u/∂n = 0 on ∂U}.
This would correspond to Neumann boundary conditions. Proposition 53.27
would be valid with this domain as well provided we assume that ai,j and ρ
are in C1(Ū).
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For a second application let H = L2(U, ρdx;RN) and for j = 1, 2, . . . , n,
let Aj : U →MN×N (the N × N matrices) be a C1 function. Set D(D) :=
C1c (U → RN ) and for S ∈ D(D) let DS(x) =

Pn
i=1Ai(x)∂iS(x).

Proposition 53.29 (“Dirac Like Operators”). The operator D on H de-
fined above is closable. Hence A := D∗D̄ is a self-adjoint operator on H, where
D̄ is the closure of D.

Proof. Again a simple integration by parts argument shows that D(D) ⊂
D(D∗) and that for S ∈ D(D),

D∗S(x) =
1

ρ(x)

nX
i=1

−∂i(ρ(x)Ai(x)S(x)).

In particular D∗ is a densely defined operator and hence D is closable. The
result now follows from Corollary 53.26.
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L2 — operators associated to E

Let Ω̄ be a C2 — manifold with boundary such that Ω = Ω̄o, ρ ∈ C∞(Ω) with
ρ > 0 on Ω, aα,β ∈ BC∞

¡
Ω̄
¢
such that (aij) ≥ �I for some � > 0 and E be

the elliptic Dirichlet form given by

E(u, v) =
Z
Ω

X
aαβ∂

αu∂βv dµ

where dµ := ρdm. Let H = L2(µ) ∼= L2(m) and X = H1(Ω) or H1
0 (Ω).

Definition 54.1. Let

D(LE) = {u ∈ X : LEu := E(u, ·) ∈ L2(ρ dx)}
D(L†E) = {u ∈ X : L†Eu := E(·, u) ∈ L2(ρ dx)}

and for u ∈ D(LE) (u ∈ D(L†E)) define LEu (L
†
Eu) to be the unique element

in L2(µ) such that

E(u, v) = (LEu, v)L2(µ) =
R
Ω

LEu · v ρ dm
E(v, u) = (v, LEu)L2(µ) =

R
Ω

v · L†Eu ρdm

for all v ∈ X.

Theorem 54.2. If X = H1
0 (Ω) let B = B† ≡ 0 and if X = H1(Ω) let B and

B† be given (as in Proposition 51.4) by

Bu :=
P

aαj∂
αu nj = n · a∇u+ (n · a0,·)u

B†u :=
P

aiβ∂
βu ni = an ·∇u+ (n · a·,0)u.

Then
D(LE) = {u ∈ H2(Ω) ∩X : Bu

¯̄
∂Ω
= 0}

D(L†E) = {u ∈ H2(Ω) ∩X : B†u
¯̄
∂Ω
= 0}



1092 54 L2 — operators associated to E

and
LEu = 1

ρ

P
((−∂)βρaαβ∂αu) =: Lu

L†Eu =
1
ρ

P
(−∂)αρaαβ∂βu) =: L†u.

Moreover LE = (L
†
E)
∗ and L∗E = L†E .

Proof. By replacing E(u, v) by E(u, v)+C(u, v), LE → LE +C and L†E →
L†E+C for a sufficiently large constant C, we may assume that E(u, v) satisfies

�kuk2H1 ≤ E(u, u) for all u ∈ H1.

Then by Theorem 53.10, L∗E = L†E , (L
†
E)
∗ = LE and

LE : D(LE)→ L2 (Ω) and L†E : D(L
†
E)→ L2 (Ω)

are linear isomorphisms. By the elliptic regularity Theorem 52.15, both D(LE)
and D(L†E) are subspaces of H

2(Ω) and moreover there is a constant C <∞
such that

kukH2(Ω) ≤ C kLEukL2(Ω) . (54.1)

From Proposition 51.4 (integration by parts), for u ∈ H2(Ω) and v ∈ X,

E(u, v) = (Lu, v)L2(µ) +
Z
∂Ω

Bu
¯̄̄
∂Ω
· v
¯̄̄
∂Ω

ρ dσ (54.2)

while, by definition, if u ∈ D(LE) then

E(u, v) = (LEu, v)L2(µ) for all v ∈ X. (54.3)

Choosing v ∈ H1
0 (Ω) ⊂ X, comparing Eqs. (54.2) and (54.3) shows that Lu =

LEu. So for u ∈ D(LE), LEu = Lu and moreover we must have Bu
¯̄̄
∂Ω
= 0 as

well. Therefore
D(LE) ⊂ H2(Ω) ∩ {u : Bu

¯̄̄
∂Ω
= 0}.

Conversely if u ∈ H2(Ω) with Bu
¯̄̄
∂Ω
= 0, E(u, v) = (Lu, v)L2(µ) for all v ∈ X

and therefore by definition of LE , u ∈ D(LE) and LEu = Lu. The assertions
involving L†E are proved in the same way.

54.1 Compact perturbations of the identity and the
Fredholm Alternative

Definition 54.3. A bounded operator F : H → B is Fredholm iff the
dimNul(F ) < ∞, dim coker(F ) < ∞ and Ran(F ) is closed in B. (Recall:
coker(F ) := BÁRan(F ).) The index of F is the integer,

index(F ) = dimNul(F )− dim coker(F ) (54.4)

= dimNul(F )− dimNul(F ∗). (54.5)
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Example 54.4. Suppose that H and B are finite dimensional Hilbert spaces
and F : H → B is a linear operator. In this case, the rank nullity theorem
implies

index(F ) = dimNul(F )− dim coker(F )
= dimNul(F )− [dimB − dimRan(F )]
= dimNul(F ) + dimRan(F )− dimB

= dimH − dimB.

Theorem 54.5. If R : H → H is finite rank, then F = I + R is Fredholm
and index(F ) = 0.

Proof. Let H1 = Nul(R), H2 = Ran(R), Pi : H → Hi be orthogonal
projection, {ψi}ni=1 be an orthonormal basis for Ran(R) and φi := R∗ψi for
i = 1, 2, . . . , n. Then for h ∈ H,

Rh =
nX
i=1

(Rh,ψi)ψi =
nX
i=1

(h,R∗ψi)ψi =
nX
i=1

(h, φi)ψi

and hence {φ1, . . . , φn}⊥ ⊂ Nul(R). ThereforeH2 = Nul(R)
⊥ ⊂ span {φ1, . . . , φn}

is finite dimensional. For h = h1 + h2 ∈ H1 ⊕H2,

Fh = (P1 + P2) (h1 + h2 +Rh2) = (h1 + P1Rh2) + (h2 + P2RP2h2)

= (h1 + P1Rh2) + (IH2 + P2RP2)h2. (54.6)

From Eq. (54.6) we see that h = h1+h2 ∈ Nul(F ) iff h2 ∈ Nul(IH2 +P2RP2)
and h1 = −P1Rh2 and hence

Nul(F ) ∼= Nul(IH2 + P2RP2). (54.7)

It is also easily seen from Eq. (54.6) that

Ran(F ) = H1 ⊕Ran(IH2
+ P2RP2). (54.8)

Since H2 is finite dimensional, Ran(IH2 + P2RP2) is a closed subspace of H2

and so Ran(F ) is closed. Moreover

coker(F ) = HÁRan(F ) = [H1 ⊕H2]Á [H1 ⊕Ran(IH2 + P2RP2)]
∼= H2ÁRan(IH2 + P2RP2) = coker(IH2 + P2RP2). (54.9)

So by Eqs. (54.7), (54.9) and Example 54.4,

index(F ) = dimNul(F )− dim coker(F )
= dimNul(IH2 + P2RP2)− dim coker(IH2 + P2RP2)

= index(IH2 + P2RP2) = 0.
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Corollary 54.6. If K : H → H compact then F = I +K is Fredholm and
index (F ) = 0.

Proof. Choose R1 : H → H finite rank such that ε := K−R1 is a bounded
operator with operator norm less than one. Then

F = I +K = I + ε+R1 = (I + ε)(I + (I + ε)−1R1) = U(I +R),

where U := (I + ε) : H → H is invertible and R := (I + ε)−1R1 : H → H is
finite rank. Therefore, Ran (F ) = U(Ran (I +R)) is closed,

dim coker(F ) = dim coker(I +R) <∞, (54.10)

Nul(F ) = Nul(I +R), and

dimNul(F ) = dimNul(I +R). (54.11)

From this it follows that F is Fredholm and index (F ) = index (I+R) = 0.

54.2 Solvability of Lu = f and properties of the solution

Theorem 54.7. Let Ω̄ ⊂ Rd be a C∞ — manifold with boundary such that
Ω = Ω̄o. Let E be an elliptic Dirichlet form, L := LE be the associated opera-
tor.

1. For C > 0 sufficiently large, (L+C) : D(L)→ L2(Ω) is a linear isomor-
phism and

(L+ C)−1 : L2(Ω)→ D(L) ⊂ H2(Ω)

is a bounded operator and D(L) is a closed subspace of H2 (Ω) .
2. (L+ C)−1 as viewed as an operator from L2(Ω) to L2(Ω) is compact.
3. If u ∈ D(L) and Lu ∈ Hk(Ω) then u ∈ Hk+2(Ω).

4. If u ∈ D(L) and Lu ∈ C∞(Ω) then u ∈ C∞(Ω) :=
∞T
k=0

Ck(Ω).

5. If u ∈ D(L) is an eigenfunction of L, i.e. Lu = λu for some λ ∈ C, then
u ∈ C∞(Ω).

Proof. 1. It was already shown in the proof of Theorem 54.2 that (L+C) :
D(L) → L2(Ω) is bijective. Moreover the bound in Eq. (54.1) shows that
(L + C)−1 : L2(Ω) → H2(Ω) is bounded. If {un}∞n=1 ⊂ D(L) ⊂ H2(Ω) is
a sequence such that un → u ∈ H2(Ω), then {(L+ C)un}∞n=1 is convergent
in L2(Ω) since (L+ C) : H2(Ω) → L2(Ω) is bounded. Because L is a closed
operator, it follows that u ∈ D(L) and so D(L) is a closed subspace ofH2 (Ω) .
2. This follows from item 1. and the Rellich - Kondrachov Compactness

Theorem 49.25 which implies the embedding H2(Ω) /→ L2(Ω) is compact.
3. If f ∈ Hk(Ω) and u ∈ D(L) such that Lu = f ∈ Hk(Ω) then LEu = f

and hence the elliptic regularity Theorem 53.10 gives the result.
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4. Since C∞(Ω) ⊂ Hk(Ω) for all k, it follows by item 1. that u ∈
∞T
k=0

Hk(Ω). But
∞T
k=0

Hk(Ω) ⊂ C∞(Ω) by the Sobolev embedding Theorem

49.18.
5. If u ∈ D(L) ⊂ H2(Ω) and Lu = λu ∈ H2(Ω) for some λ ∈ C, then by

item 3., u ∈ H4(Ω) and then reapplying item 3. we learn u ∈ H6(Ω). This

process may be repeated and so by induction, u ∈
∞T
k=0

Hk(Ω) ⊂ C∞(Ω).

Theorem 54.8 (Fredholm Alternative). Let Ω̄ ⊂ Rd be a C∞ — manifold
with boundary such that Ω = Ω̄o. Let E be an elliptic Dirichlet form, L := LE
be the associated operator. Then

1. L : D(L)→ L2 (Ω) and L∗ : D(L∗)→ L2 (Ω) are Fredholm operators.
2. index (L) = index (L∗) = 0.
3. dimNul(L) = dimNul(L∗).
4. Ran (L) = Nul(L∗)⊥.
5. Ran (L) = L2 (Ω) iff Nul(L) = {0}.
Proof. Choose C > 0 such that (L + C) : D(L) → L2 (Ω) is a invertible

map and let
K := C(L+ C)−1 : L2(Ω)→ D(L)

which by Theorem 54.7 is compact when viewed as an operator from L2(Ω)
to L2(Ω). With this notation we have

(L+ C)−1L = (L+ C)−1(L+ C − C) = ID(L) −K

and

L(L+ C)−1 = (L+ C)(L+ C)−1 − C(L+ C)−1 = IL2(Ω) −K.

By Corollary 54.6 orProposition 16.35, IL2(Ω)−K is a Fredholm operator with
index (IL2(Ω) −K) = 0. Since Ran (L) = Ran (L(L + C)−1) = Ran (I − K)
it follows that Ran (L) is a closed and finite codimension subspace of L2 (Ω)
and

dim coker(L) = dim coker(I −K).

Since

u ∈ Nul(L)→ (L+ C)u ∈ Nul(L(L+ C)−1) = Nul(I −K)

is an isomorphism of vector spaces

dimNul(L) = dimNul(I −K) <∞.

Combining the above assertions shows that L is a Fredholm operator and
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index (L) = dim coker(L)− dimNul(L)
= dim coker(I −K)− dimNul(I −K)

= index (I −K) = 0.

The same argument applies to L∗ to show L∗ is Fredholm and index (L∗) = 0.
Because Ran (L) is closed and Ran (L)⊥ = Nul(L∗), Ran (L) = Nul(L∗)⊥ and

L2(Ω) = Nul(L∗)⊥ ⊕Nul(L∗) = Ran (L)⊕Nul(L∗).
Thus dim coker(L) = dimNul(L∗) and so

0 = index (L) = dimNul(L)− dim coker(L)
= dimNul(L)− dimNul(L∗).

This proves items 1-4 and finishes the proof of the theorem since item 5. is a
direct consequence of items 3 and 4.

Example 54.9 (Dirichlet Boundary Conditions). Let ∆ denote the Laplacian
with Dirichlet boundary conditions, i.e. D(∆) = H1

0 (Ω)∩H2(Ω). If u ∈ D(∆)
then Z

Ω

∇u ·∇vdm = (−∆u, v) for all v ∈ H1
0 (Ω) (54.12)

and in particular for u ∈ Nul(∆) we haveZ
Ω

|∇u|2 dm = (−∆u, u) = 0.

By the Poincaré inequality in Theorem 49.31 (or by more direct means) this
implies u = 0 and therefore Nul(∆) = {0} . It now follows by the Fredholm
alternative in Theorem 54.8 that there exists a unique solution u ∈ D(∆) to
∆u = f for any f ∈ L2(Ω).

Example 54.10 (Neuwmann Boundary Conditions). Suppose ∆ is the Lapla-
cian on Ω with Neuwmann boundary conditions, i.e.

D(∆) = {u ∈ H2(Ω) :
∂u

∂n
= 0}.

If u ∈ D(∆) thenZ
Ω

∇u ·∇vdm = (−∆u, v) for all v ∈ H1(Ω). (54.13)

so that the Dirichlet form associated to ∆ is symmetric and hence ∆ = ∆∗.
Moreover if u ∈ Nul(∆), then

0 = (−∆u, v) =

Z
Ω

|∇u|2 dm,
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i.e. ∇u = 0. As in the proof of the Poincaré Lemma 49.30 (or using the
Poincaré Lemma itself), u is constant on each connected component of Ω.
Assuming, for simplicity, that Ω is connected, we have shown

Nul(∆N ) = span {1}.

The Fredholm alternative in Theorem 54.8 implies that there exists a (non
unique solution) u ∈ D(∆) to ∆u = f for precisely those f ∈ L2(Ω) such that
f ⊥ 1, i.e. R

Ω

f1 dm = 0.

Remark 54.11. Suppose E is an elliptic Dirichlet form and L = LE is the
associated operator on L2(Ω). If E has the property that the only solution to
E(u, u) = 0 is u = 0, then the equation Lu = f always has a unique solution
for any f ∈ L2(Ω).

Example 54.12. Let Aij = Aji, Ai and A0 be in C∞
¡
Ω̄
¢
with A0 ≥ 0 and

(Aij) ≥ �I for some � > 0. For u, v ∈ H1
0 (Ω) let

E(u, v) =
Z
Ω

(
X

Aij∂iu∂jv +A0uv)dm, (54.14)

and L = LE , then
L = −∂jAij∂iu+A0u, (54.15)

with D(L) := H2(Ω) ∩H1
0 (Ω). If u ∈ Nul(L), then 0 = (Lu, u) = E(u, u) = 0

implies ∂iu = 0 a.e. and hence u is constant on each connected component of

Ω. Since u ∈ H1
0 (Ω), u

¯̄̄
∂Ω

= 0 from which we learn that u ≡ 0. Therefore
Lu = f has a (unique) solution for all f ∈ L2(Ω).

Example 54.13. Keeping the same notation as Example 54.12, except now we
view E as a Dirichlet form on H1(Ω). Now L = LE is the operator given in
Eq. (54.15) but now

D(L) = {u ∈ H2(Ω) : Bu = 0 on ∂Ω}

where Bu = njAij∂iu. Again if u ∈ Nul(L) it follows that u is constant on
each connected component of Ω. If we further assume that A0 > 0 at some
point in each connected component of Ω, we could then conclude from

0 = E(u, u) =
Z
Ω

A0u
2dm,

that u = 0. So again Nul(L) = {0} and Ran (L) = L2 (Ω) .
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54.3 Interior Regularity Revisited

Theorem 54.14 (Jazzed up interior regularity). Let L be a second order
elliptic differential operator on Ω. If u ∈ L2Loc(Ω) such that Lu ∈ Hk

Loc(Ω)
then u ∈ Hk+2

Loc (Ω) and for any open precompact open sets Ω0 and Ω1 con-
tained in Ω such that Ω̄0 ⊂ Ω1 ⊂ Ω̄1 ⊂ Ω there is a constant C < ∞
independent of u such that

kukHk+2(Ω0) ≤ C(kLukHk(Ω1) + kukL2(Ω1)).

Proof.When k > 0 the theorem follows from Theorem 52.5. So it suffices
to consider the case, k = 0, i.e. u ∈ L2Loc(Ω) such that Lu ∈ L2Loc(Ω). To finish
the proof, again because of Theorem 52.5, it suffices to show u ∈ H1

loc(Ω). By
replacing Ω by a precompact open subset of Ω which contains Ω1 we may
further assume that u ∈ L2(Ω) and Lu ∈ L2(Ω). Further, by replacing L by
L + C for some constant C > 0, the Lax-Milgram method implies we may
assume L : H1

0 (Ω) → H−1(Ω) is an isomorphism of Banach spaces. We will
now finish the proof by showing u ∈ H1

loc(Ω) under the above assumptions.
If χ ∈ C∞c (Ω) , then by Lemma 50.7 [L,Mχ] is a first order operator so,

L(χu) = χLu+ [L,Mχ]u =: fχ ∈ L2(Ω) +H−1(Ω) = H−1(Ω).

Let u0 = L−1fχ ∈ H1
0 (Ω), ψ ∈ C∞c (Ω) such that ψ = 1 on a neighborhood of

supp(χ) and
v := ψ (χu− u0) = χu− ψu0 ∈ L2c(Ω).

Then, because supp(fχ) ⊂ supp(χ), we have fχ = ψfχ and

Lv = L [χu− ψu0] = fχ − ψLu0 − [L,Mψ]u0 = fχ − ψfχ − [L,Mψ]u0

= −[L,Mψ]u0 =: g ∈ L2c(Ω).

Let D (LD) := H2(Ω) ∩ H1
0 (Ω) and LDu = Lu for all u ∈ D(LD) so

that LD is L with Dirichlet boundary conditions on Ω. I now claim that
v ∈ D(LD) ⊂ H1

0 (Ω). To prove this suppose

ξ ∈ D(L†D) =
n
ξ ∈ H1

0 (Ω) : L
†
Dξ ∈ L2(Ω)

o
= H1

0 (Ω) ∩H2(Ω)

and let ξm := ηm ∗ ξ where ηm is an approximate δ — sequence so that ξm →
ξ in H2

loc(Ω). Choose φ ∈ C∞c (Ω) such that φ = 1 on a neighborhood of
supp(v) ⊃ supp(g), then

(g, ξ) = lim
m→∞(g, ξm) = lim

m→∞(Lv, φξm) = lim
m→∞(v, L

† (φξm))

= lim
m→∞(v, L

†ξm) = (v, L†ξ) = (v, L
†
Dξ).

Since this holds for all ξ ∈ D(L†D) we see that
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v ∈ D
³³

L†D
´∗´

= D(LD) = H1
0 (Ω) ∩H2(Ω) ⊂ H1(Ω),

where the first equality is a consequence of Theorem 54.2 which states LD =³
L†D
´∗

. Therefore, χu = ψu0 + v ∈ H1(Ω) and since χ ∈ C∞c (Ω) was

arbitrary we learn that u ∈ H1
loc(Ω).

54.4 Classical Dirichlet Problem

Let Ω̄ be a C∞ — manifold with boundary such that Ω = Ω̄o and let L = ∆
with Dirichlet boundary conditions, so D(∆) := H1(Ω) ∩H2(Ω).

Theorem 54.15. To each f ∈ C(∂Ω), there exists a unique solution u ∈
C∞(Ω) ∩ C(Ω̄) to the equation

∆u = 0 with u = f on ∂Ω.

Proof. Choose fn ∈ C∞(Ω) such that limn→∞ kfn|∂Ω − fkL∞(∂Ω) = 0.

We will now show that there exists un ∈ C∞(Ω) such that

∆un = 0 with un = fn on ∂Ω. (54.16)

To prove this let us write the desired solution as un = vn + fn in which case
vn = 0 on ∂Ω and 0 = ∆un = ∆vn +∆fn. Hence if vn solves ∆vn = −∆fn
on Ω with vn = 0 on ∂Ω then un = vn + fn solves the Dirichlet problem in
Eq. (54.16).
By the maximum principle,

kun − umkL∞(Ω̄) ≤ kfn − fmkL∞(∂Ω) → 0 as m,n→∞

and so {un}∞n=1 ⊂ C(Ω) is uniformly convergent sequence. Let u :=
limn→∞ un ∈ C(Ω). The proof will be completed by showing u ∈ C∞ (Ω)
and ∆u = 0. This can be done in one stroke by showing u satisfies the mean
value property. This it the case since each function un satisfies the mean value
property and this property is preserved under uniform limits.

Remark 54.16. Theorem 54.15 is more generally valid in the case ∆ is re-
placed by an elliptic operator of the form L = −Pij

1
ρ∂

i(ρaij∂
j) with

ρ ∈ C∞(Ω, (0,∞)) and aij ∈ C∞(Ω) such that
Pn

i,j=1 aij(x)ξiξj ≥ �|ξ|2
for all x ∈ Ω, ξ ∈ Rd. Then again for all f ∈ C(∂Ω) there exist a solution
u ∈ C∞(Ω) ∩ C(Ω) such that

Lu = 0 with u = f on ∂Ω.

The proof is the same as that of Theorem 54.15 except the last step needs
to be changed as follows. As above, we construct solution to Lun = 0 with
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un = fn on ∂Ω and we then still have un → u ∈ C(Ω) via the maximum
principle. To finish the proof, because of Theorem 54.14, it suffices to show
Lu = 0 in the sense of distributions. This is valid becasue if φ ∈ D (Ω) then

0 = lim
n→∞hLun, φi = lim

n→∞hun, L
†φi = hu,L†φi = hLu, φi,

i.e. Lu = 0 in the sense of distribution.

54.5 Some Non-Compact Considerations

In this section we will make use of the results from Section 53.3. Let ρ ∈
C∞(Rd, (0,∞)), Aij ∈ BC∞(Rd) such that

P
Aij ξi ξj > 0 for all |ξ| 6= 0 and

define

Q(u, v) =

Z
Rd

X
Aij∂

iu ∂jv ρ dx for u, v ∈ C∞c
¡
Rd
¢
.

Then as we have seen Q has a closed extension Q̂ and unique self adjoint
operator L on L2(ρ dx) such that u ∈ D(L) iff v → Q(u, v) is L2(ρdx)
continuous on D(Q̂) and in which case Q(u, v) = (Lu, v)L2(ρdx). Standard
integration by parts shows

u ∈ C2c (Rd) ⊂ D(L) and Lu = −1
ρ

X
∂j(ρAij∂iu).

Proposition 54.17. Let Q̄(u, u) :=
R
Rd

P
Aij∂

iu · ∂ju ρ dx, then

D(Q̂) ⊂ {u ∈ L2(ρ dx) ∩H1
loc(Rd) : Q̄(u, u) <∞}.

Proof. By definition of the closure of Q, C∞c (Rd) is dense in (D(Q̂), Q̂1).
Since for all Ω ⊂⊂ Rd there exists an � = �(Ω) such that ρ

P
Aij ξi ξj ≥ �|ξ|2

on Ω, we learn

Q(u, u) ≥ �kuk2H1(Ω) for all u ∈ C∞c (Rd). (54.17)

Therefore if u ∈ D(Q̂) and un ∈ C∞c
¡
Rd
¢
such that Q̂1(u−un)→ 0 as n→∞

then kun−umkH1(Ω) → 0, i.e. u = lim
n→∞un in H1(Ω). Hence a simple limiting

argument shows Eq. (54.17) holds for all u ∈ D(Q̂) :
Q1(u, u) ≥ �kuk2H1(Ω) for all u ∈ D(Q̂).

This shows D(Q̂) ⊂ H1
Loc(Rd). Moreover

Q̂(un, un) ≥ R
Ω

Aij∂iun ∂jun ρ dx

↓ n→∞ ↓
Q̂(u, u) ≥ R

Ω

Aij∂iu∂ju ρ dx.
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Since Ω ⊂⊂ Rd is arbitrary this implies that

Q̂(u, u) ≥
Z
Ω

Aij∂iu ∂iu ρ dx.

Proposition 54.18. Suppose u ∈ D(Lk) then u ∈ H2k
Loc(Rd) and for all

Ω ⊂⊂ Ω1 ⊂⊂ Rd there exist C = Ck(Ω) such that

kukH2k(Ω) ≤ C(kLkukL2(ρ dx) + kukL2(ρ dx)) (54.18)

Proof. Suppose u ∈ D(L) and Lu = f. Then for all φ ∈ C∞c
¡
Rd
¢
,

(Lu, φ) = (f, φ)L2(ρ). ThereforeZ X
Aij∂iu ∂ju ρ dx =

Z
fφ ρ dx

so −∂j(ρAij ∂iu) = ρf in the sense if distributions and hence

−
X

Aij ∂j∂iu+ L.O.T. = f

in the distributional sense. Since D(L) ⊂ D(Q̂) ⊂ H1
Loc

¡
Rd
¢
, by local elliptic

regularity it follows that D(L) ⊂ H2
Loc(Rd) and for all Ω1 ⊃ Ω0

kukH2(Ω0) ≤ C(kLukL2(Ω1) + kukL2(Ω1)).

Now suppose u ∈ D(L2), then u ∈ D(L) ⊂ H2
Loc

¡
Rd
¢
and Lu ∈ D(L) ⊂

H2
Loc

¡
Rd
¢
implies u ∈ H4

Loc

¡
Rd
¢
and

kukH4(Ω) ≤ C(kLukH2(Ω1) + kLukL2(Ω1))

≤ C(L2ukL2(Ω2) + kukL2(Ω2) + kukH2(Ω1))

≤ C(kL2ukL2(Ω2) + kLukL2(Ω2) + kukL2(Ω2)).

If u ∈ D(L3) then u ∈ H4
Loc

¡
Rd
¢
and Lu ∈ H4

Loc

¡
Rd
¢
implies u ∈ H6

Loc

¡
Rd
¢

and

kukH6(Ω0) ≤ C(kLukH4(Ω1) + kukL2(Ω1))

≤ C(kL3ukL2(Ω2) + kL2ukL2(Ω2) + kLukL2(Ω2) + kukL2).
u ∈ D(Lk) implies u ∈ H2k

Loc

¡
Rd
¢
and

kukH2(Ω0) ≤ C
kX

j=0

kLjukL2( eΩ) ≤ C
kX

j=0

kLjukL2(ρ)

≤ C(kLkukL2(ρ ds) + kukL2(ρ dx))
by the spectral theorem.
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54.5.1 Heat Equation

Let u(t) = e−tLu0 where u0 ∈ L2 (ρ) . Then u(t) ∈ D(Lk) for all k when t > 0
and hence u(t) ∈ H2k

Loc

¡
Rd
¢
for all k. But this implies for each t > 0 that

u(t) has a continuous in fact C∞- version because H2k(Ω) /→ C2k−2/d(Ω̄) for
k > 1

d . Moreover°°°°Lk ·u(t+ h)− u(t)

h
− Lu(t)

¸°°°°
L2(Ω)

→ 0 as h→ 0

for all k = 0, 1, 2, . . . and therefore,°°°°u(t+ h)− u(t)

h
− Lu(t)

°°°°
C2k−2/d(Ω̄)

→ 0 as h→ 0

when k > 1
d . This shows t → u(t) is differentiable and in C2k−

2
n (Ω) for all

k > 1
d . Thus we conclude that u(t, x) is in C1,∞((0,∞)× Rd) and ∂u

∂t (t, x) =
Lu(t, x), i.e. u is a classical solution to the heat equation.

54.5.2 Wave Equation

Now consider the generalized solution to the wave equation

u(t) = cos(
√
Lt)f +

sin(
√
Lt)√
L

g

where f, g ∈ L2(ρ). If f, g ∈ C∞c
¡
Rd
¢
, then f, g ∈ D(Lk) for all k and hence

u(t) ∈ D(Lk) for all k. It now follows that u(t) is C∞-differentiable in t relative
to the norm kfkk := kfkL2(ρdx)+ kLkfkL2(ρdx) for all k ∈ N. So by the above
ideas u(t, x) ∈ C∞(R×Rd) and

ü(t, x) + Lu(t, x) = 0 with

u(0, x) = f0(x) and

u̇(0, x) = g0(x).
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Spectral Considerations

For this section, let Ω be a bounded open subset of Rd such that Ω̄o = Ω and
Ω̄ is C∞ — manifold with boundary. Also let E be a symmetric Dirichlet form
with domain being either X = H1(Ω) or X = H1

0 (Ω) and let L := LE be the
corresponding self adjoint operator.

Theorem 55.1. There exist {λi}∞i=1 ⊂ R such that λ1 ≤ λ2 ≤ λ3 ≤ · · ·→∞
and {φn} ⊂ D(L) ⊂ L2(Ω) such that {φn} is an orthonormal basis for L2(Ω)
and Lφn = λnφn for all n.

Proof. Choose C > 0 such that (L+ C) : D(L) → L2 (Ω) is invertible
and let T := (L+C)−1 which is a compact operator (see Theorem 54.7) when
viewed as an operator from L2(Ω) to L2(Ω). Since L = L∗,

((L+ C)u, v) = (u, (L+ C)v) for all u, v ∈ D(L)

and using this equation with u, v being replaced by Tu, Tv respectively shows
(u, Tv) = (Tu, v) for all u, v ∈ L2.Moreover if u ∈ L2(Ω) and v = Tu ∈ D(L),

(Tu, u) = (T (L+ C)v, (L+ C)v) = ((L+ C)v, v) ≥ 0

and so we have shown T = T ∗ and T > 0. By the spectral Theorem 16.17 for
self-adjoint compact operators, there exist {µn}∞n=1 ⊂ R+ and an orthonormal
basis {φn}∞n=1 of L2(Ω) such that Tφn = µnφn and µ1 ≥ µ2 ≥ µ3 ≥ . . .
and limµi = 0. Since Tφn = µnφn iff (L + C)−1φn = µnφn ∈ D(L) iff
µn(L+ C)φn = φn iff

Lφn =
1

µn
(1− Cµn)φn = λnφn

where λn :=
³
1
µn
− C

´
↑ ∞ as n→∞.

Corollary 55.2. Let L be as above, then
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D(L) = {u ∈ L2(Ω) :
∞X
n=1

λ2n(u, φn)
2 <∞}.

Moreover Lu =
∞P
n=1

λn(u, φn)φn for all u ∈ D(L), i.e. L is unitarily equivalent

to the operator Λ : c2 → c2 defined by (Λx)n = λnxn for all n ∈ N.
Proof. Suppose u ∈ D(L), then

Lu =
X
(Lu, φn)φn =

X
(u,Lφn)φn = −

X
λn(u, φn)φn

with the above sums being L2 convergent and henceX
λ2n(u, φn)

2 = kLuk2L2 <∞.

Conversely if
P

λ2n(u, φn)
2 <∞, let

uN :=
NX
n=1

(u, φn)φn ∈ D(L).

Then uN → u in L2(Ω) and

LuN =
NX
1

(u, φn)λnφn →
∞X
1

(u, φn)λnφn in L2(Ω).

Since L is a closed operator, u ∈ D(L) and Lu =
∞P
1
(u, φn)λnφn.

55.1 Growth of Eigenvalues I

Example 55.3. Let Ω = (0, c).

1. Suppose L = − d2

dx2 with D(L) = H2(Ω)∩H1
0 (Ω), i.e. we impose Dirichlet

boundary conditions. Because L = L∗ and L ≥ 0 (in fact L ≥ �I for some
� > 0 by the by the Poincaré Lemma in Theorem 49.31) if Lu = λu then
λ > 0. Let λ = ω2 > 0, then the general solution to Lu = ω2u is given by

u(x) = A cos(ωx) +B sin(ωx)

where A,B ∈ C. Because we want u(0) = 0 = u(c) we must require A = 0

and cω = nπ. Hence we have λn = n2π2

c2 and un(x) =
q

2
c sin

¡
nπ
c x
¢
for

n ∈ N is an orthonormal basis of eigenvectors for L.
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2. The reader is invited to show that if L = −d
2

dx2 with Neuwmann boundary

conditions then u0(x) :=
1√
c
and un(x) =

q
2
c cos

¡
nπ
c x

¢
for n ∈ N forms

an orthonormal basis of eigenfunctions of L with eigenvalues given by
λn =

n2π2

c2 for n ∈ N0.
3. Suppose that L = −∆ on Ωd with Dirichlet boundary conditions and for
m ∈ Nd let

Um(x) = um1(x1) . . . umd
(xd)

where each ui is given as in Item 1. Then
©
Um : m ∈ Nd

ª
is an orthonormal

basis of eigenfunctions of L with eigenvalues given

λm =
π2

c2

dX
i=1

m2
i =

π2

c2
|m|2Rd for all m ∈ Nd.

Remark 55.4. Keeping the notation of item 3. of Example 55.3, for λ > 0 let

Eλ = span {φm : λm ≤ λ}.
Then

dim(Eλ) = #
©
m ∈ Nd : λm ≤ λ

ª
= #

½
m ∈ Nd : |m|2Rd ≤

λc2

π2

¾
from which it follows that

dim(Eλ) ³ md

Ã
B

Ã
0,

r
λc2

π2

!!
= ωd

µ
λc2

π2

¶d/2
= Cmd

¡
Ωc
¢
λd/2.

Lemma 55.5. Let Ω, E and L be as described at the beginning of this section.
Given k ∈ N, there exists C = Ck <∞ such that

kukH2k(Ω) ≤ C(kukL2(Ω) +
°°Lku°°

L2(Ω)
) for all u ∈ D(Lk). (55.1)

Proof. We first claim that for u ∈ D(Lk).

kukH2k(Ω) ≤ Ck(kukL2(Ω) + kLukL2(Ω) + · · ·+ kLkukL2(Ω)). (55.2)

We prove Eq. (55.2) by induction. When k = 0, Eq. (55.2) is trivial. Consider
u ∈ D(L(k+1)) ⊂ D(Lk). By elliptic regularity (Theorem 52.15) and then
using the induction hypothesis,

kukH2(k+1)(Ω) ≤ C(kukL2(Ω) + kLukHk(Ω)) ≤ Ck+1

k+1X
j=0

kLjukL2(Ω)

 .

This proves Eq. (55.2). Because sup
n

λ2m

(1+λ2p) : λ ≥ 0
o
for any p > m, it follows

by the spectral theorem that

kLmuk2L2(Ω) ≤ C
³
kuk2L2(Ω) + kLpuk2L2(Ω)

´
for all p > m.

Combining this fact with Eq. (55.2) implies Eq. (55.1).
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Theorem 55.6. Continue the notation in Lemma 55.5 and let {φn}∞n=1 be
the orthonormal basis described in Theorem 55.1 and for λ ∈ R let

Eλ := span {φn : λn ≤ λ}.
If k is the smallest integer such that k > d/4, there exist C <∞ such that

dim(Eλ) ≤ C(1 + λ2k) (55.3)

for all λ ≥ inf σ(L).
Proof. By the Sobolev embedding Theorem 49.18,H2k(Ω) /→ C2k−

d
2 (Ω) ⊂

C
¡
Ω̄
¢
. Combining this with Lemma 55.5 implies D

¡
Lk
¢
/→ C

¡
Ω̄
¢
and for

u ∈ D(Lk),

kukC0(Ω) ≤ kuk
C2k− d

2 (Ω)
≤ CkukH2k(Ω) ≤ C(kukL2(Ω)+kLkukL2(Ω)). (55.4)

Let λ ≥ inf σ(L) and u ∈ Eλ ⊂ D(Lk). Since

u =
X

n:λn≤λ
(u, φn)φn and Lku =

X
λn≤λ

λkn(u, φn)φn,

kLkuk2L2(Ω) =
X
λn≤λ

|λn|2k|(u, φn)|2 ≤ |λ|2k kuk2L2(Ω). (55.5)

Combining Eqs. (55.4) and (55.5) implies

kukC0 ≤ C(1 + λk)kukL2(Ω) = C(1 + λk)

sX
λn≤λ

|(u, φn)|2. (55.6)

Let N = dim(Eλ), y ∈ Ω and take u(x) :=
NP
n=1

φn(y)φn(x) in Eq. (55.6)

to find

NX
n=1

|φn(y)|2 ≤ sup
x∈Ω

¯̄̄̄
¯
NX
n=1

φn(y)φn(x)

¯̄̄̄
¯ ≤ C(1 + λk)

qX
|φn(y)|2

from which it follows that

NX
n=1

|φn(y)|2 ≤ C2(1 + λk)2.

Integrating this estimate over y ∈ Ω then shows

dim(Eλ) =
NX
1

1 =
NX
1

Z
Ω

|φn(y)|2 dy ≤ C2(1 + λk)2|Ω|

which implies Eq. (55.3).
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Corollary 55.7. Let k be the smallest integer larger than d/4. Then there
exists � > 0 such that λn ≥ �n1/2k for n sufficiently large. Noting that k ∼ d/4
this says roughly that λn ∼ nd/2, which is the correct result.

Proof. Since1

n ≤ dim(Eλn) ≤ c(1 + λ2kn ),

n
c − 1 ≤ λ2kn or λn ≥

¡
n
c − 1

¢ 1
2k .

1 If λ = λn has multiplicity larger than one, then n < dimEλn otherwise n =
dimEλn .





Part XVI

Heat Kernel Properties





56

Construction of Heat Kernels by Spectral
Methods

A couple of references for this and later sections are Davies [3, 4] and L.
Saloff-Coste [12].
For this section, again let Ω be a bounded open subset of Rd such that

Ω̄o = Ω and Ω̄ is C∞ — manifold with boundary. Also let E be a symmetric
Dirichlet form with domain being either X = H1(Ω) or X = H1

0 (Ω) and
let L := LE be the corresponding self adjoint operator. Let {φn}∞n=1 be the
orthonormal basis of eigenvectors of L as described in Theorem 55.1 and
{λn}∞n=1 denote the corresponding eigenvalues, i.e. Lφn = λnφn.
As we have seen abstractly before,

u(t) = cos(
√
Lt)f +

sin(
√
Lt)√
L

g

:=
∞X
n=1

{cos(
p
λnt)(f, φn) +

sin(
√
λnt)√
λn

(g, φn)}φn

solves the wave equation

∂2u

∂t2
+ Lu = 0 with u(0, x) = f(x) and u̇(0, x) = g(x)

and

u(t) = e−tLu0 :=
∞X
n=1

e−tλn(u0, φn)φn

solves the heat equation,

∂u

∂t
= −Lu with u(0, x) = u0(x). (56.1)

Here we will concentrate on some of the properties of the solutions to the heat
equation (56.1). Let us begin by writing out u(t, x) more explicitly as



1112 56 Construction of Heat Kernels by Spectral Methods

u(t, x) =
∞X
n=1

e−tλn
Z
Ω

u0(y)φn(y)dy φn(x) = lim
N→∞

Z
Ω

u0(y)
NX
n=1

e−tλnφn(x)φn(y) dy.

(56.2)

Theorem 56.1. Let pt(x, y) denote the heat kernel associated to L defined
by

pt(x, y) :=
∞X
1

e−tλnφn(x)φn(y). (56.3)

Then

1. the sum in Eq. (56.3) is uniformly convergent for all t > 0
2. (t, x, y)→ pt(x, y) ∈ C∞(R+ ×Ω ×Ω)
3. u(t, x) =

R
Ω

pt(x, y)u0(y)dy solves Eq. (56.1).

Proof. Let

pNt (x, y) =
NX
n=1

e−tλnφn(x)φn(y),

then (t, x, y) → pNt (x, y) ∈ C∞(R × Ω × Ω). Since Lkφn(x) = λknφn, by the
Elliptic regularity Theorem 52.15,

kφnkH2k(Ω) ≤ C(kφnkL2(Ω) + kLkφnkL2(Ω)) ≤ C(1 + λkn).

Taking k > d/4, the Sobolev embedding Theorem 49.18 implies

kφnkC0(Ω̄) ≤ kφnkC2k−d/2(Ω̄) ≤ CkφnkH2k(Ω) ≤ C(1 + λkn).

Therefore sup
x,y∈Ω

|φn(x)φn(y)| ≤ C2(1+λkn)
2 while by Corollary 55.7, λn ≥ n2/d

and therefore while
P∞

n=1 e
−tλn(1 + λkn)

2 <∞. More generally if |α| = 2m
k∂αφnkC0 ≤ k∂αφnkH2k ≤ kφnkH2(k+m) ≤ C(1 + λk+mn )

and hence
kφn ⊗ φnkC2m(Ω̄×Ω) ≤ C2(1 + λk+mn )2

from which it follows that
∞X
n=1

sup
t≥�

e−tλnkφn ⊗ φnkC2m(Ω̄×Ω) =
∞X
n=1

e−�λnkφn ⊗ φnkC2m(Ω̄×Ω)

≤ C2
∞X
n=1

e−�λn(1 + λk+mn )2 <∞.

So pNt (x, y) and all of its derivatives converge uniformly in t ≥ � and x, y ∈ Ω̄
as N →∞. Therefore pt(x, y) := lim

N→∞
pNt (x, y) exists and (t, x, y)→ pt(x, y)
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is C∞
¡
Ω̄
¢
for t > 0 and x, y ∈ Ω̄. It is now easy to justify passing the limit

under the integral sign in Equation (56.2) to find u(t, x) =
R
Ω

pt(x, y)u0(y)dy.

Remark 56.2. pt(x, y) solves the following problem
∂pt
∂t = −Lxpt, pt(·, y) sat-

isfies the boundary conditions and lim
t↓0

pt(·, y) = δy.

Definition 56.3. A bounded operator T : L2(Ω) → L2(Ω) is positivity pre-
serving if for every f ∈ L2(Ω) with f ≥ 0 a.e. on Ω has the property that
Tf ≥ 0 a.e. on Ω.

Proposition 56.4 (Positivity of heat kernel’s). Suppose D(L) = H1
0 (Ω)∩

H2(Ω), i.e. L has Dirichlet boundary conditions, then the operator e−tL is
positivity preserving for all t > 0 and the associated heat kernel pt(x, y) is
non-negative for all t ∈ (0,∞) and x, y ∈ Ω.

Proof. Since e−t(L+C) = e−tCe−tL is positivity preserving iff e−tL is pos-
itivity preserving, we may assume

L = −
X

aij∂i∂j +
X

ai∂i + a

with a > 0. Let f ∈ C∞
¡
Ω̄, (0,∞)¢ and u(t, x) := e−tLf(x), in which case u

solves

∂u

∂t
= −Lu with u(0, x) = f(x) ≥ 0 for (t, x) ∈ [0, T ]×Ω

with u(t, x) = 0 for x ∈ ∂Ω.

If there exist (t0, x0) ∈ (0, T ]×Ω such that

u(t0, x0) = min
©
u(t, x) : 0 ≤ t ≤ T, x ∈ Ω̄

ª
< 0,

then ∂u
∂t (t0, x0) ≤ 0, ∂iu(t0, x0) = 0 for all i and by ellipticity,

aij(x0)∂i∂ju(t0, x0) ≥ 0.

Therefore at (t0, x0),

0 =
∂u

∂t
+ Lu =

∂u

∂t
− aij∂i∂ju+ ai∂iu+ au

=
∂u

∂t
− aij∂i∂ju+ au = (≤ 0)− (≥ 0) + (< 0) < 0

which is a contradiction. Hence we have shown

0 ≤ u(t, x) =

Z
Ω

pt(x, y)f(y)dy for all (t, x) ∈ [0, T ]× Ω̄. (56.4)
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By a simple limiting argument, Eq. (56.4) also holds for all non-negative
bounded measurable functions f on Ω. Indeed, let fn :=

¡
f1Ω + n−1

¢ ∗
ηn where ηn ∈ C∞c (Rd, (0,∞)) is a spherically symmetric approximate δ -
sequence. Then fn ∈ C∞

¡
Ω̄, (0,∞)¢ and hence

0 ≤
Z
Ω

pt(x, y)fn(y)dy →
Z
Ω

pt(x, y)f(y)dy.

From this equation it follows that pt(x, y) ≥ 0 and that e−tL is positivity
preserving.

Lemma 56.5. Suppose fn ≥ 0 on Ω and fn → δx as n → ∞, then
lim
n→∞

R
Ω
f2n(x)dx =∞.

Proof. For sake of contradiction assume lim
n→∞

R
f2n(x)dx 6=∞. By passing

to a subsequence if necessary we may then assmumeM =: supn
R
Ω
f2n(x)dx <

∞ and that fn converges weakly to some g ∈ L2 (Ω) . In which case we would
have

φ(x) = lim
n→∞

Z
Ω

fn(y)φ(y)dy =

Z
Ω

g(y)φ(y)dy for all φ ∈ C∞c (Ω) .

But this would imply that g = δx which is incomensurate with g being an
L2(Ω) function and we have reached the desired contradiction.

Theorem 56.6. Let pt be a Dirichlet heat kernel, then limt↓0 pt(x, x) = ∞
and pt(x, y) > 0 for all x, y ∈ Ω and t > 0.

Proof. We have seen pt(x, ·)→ δx for all x ∈ Ω. Therefore by lemma

lim
t↓0

Z
Ω

pt(x, y)
2dy =∞.

Now Z
Ω

pt(x, y)
2dy =

Z
Ω

pt(x, y)pt(y, x)dy = p2t(x, x).

Therefore lim
t↓0

p2t(x, x) =∞ for all x ∈ Ω.

Sketch of the rest: Choose a compact set K in Ω, then by continuity
there exists t0 > 0 and � > 0 such that pt(x, y) ≥ 1 for all x ∈ K, |x− y| <
� and 0 < t ≤ t0. (Note tanh pt(x, x) is continuous on [0, 1] × Ω, where
tanh p0(x, x) = 1.) Now if x ∈ K and y ∈ K and |x− y| < 2�, we have for
t < t0 that

pt(x, y) =

Z
Ω

pt/2(x, z)pt/2(z, y)dz ≥
Z
B(x,�)∩B(y,�)∩Ω

pt/2(x, z)pt/2(z, y)dz

≥ m (B(x, �) ∩B(y, �) ∩Ω) > 0.
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Working inductively, we may use this same idea to prove that pt(x, y) > 0 for
all t < t0 and x, y ∈ K. Moreover the same semi-group argument allows one
to show pt(x, y) > 0 for all t > 0 as well.
Second Proof using the strong maximum principle.
Now for y fixed 0 < t ≤ T, f(t, x) = pt(x, y) solves

∂f
∂t =

Lxf(t, x), f(�, x) = p�(x, y). With out loss of generality, assume

L = −
X
−∂iaij∂j + a with a ≥ 0.

For if a is not greater than 0, replace L by L+λ and observe that e−t(L+λ) =
e−tλetL. Therefore pλt (x, y) = e−tλpt(x, y) so pt(x, y) > 0 iff pλt (x, y) ≥ 0.
Then ∂pt

∂t = Lxpt(x, y) for all T ≥ t ≥ � and x ∈ Ω. By the strong maximum
principle of Theorem 12 on page 340 if there exist (x0, t0) ∈ Ω × (�, T ] such
that pt0(x0, y) = 0 then x→ pt(x, y) is a constant on (0t0)×Ω which is false
because the constant would have to be 0, but

R
pt0(x, y)dx > 0 for T small.

56.1 Positivity of Dirichlet Heat Kernel by Beurling
Deny Methods

Assumption 6 Suppose L = −∂iaij∂j + a where aij = aji ≥ �I and a ∈
C∞(Ω) and D(L) = H1

0 (Ω) ∩H2(Ω).

Theorem 56.7. Let λ0 = max(−a) i.e. −λ0 = min(a). Then for all λ ≥ λ0,
Lλ := L + λI : D(L) → L2 (Ω) invertible and if f ∈ L2 (Ω) , f ≥ 0 a.e then
L−1λ f ≥ 0 a.e., i.e. L−1λ is positivity preserving.

Proof. If λ ≥ λ0 then λ+ a ≥ 0 and hence if Lλu = 0 then

(Lλu, u) =

Z
Ω

(aij∂iu∂ju+ (a+ λ)u2)dx = 0.

This implies∇u = 0 a.e. and so u is constant and hence u = 0 because u ∈ H1
0 .

Therefore Nul(Lλ) = {0} and so Lλ is invertible by the Fredholm alternative.
Now suppose f ∈ C∞(Ω) such that f > 0, then u = L−1λ f ∈ C∞(Ω) with
Lλu = f > 0 and u = 0 on ∂Ω.We may now use the maximum principle idea
in Theorem 45.16 to conclude that u ≥ 0. Indeed if there exists x0 ∈ Ω such
that u(x0) = minu < 0 at x0, then

0 < f(x0) = (Lλu)(x0) =− (aij∂i∂ju)(x0)| {z }+
≥0

(∂iaij)∂ju(x0)| {z }
=0

+ (a+ λ)u(x0)| {z }
≤0

≤ 0
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which is a contradiction. Thus we have shown u = L−1λ f ≥ 0 if f ∈
C∞(Ω, (0,∞)). Given f ∈ L2 (Ω) such that f ≥ 0 a.e. on Ω, choose
fn ∈ C∞(Ω) such that fn ≥ 1

n and fn → f in L2(Ω) and fn → f a.e.
on Ω . (For example, take fn = ηδn ∗

¡
f1Ω +

1
n

¢
say.) Then un = L−1λ fn ≥ 0

for all n and un → u = L−1λ f in H2(Ω). By passing to a subsequence if nec-
essary we may assume that un → u a.e. from which it follows that u ≥ 0 a.e.
on Ω.

Theorem 56.8. Keeping L as above, e−tL : L2(Ω) → L2(Ω) is positivity
preserving for all t ≥ 0.

Proof. By the spectral theorem and the fact that
¡
1 + tλ

n

¢−1n → e−tλ

boundedly for and λ ≥ 0,

e−tLf = lim
n→∞

µ
1 +

tL

n

¶−n
f = lim

n→∞

µ
t

n

¶−n ·³n
t
+ L

´−1¸n
f.

Now
¡
n
t + L

¢−1
is positivity preserving operator on L2 (Ω). Where n

t ≥ λ0
and hence so is the n — fold product. Thus if

un :=

µ
t

n

¶−n ·³n
t
+ L

´−1¸n
f

then un ≥ 0 a.e. and un → e−tLf in L2 (Ω) implies e−tLf ≥ 0 a.e.
Theorem 56.9. pt(x, y) ≥ 0 for all x, y ∈ Ω.

Proof. f ∈ L2(Ω) with f ≥ 0 a.e. on Ω, e−tLf ∈ C∞(Ω) and e−tLf ≥ 0
a.e. by above. Thus e−tLf ≥ 0 everywhere. NowZ

Ω

pt(x, y)f(y)dy = (e
−tLf)(x) ≥ 0

for all f ≥ 0. Since pt(x, y) is smooth this implies pt(x, y) ≥ 0 for all y ∈ Ω̄
and since x ∈ Ω̄ was arbitrary we learn pt(x, y) ≥ 0 for all x, y ∈ Ω.
???? BRUCE for f ∈ C∞c (Ω) ⊂ ∩D(Ln) = C∞(L) we have k(e−tLf) −

fkHk → 0 as t ↓ 0 for all k. By Sobolev embedding this implies that (e−tLf)→
f(x) as t ↓ 0 for all x ∈ Ω i.e.

R
Ω

pt(x, y)f(y)dy → f(x).



57

Nash Type Inequalities and Their
Consequences

Corollary 57.1. Suppose d > 2, then there is a constant Cd <∞ such that

kuk2+4/d2 ≤ Cdk∇uk22 kuk4/d1 (57.1)

for all u ∈ C1c
¡
Rd
¢
.

Proof. By Corollary 49.15, kuk2∗ ≤ Ck∇uk2 where 2∗ = 2d
d−2 and by

interpolation
kuk2 ≤ kukθp kuk1−θq

where θ
p +

1−θ
q = 1

2 . Taking p = 2∗ and q = 1 implies θ
2∗ + 1 − θ = 1

2 , i.e.
θ
¡
1
2∗ − 1

¢
= −12 and hence

θ =
1
2

1− 1
2∗
=

2∗

2(2∗ − 1) =
d

(d− 2) ·
1

2d
d−2 − 1

=
d

d− 2
d− 2
d+ 2

=
d

d+ 2

and 1− θ = 2
d+2 . Hence

kuk2 ≤ kuk
d

d+2

2∗ kuk
2

d+2

1 ≤ C
d

d+2 k∇uk d
d=2
2 kuk

2
d+2

1

and therefore
kuk

d+2
d

2 ≤ Ck∇uk2 kuk
2
d
1 .

and squaring this equation then gives the estimate in Eq. (57.1).

Proposition 57.2 (Nash). Corollary 57.1 holds for all d.

Proof. Since the Fourier transform is unitary, for any R > 0 and kûk∞ ≤
kukL1 ,
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kuk22 =
Z
Rd
|û(ξ)|2dξ =

Z
|ξ|≤R

|û|2dξ +
Z

|ξ|>R

|û|2dξ

≤ σ
¡
Sd−1

¢
Rdkuk2L1 +

1

R2

Z
|ξ|>R

|ξ|2|û|2dξ

≤ σ
¡
Sd−1

¢
Rdkuk2L1 +

1

R2
kDuk22 = f(R)

where f(R) = aRd+ b
R2 and a = σ

¡
Sd−1

¢ kuk2L1 and b = kDuk22. To minimize
f, we set f 0(R) = 0 to find daRd−1 − 2bR−3 = 0, i.e. Rd+2 = 2b

da and hence

R =
¡
2b
da

¢ 1
d+2 . With this value of R, we find

f(R) =
1

R2
¡
b+ aRd+2

¢
=

µ
da

2b

¶ 2
d+2

µ
b+

2b

d

¶
=

µ
d+ 2

d

¶
b

µ
da

2b

¶ 2
d+2

= Cd a
2

d+2 b1−
2

d+2 = Cd a
2

d+2 b
d

d+2

which gives the estimate

kuk22 ≤ CdkDuk
2d
d+2

2 kuk
4

d+2

1

which is equivalent to

kuk2+4/d2 = kuk2(
d+2
d )

2 ≤ CdkDuk22 kuk4/d1 .

Proposition 57.3. Suppose A(x) = {aij(x)}di,j=1 such that there exists � > 0
and M < ∞ such that �I ≤ A(x) ≤ MI for all x ∈ Rd. Define D(E) =
W 1,2(Rd) and

E(u, v) =
X
ij

Z
Rd

aijDiuDiv dx.

Then E is a closed symmetric quadratic form. Moreover C∞c (Rd) is a core
for E.
Proof. Clearly kukW 1,2 ≤ 1

� (kuk2L2(Ω) + E(u, u)) and

E(u, u) ≤MkDuk2 ≤MkukW 1,2 .

and hence
k · k22 + E(·, ·) ³ k · kW1,2

so that
³
D(E),pk · k22 + E(·, ·)´ is complete.
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Theorem 57.4. Let −L denote the positive self-adjoint operator on L2(Rd)
such that E(u, v) = (√−L u,

√−L v)L2(Rd) and define Tt := etL : L2 → L2.
(Notice that kTtfk2 ≤ kfk2 for all f ∈ L2 and t > 0.) Then

1. Ttf ≥ 0 a. e. if f ≥ 0 a.e.
2. Ttf ∈ L1 ∩ L∞ for all f ∈ L1 ∩ L∞
3. 0 ≤ Ttf ≤ 1 if 0 ≤ f ≤ 1 a.e.
4. kTtfkLp ≤ kfkLp for all f ∈ L1 ∩ L∞.
Proof. (Fake proof but the spirit is correct.) Let u(t, x) = Ttf(x) so that

ut = Lu with u(0, x) = f(x)

where Lf =
P

∂i(aij∂jf)(x) — a second order elliptic operator. Therefore by
the “maximum principle,”

−kfk∞ ≥ inf f(x) ≤ u(t, x) ≤ sup f(x) ≤ kfk∞
and hence kfk∞ ≥ kTtfk∞. This implies items 1. and 3. of the theorem.
For g, f ∈ L1 ∩ L∞,

|(Ttf, g)| = |(f, Ttg)| ≤ kfk1kTtgk∞ ≤ kfk1kgk∞.

Taking sup over g ∈ L1 ∩ L∞ such that kgk∞ = 1 implies kTtfkL1 ≤ kfk1
and we have verified that

kTtfkp ≤ kfkp for p ∈ {1, 2,∞} .

Hence by the Riesz Thorin interpolation theorem, kTtfkp ≤ kfkp for all p ∈
[1,∞).
Theorem 57.5 (Beurling - Deny). Items 1. — 4. of Theorem 57.4 hold if
for all u ∈W 1,2, |u| ∈W 1,2 and 0 ∨ (u ∧ 1) ∈W 1,2 and

E(|u|) ≤ E(u) and E(0 ∨ (u ∧ 1)) ≤ E(u). (57.2)

Proposition 57.6. Suppose u ∈W 1,p(Ω) then 1{u=0} Du = 0 a.e.

Proof. Let φ ∈ C∞c (Ω) such that φ(0) = 1. For � small set φ�(x) = φ(x/�)
and

ψ�(x) =

Z x

−∞
φ�(y)dy =

Z x

−∞
φ
³y
�

´
dy

= �

Z x/�

−∞
φ(u)du = �ψ1(x/�).

Then
D [ψ�(u)] = ψ0�(u)Du = φ�(u)Du
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and hence for all f ∈ C∞c (Ω),

hφ�(u)Du, fi = hD [ψ�(u)] , fi = hψ�(u),−Dfi = 0(�)→ 0.

Combining this with the observation that

φ�(u)Du
Lp−→ 1{u=0}Du as � ↓ 0

implies Z
Ω

1{u=0}Du · f dm = 0 for all f ∈ C∞c (Ω)

which proves 1{u=0}Du = 0 a.e.

Exercise 57.7. Let u ∈W 1,p. Show

1. If φ ∈ C1 (R) , φ(0) = 0 and |φ0| ≤ M < ∞, then φ(u) ∈ W 1,p and
Dφ(u) = φ0(u)Du a.e.

2. |u| ∈W 1,p and D|u| = sgn(u)Du.
3. Eq. (57.2) holds.

Solution 57.8. Let un ∈ C∞
¡
Rd
¢ ∩ W 1,p such that un → u in W 1,p. By

passing to a subsequence if necessary we may further assuem that un(x) →
u(x) for a.e. x ∈ Rd. Since |φ(u)| ≤M |u|

|φ(u)− φ(un)| ≤M |u− un|
it follows that |φ(u)| , |φ(un)| ∈ Lp and φ(un) → φ(u) in Lp. Since φ0(un) is
bounded, φ0(un)→ φ0(u) a.e. and ∂iun → ∂iu in Lp, it follows that

k∂iφ(un)− ∂iφ(u)kp
= kφ0(un)∂iun − φ0(u)∂iukp
≤ kφ0(un) [∂iun − ∂iu]kp + k[φ0(u)− φ0(un)] ∂iukp
≤M k∂iun − ∂iukp + k[φ0(u)− φ0(un)] ∂iukp → 0

where the second term is handled by the dominated convergence theorem.
Therefore φ(u) ∈W 1,p and ∂iφ(u) = φ0(u)∂iu.
Let φ�(x) :=

√
x2 + �2, then φ0�(x) =

x√
x2+�2

, |φ0�(x)| ≤ 1 for all x and

lim
�↓0

φ0�(x) =
½

0 if x = 0
sgn(x) if x 6= 0.

From part 1., φ�(u) ∈ W 1,p and ∂iφ�(u) = φ0�(u)∂iu. Since φ�(u)→ |u| in Lp

and
∂iφ�(u) = φ0�(u)∂iu→ 1u6=0sgn(u)∂iu = sgn(u)∂iu a.e.

where the last equality is a consequence of Proposition 57.6. Hence we see
that |u| ∈W 1,p and D|u| = sgn(u)Du.
Remark: (BRUCE) I think using the absolute continuity of u along lines

could be used to simplify and generalize the above exercise to the case where
φ ∈ AC(R) with |φ0(x)| ≤M <∞ for m — a.e. x ∈ R.
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Remark 57.9. Tt extends by continuity to Lp for all 1 ≤ p ≤ ∞, denote the
extension by T p

t and then T tf = T p
t f if f ∈ Lp for some p. In this way we

view T t as a linear operator on
S

1≤p≤∞
Lp.

Theorem 57.10. There is a constant C <∞ such that

kTtfkL∞ ≤ C

td/4
kfkL2 (57.3)

for all f ∈ L2.

Proof. Ignoring certain technical details. Set u(t) = Ttf and v(t) :=
ku(t)k22 and recall that u solves

u̇ = Lu with u(0) = f.

Then

−v̇(t) = − d

dt
ku(t)k22 = −2(u, u̇) = −2(u,Lu)

= 2E(u, u) ≥ 2
�
kDuk2L2 .

Combining this with the Nash inequality from Eq. (57.1),

kuk2+ d
4

2 ≤ CkDuk2L2kuk4/d1 ,

implies

−v̇(t) ≥ 2C
�

ku(t)k2+4/d2

ku(t)k4/d1

≥ 2C
�

ku(t)k2+4/d2

kfk4/d1

=
2C

�

v(t)1+2/d

kfk4/d1

. (57.4)

Since
R
v̇v(−1−2/d)dt = −d

2v
−2/d, it Eq. (57.4) is equivalent to

d

dt

µ
d

2
v−2/d

¶
≥ 2C

�kfk4/d1

and integrating this inequality gives

kTtfk−4/d2 = v−2/d(t) ≥ v−2/d(t)− v−2/d(0) ≥ 4Ct

d�kfk4/d1

.

Some algebra then implies

kTtfk4/d2 ≤ d�kfk4/d1

4Ct

and hence

kTtfk2 ≤ C

td/4
kfk1

and by duality, Lemma 57.12 below, this implies Eq. (57.3).
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Remark 57.11. From Eq. (57.3),

ke2tLfk2L∞ = ketLetLfk2L∞ ≤
C

td/2
ketLfk2L2 =

C

td/2
|(e2tLf, f)|

≤ C2

td/2
ke2tLfkL∞kfkL1

and hence Eq. (57.3) implies the inequality,

ke2tLfkL∞ ≤ C2

td/2
kfkL1 . (57.5)

Lemma 57.12 (Duality Lemma). Let T be a linear operator on ∪p∈[1,∞]Lp
such that T (L1 ∩ L∞) = (L1 ∩ L∞) and T : L2 → L2 is self adjoint. If

kTfkp ≤ Ckfkq for all f ∈ L1 ∩ L∞

then
kTfkq ≤ Ckfkp0 for all f ∈ L1 ∩ L∞

where 1
q0 +

1
q = 1 and

1
p +

1
p0 = 1.

Proof.

kTfkq0 = sup
kgkq=1

|(Tf, g)| = sup
kgkq=1

|(f, Tg)| ≤ sup
kgkq=1

kfkp0kTgkp

≤ Ckfkp0 sup
kgkq=1

kgkq = Ckfkp0 .

Proposition 57.13 (Converse of Theorem 57.10. ). If°°etLf°°∞ ≤ Ct−d/4 kfk2 for all f ∈ L2 (57.6)

then

kfk2+4/d2 ≤ 4C
d
E(f, f)kfk1.

Proof. By the duality, Lemma 57.12, (57.6) implies°°etLf°°
2
≤ Ct−d/4 kfk1 for all f ∈ L2

and therefore

C2t−d/2kfk21 ≥ ketLfk22 = (e2tLf, f) = (f, f) +
Z t

0

2(Le2τLf, f)dτ.

Since xe2τx ≥ x for x ≤ 0, it follows from the spectral theorem that Le2τL ≥ L
for L ≤ 0. Using this in the above equation gives the estimate
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C2t−d/2kfk21 ≥ kfk22 + 2
Z t

0

(Lf, f)dτ = kfk22 + 2t(Lf, f)
≥ kfk22 − 2tE(f, f).

Optimizing this inequality over t > 0 by taking t = E(f, f)−2/d+2kfk4/d+21

implies

kfk22 ≤ C2
³
E(f, f)−2/d+2kfk4/d+21

´−d/2
kfk21 + 2E(f, f)−2/d+2kfk4/d+21 E(f, f)

=

kf ||2+4/d2 ≤ CE(f, f)kfk4/d1 .





58

T. Coulhon Lecture Notes

Notes from coulhon.tex.

Theorem 58.1. Let (X,µ) be a measure space and f be a positive measurable
function. Then for 1 ≤ p <∞,

kfkpp = p

Z ∞
0

µ (f > t) tp−1dt

Proof. We have

kfkpp =
Z
X

fpdµ =

Z
X

ÃZ fp

0

ptp−1dt

!
dµ =

Z
X×R+

1f>tpt
p−1dµdt

=

Z ∞
0

µ (f > t) ptp−1dt

In these notes we are going to work in either one of the two following
settings.

58.1 Weighted Riemannian Manifolds

Here we assume that M is a non-compact, connected Riemannian manifold
with Riemannian metric g which is also equipped with a smooth measure µ.
We let |∇f |2 = g(∇f,∇f) and

E(f, f) :=
Z
M

|∇f |2 dµ = (∆µf, f) on L2(µ).

Here (f, g) :=
R
M
fḡdµ. We have the following general important facts. The

heat kernel is the smooth integral kernel for the heat operator, e−t∆µ .
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Definition 58.2. Given a smooth hypersurface A ⊂ M let |A| denote the
surface measure, i.e.

|A| =
Z
A

|µ(N, —)|

where N is a normal vector to A.

Theorem 58.3 (k∇1Ωk1 = |∂Ω|s). Let Ω ⊂⊂ M be a precompact domain
with smooth boundary and let f�(x) = h�(dΩc(x)) where h�(x) =

¡
x
�

¢∧1. Here
dΩc(x) denotes the Riemannian distance of x to Ωc. Then

lim
�↓0
k∇f�k1 = |∂Ω|s

which we write heuristically as

k∇1Ωk1 = |∂Ω|s .

Proof. We have

∇f�(x) = h0�(dΩc(x))∇dΩc(x) for a.e. x

and hence
|∇f�(x)| = 1

�
1dΩc(x)<� for a.e. x

and therefore,

lim
�↓0
k∇f�k1 = lim

�↓0
1

�
µ (dΩc < �) = |∂Ω| .

Theorem 58.4 (Coarea Formula). Let (M, g) be a Riemannian manifold,
f : M → [0,∞) be a reasonable function and µ be a smooth volume form on
M. Then

k∇fkL1(µ) =
Z ∞
0

|∂ {f > t}| dt.

Proof. See [5, 1, 2] for a complete Rigorous proof. We will only give the
idea here. Locally choose coordinates x = (x1, . . . , xn) onM such that x1 = f.
This is possible in neighborhood of points where df is non-zero. Then ∂

∂xi is
tangential to the level surface {f = t} for i = 2, . . . , n and therefore

µ(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
) = µ(

µ
∂

∂x1
,
∇f
|∇f |

¶ ∇f
|∇f | ,

∂

∂x2
, . . . ,

∂

∂xn
)

=

µ
∂

∂x1
,
∇f
|∇f |

¶
µ(N,

∂

∂x2
, . . . ,

∂

∂xn
).

Now
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∂

∂x1
,
∇f
|∇f |

¶
= |∇f |−1

µ
∂

∂x1
,∇f

¶
= |∇f |−1 ∂

∂x1
f = |∇f |−1 ∂

∂x1
x1 = |∇f |−1

and therefore,¯̄̄̄
µ(N,

∂

∂x2
, . . . ,

∂

∂xn
)

¯̄̄̄
= |∇f |

¯̄̄̄
µ(

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
)

¯̄̄̄
.

Integrating this equation with respect to dx1 . . . dxn then givesZ ¯̄̄̄
µ(N,

∂

∂x2
, . . . ,

∂

∂xn
)

¯̄̄̄
dx1 . . . dxn = k∇fkL1(µ)

on one hand, on the otherZ ¯̄̄̄
µ(N,

∂

∂x2
, . . . ,

∂

∂xn
)

¯̄̄̄
dx1 . . . dxn

=

Z
R

·Z
Rn−1

¯̄̄̄
µ(N,

∂

∂x2
, . . . ,

∂

∂xn
)

¯̄̄̄
dx2 . . . dxn

¸
dx1

=

Z
R

"Z
{f=x1}

|µ(N, —)|
#
dx1 =

Z ∞
0

|∂ {f > t}| dt.

58.2 Graph Setting

Let Γ = (V,E) be a non-oriented graph with vertices V and edges E. We
assume the graph is connected and locally finite, in fact I think he assumes
the graph is finitely ramified, i.e. there is a bound K < ∞ on the number of
edges that are attached to any vertex. Let d denote the graph distance and

µ := {µyx = µxy ≥ 0 : x, y ∈ V 3 xy ∈ E}

be a measure on E. Extend µ to all pairs of points xy with x, y ∈ V by setting
µxy = 0 if xy /∈ E. Using this notation we let
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µx :=
X
y∈V

µxy =
X

y∈V :xy∈E
µxy

p(x, y) :=
µxy
µx

(the Markov Kernel),

µ(Ω) :=
X
x∈Ω

µx when Ω ⊂⊂ V,

∂Ω := {xy ∈ E : x ∈ Ω and y ∈ ∂Ω} ,
|∂Ω|s :=

X
x∈Ω,y/∈Ω

µxy and

|∇f(x)|p :=
X
y

|f(x)− f(y)|p p(x, y).

In this setting Pf(x) :=
P

y p(x, y)f(y) corresponds to e
−t∆µ and P is a self-

adjoint operator on L2(V, µ). Also recall that ∆µ corresponds to 1− P. As in
the manifold case we still have

k∇1Ωk1 = 2 |∂Ω|s and (58.1)Z ∞
0

|∂ {f > t}| dt = 1

2
k∇fkL1(µ) (58.2)

as we will now verify. Using the definitions,

k∇1Ωk1 =
X
x

µx
X
y

|1Ω(x)− 1Ω(y)| p(x, y) =
X
x,y

|1Ω(x)− 1Ω(y)|µxy

=
X

x∈Ω,y/∈Ω
µxy +

X
x/∈Ω,y∈Ω

µxy = 2 |∂Ω|s

verifying Eq. (58.1). For the graph co-area formula (58.2):

k∇fkL1(µ) =
X
x

µx
X
y

|f(x)− f(y)| p(x, y) =
X
x,y

|f(x)− f(y)|µxy.

while

|∂ {f > t}| =
X

x∈{f>t},y/∈{f>t}
µxy =

X
f(x)>t and f(y)≤t

µxy =
X

1f(y)≤t<f(x)µxy

so thatZ ∞
0

|∂ {f > t}| dt =
Z ∞
0

X
1f(y)≤t<f(x)µxydt =

XZ ∞
0

1f(y)≤t<f(x)µxydt

=
X

1f(y)<f(x) (f(x)− f(y))µxy

=
1

2

X
|f(x)− f(y)|µxy = 1

2
k∇fkL1(µ) .
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58.3 Basic Inequalities

We begin with a couple of very simple Sobolev inequalities. Suppose that
f ∈ C∞c (R), then

f(x) =
1

2

µZ x

−∞
f 0(t)dt−

Z ∞
x

f 0(t)dt
¶

from which it follows that

|f(x)| ≤ 1
2

Z
R
|f 0(t)| dt.

By the Mean value inequality we have the oscillation inequality,

|f(y)− f(x)| ≤ |y − x| kf 0k∞ .

The first inequality is dimension dependent and probes the global structure
of R while the second inequality works in arbitrary generality and hence does
not probe the global structure of R in any way. Let us now list a number of
inequalities which are true in Rn for all f ∈ C∞c (Rn).

kfk 2n
n−2
≤ C k∇fk2 (Sobolev Inequality) (58.3)

kfk1+2/n2 ≤ C kfk2/n1 k∇fk2 (Nash Inequality) (58.4)

kfk(1+2/n)2(1+2/n) ≤ C kfk2/n2 · k∇fk2 (Moser Inequality) (58.5)

|f(x)− f(y)| ≤ Cp |x− y|1−n/p k∇fkp for p > n (oscillation inequality).
(58.6)

The last inequality is valid for all f ∈ C∞(Rn) as well.
Let W (f) = k∇fkp and for a positive f let

fk := (f − 2k)+ ∧ 2k =
 2k if f ≥ 2k+1
f − 2k if 2k ≤ f ≤ 2k+1
0 if f ≤ 2k.

Then
∇fk = ∇f12k≤f≤2k+1

and therefore

k∇fkpp =
Z
M

|∇f |p dµ =
Z
M

X
k

|∇f |p 12k≤f≤2k+1dµ =
X
k

Z
M

|∇fk|p dµ.

This shows that

k∇fkp =
ÃX

k

k∇fkkp
!1/p

.

This is a key truncation property for positive Lipschitz functions f. As an
application we have the following theorem.



1130 58 T. Coulhon Lecture Notes

Theorem 58.5. The Nash and Sobolev inequalities are equivalent.

Proof. Sobolev =⇒ Nash. Recall the Hölder interpolation inequality,

kfkpθ ≤ kfk
1−θ
p0

kfkθp1
where

1

pθ
=
1− θ

p0
+

θ

p1
.

Taking pθ = 2, p0 = 1 and p1 =
2n
n−2 we solve for θ to find

1

2
=
1− θ

1
+ θ

n− 2
2n

= 1 + θ

µ
n− 2
2n

− 1
¶
= 1− θ

µ
n+ 2

2n

¶
and hence

θ =
n

n+ 2
and 1− θ =

2

n+ 2

and therefore,

kfk2 ≤ kfk
2

n+2

1 kfk
n

n+2
2n
n−2

.

This inequality along with the Sobolev inequality (58.3) shows,

kfk1+2/n2 = kfk
n+2
n

2 ≤ kfk 2
n
1 kfk 2n

n−2
≤ C kfk 2

n
1 k∇fk2

which is the Nash inequality (58.4) with the same constant.
Nash =⇒ Sobolev. Conversely suppose the Nash inequality (58.4) is

valid. Applying Nash to fk we findµZ
f2k

¶1+2/n
=
³
kfkk1+2/n2

´2
≤ C2 kfkk4/n1 k∇fkk22 = C2 kfkk4/n1

Z
Bk

|∇f |2 dµ

where Bk :=
©
2k ≤ f < 2k+1

ª
. Combining this inequality with the following

two elementary inequalities;Z
f2k ≥

Z
{f≥2k+1}

f2k = 2
2kµ

¡©
f ≥ 2k+1ª¢ and

kfkk1 ≤ 2kµ
¡
f ≥ 2k¢

gives ¡
22kµ

¡©
f ≥ 2k+1ª¢¢1+2/n ≤ C2

¡
2kµ

¡
f ≥ 2k¢¢4/n Z

Bk

|∇f |2 dµ.

Let q = 2n
n−2 be the exponent in the Sobolev inequality and ν = n

n+2 < 1,

ak := 2
qkµ

¡
f ≥ 2k¢ and bk :=

R
Bk
|∇f |2 dµ. Then the above inequality says,
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ak+1 ≤ C 0bνka
2(1−ν)
k

and summing this equation of k ∈ Z then gives

X
k

ak =
X
k

ak+1 ≤ C0
X
k

bνka
2(1−ν)
k ≤ C0

ÃX
k

bk

!ν ÃX
k

a2k

!(1−ν)
wherein we have used Holder’s inequalities with the conjugate indices 1/ν and
1/(1− ν) in the last inequality. Since we are using counting measure, we also
have

kak22 ≤
X
k

kak1 ak ≤ kak21

which combined with the previous inequality gives

X
k

ak ≤ C0
ÃX

k

bk

!ν ÃX
k

ak

!2(1−ν)

= C0
µZ

|∇f |2 dµ
¶ν ÃX

k

ak

!2(1−ν)
which then shows ÃX

k

ak

!2ν−1
≤ C0

µZ
|∇f |2 dµ

¶ν
and hence X

k

ak ≤ C 0
µZ

|∇f |2 dµ
¶ ν

2ν−1
.

We also have

kfkqq =
X
k

Z
2k<f≤2k+1

fqdµ ≤
X
k

2q(k+1)µ
¡
f ≥ 2k¢ = 2qX

k

ak

and it then follows that

kfkqq ≤ 2qC 0
µZ

|∇f |2 dµ
¶ ν

2ν−1

which proves the Sobolev inequality (58.3).

58.4 A Scale of Inequalities

In this section let φ : R+ → R+ be an increasing function, for example φ(t) =
ct1/n and φ(t) = c log(t) for t ≥ 2.
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Definition 58.6 (Spφ). Given p ∈ [1,∞] and φ as above, we say Spφ holds
provided

kfkp ≤ φ (|Ω|) k∇fkp for all Ω 3 |Ω| <∞ and f ∈ Lipo(Ω) (58.7)

where Lipo(Ω) denotes those functions f on M or V such that f is Lipschitz
and supp(f) ⊂ Ω̄ and f = 0 on ∂Ω.

Proposition 58.7. Suppose 1 ≤ p < q <∞ and Spφ holds then Sqq
pφ
holds.

Proof. Apply Spφ to the function fq/p to find

kfkq/pq =
°°°fq/p°°°

p
≤ φ (|Ω|)

°°°∇fq/p°°°
p
= φ (|Ω|) q

p

°°°f (q/p−1)∇f°°°
p

where we should check that the approximate chain rule holds in the graph
case here. Now apply Hölder’s inequality with

1

p
=
1

q
+

1

pq/(q − p)

to the last expression to find

°°°f (q/p−1)∇f°°°
p
≤ k∇fkq

°°°f (q/p−1)°°°
pq/(q−p)

= k∇fkq
µZ ³

f (q−p)/p
´pq/(q−p)¶ q−p

pq

= k∇fkq
µZ

fq
¶ q−p

pq

= k∇fkq kfk
q−p
p

q .

This gives

kfkq/pq ≤ φ (|Ω|) q
p
k∇fkq kfk

q−p
p

q

that is to say
kfkq ≤ φ (|Ω|) q

p
k∇fkq .

We now give some equivalent inequalities to Spφ in the following theorem.

Theorem 58.8. We have

S∞φ ⇐⇒ φ(|B(x, r)|) ≥ r ⇐⇒ |B(x, r)| ≥ φ−1(r)

S1φ ⇐⇒ |Ω| ≤ φ (|Ω|) |∂Ω| (i.e. |∂Ω||Ω| ≥
1

φ (|Ω|) ) for all reasonable Ω

S2φ ⇐⇒ to the φ — Nash inequality

(up to constants) where the φ — Nash inequality is the inequality,
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kfk2 ≤ φ

Ã
kfk21
kfk22

!
k∇fk2 for all f ∈ C∞c (M). (φ — Nash) (58.8)

The φ — Nash inequality is clearly equivalent to

θ
³
kfk22

´
:=

kfk22
φ2
³

1
kfk22

´ ≤ k∇fk22 for all f ∈ C∞c (M) 3 kfk1 = 1

where θ(x) := x/φ2(1/x).

Proof.
³
S∞φ

´
Let f(x) := (r − d(x0, x))+ = hr(d(x0, x)) where hr(t) =

max ((r − t) , 0) . Then

43210

3.5

3

2.5

2

1.5

1

0.5

0

x

y

x

y

Fig. 58.1. Plot of hr when r = 3.

|∇f(x)| = |h0r(d(x0, x))| |∇xd(x0, x)| = 1d(x0,x)≤r

and kfk∞ = r. So putting this function into
³
S∞φ

´
then implies

r = kfk∞ ≤ φ (|B(x0, r)|) k∇fk∞ = φ (|B(x0, r)|) .
For the converse, if supp(f) ⊂ Ω, then by the mean value theorem,

kfk∞ ≤ in(Ω) k∇fk∞ , (58.9)

where in(Ω) := (in radius of Ω) is the radius of the largest ball contained in
Ω. To prove this last equation, let x0 ∈ Ω and y ∈ ∂Ω, then by the mean
value theorem and the definition of in(Ω),

|f(x0)| = |f(y)− f(x0)| ≤ d(x0, y) k∇fk∞ ≤ in(Ω) k∇fk∞ .
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This proves Eq. (58.9). Now suppose φ(|B(x, r)|) ≥ r holds for all x and r,
and let B(x, r) ⊂ Ω. Then since φ is increasing,

r ≤ φ (|B(x, r)|) ≤ φ(|Ω|)

and taking sups over all B(x, r) ⊂ Ω we learn that in(Ω) ≤ φ(|Ω|). Using this
inequality in the estimate in Eq. (58.9) shows

kfk∞ ≤ φ(|Ω|) k∇fk∞ ,

as desired.³
S1φ

´
Applying

³
S1φ

´
to the function 1Ω shows

|Ω| = k1Ωk1 ≤ φ (|Ω|) k∇1Ωk1 = φ (|Ω|) |∂Ω|1
as desired. For the converse, we have by the co-area formula, the above in-
equality and the fact that φ is increasing for any f with supp(f) ⊂ Ω and
positive that

k∇fkL1(µ) =
Z ∞
0

|∂ {f > t}| dt ≥
Z ∞
0

|f > t|
φ (|f > t|)dt

≥ 1

φ (|Ω|)
Z ∞
0

µ (f > t) dt =
1

φ (|Ω|) kfk1 .³
S2φ

´
Clearly

³
S2φ

´
, i.e.

kfk2 ≤ φ (|Ω|) k∇fk2 for all supp(f) ⊂ Ω

is equivalent to

λ1(Ω) = sup
f :supp(f)⊂Ω

(Af, f)

kfk22
= sup

f :supp(f)⊂Ω

k∇fk22
kfk22

≥ 1

φ2 (|Ω|) .

Now suppose that φ — Nash of Eq. (58.8) holds. Since

kfk21 = (f, 1Ω)2 ≤ kfk22 k1Ωk22 = |Ω| kfk22

so that |Ω| ≥ kfk21
kfk22

. Since φ is increasing φ (|Ω|) ≥ φ
³kfk21
kfk22

´
, so that φ — Nash

implies

kfk2 ≤ φ

Ã
kfk21
kfk22

!
k∇fk2 ≤ φ (|Ω|) k∇fk2

which is
³
S2φ

´
.

Conversely suppose (S2φ) holds and let f ∈ C∞c (M, [0,∞)) and t > 0 (t to
be chosen later). Then using f < 2(f − t) on f > 2t we find
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f2 =

Z
f>2t

f2 +

Z
f≤2t

f2 ≤ 4
Z
f>2t

(f − t)2 + 2t

Z
f≤2t

f

≤ 4
Z
(f − t)2+ + 2t kfk1

Now applying
³
S2φ

´
to (f − t)+ givesZ

(f − t)2+ ≤ φ (|f > t|) k∇(f − t)+k22

≤
Z
(f − t)2+ ≤ φ (|f > t|) k∇fk22 ≤ φ

¡
t−1 kfk1

¢ k∇fk22
and combining this with the last inequality impliesZ

f2 ≤ 4φ ¡t−1 kfk1¢ k∇fk22 + 2t kfk1 .
Letting � > 0 and taking t = � kfk22 / kfk1 in this equation shows

kfk22 ≤ 4φ
Ã
kfk21
� kfk22

!
k∇fk22 + 2� kfk22

or equivalently that

kfk22 ≤
4

1− 2�φ
Ã
kfk21
� kfk22

!
k∇fk22 .

Taking � = 1/4, for example, in this equation shows

kfk22 ≤ 8φ
Ã
4
kfk21
kfk22

!
k∇fk22

which is φ — Nash up to constants.

58.5 Semi-Group Theory

Definition 58.9. A one parameter semi group Tt on a Banach space X is
equicontinuos if kTtk ≤M for all t ≥ 0.
Theorem 58.10. Let (X,µ) measure space, Tt a semigroup of operators on
Lp(X,µ) for 1 ≤ p ≤ ∞ and A := − d

dt |0Ttf so that Tt = e−tA. Assume that
kTtk1→1 ≤ M <∞ and kTtk∞→∞ ≤ M <∞ for all t. Also that there exists
θ : R+ → R+ such that

R∞
�

dx
θ(x) <∞ and

R �
0

dx
θ(x) =∞ for all � ∈ (0,∞) such

that



1136 58 T. Coulhon Lecture Notes

θ
³
kfk22

´
≤ Re (Af, f) for all f ∈ D(A) 3 kfk1 ≤M. (58.10)

Then Tt is ultracontractive, i.e. kTtk1→∞ <∞ for all t > 0, and moreover we
have

kTtk1→∞ ≤ m(t) for all t > 0

where m satisfies

t =

Z ∞
m(t)

dx

θ(x)
.

Remark 58.11. This type of result appears implicitly in Nash 1958. Also see
Carlen, Kusuoka and Stroock 1986 and Tmisoki in 1990.

Proof. Let f ∈ L1 with kfk1 = 1 and so by assumption kTtfk1 ≤ M for
all t ≥ 0. Letting I(t) := kTtfk22 we have using Eq. (58.10) to find

I 0(t) = −2Re (ATtf, Ttf) ≤ −2θ
³
kTtfk22

´
= −2θ(I(t)).

Thus − I0(t)
θ(I(t)) ≥ 2 and upon integration givesZ ∞

I(T )

dx

θ(x))
≥
Z I(0)

I(T )

dx

θ(x))
= −

Z T

0

I 0(t)
θ(I(t))

dt

≥
Z T

0

2dt = 2T =

Z ∞
m(2T )

dx

θ(x)

and therefore we have I(T ) ≤ m(2T ) for all T. From this we conclude that

kTtfk22 = I(t) ≤ m(2t) kfk21
showing kTtk21→2 ≤ m(2t).
We will now apply this same result to T ∗t using the following comments:

1. A∗ = − d
dt |0T ∗t and Re (A∗f, f) = Re (f,Af) = Re (Af, f) we have

θ
³
kfk22

´
≤ Re (Af, f) = Re (A∗f, f) for all f ∈ D(A∗) 3 kfk1 ≤M.

(Actually I am little worried about domain issues here but I do not pause
to worry about them now.)

2. We also have

kT ∗t k1→1 = sup
kfk1=1

kT ∗t fk1 = sup
kfk1=1

sup
kgk∞=1

|(T ∗t f, g)|

= sup
kgk∞=1

sup
kfk1=1

|(f, Ttg)| = sup
kgk∞=1

kTtgk∞ ≤M.
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Using these comments we have kT ∗t k21→2 ≤ m(2t) and hence by duality
again,

kTtk2→∞ = sup
kfk2=1

kTtfk∞ = sup
kfk2=1

sup
kgk1=1

|(Ttf, g)|

= sup
kgk1=1

sup
kfk2=1

|(f, T ∗t g)|

= sup
kgk1=1

kT ∗t gk2 = kT ∗t k1→2 ≤
p
m(2t).

Hence

kTtk1→∞ =
°°Tt/2Tt.2°°1→∞ ≤ °°Tt/2°°2→∞ kTtk1→2

≤
p
m(t)

p
m(t) = m(t)

as desired.





Part XVII

Heat Kernels on Vector Bundles
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These notes are on the construction and the asymptotic expansion for heat
kernels on vector bundles over compact manifolds using Levi’s method. The
construction described here follows closely the presentation given in Berline,
Getzler, and Vergne, “Heat Kernels and Dirac Operators.”





59

Heat Equation on Rn

Let ∆ =
Pn

i=1 ∂
2/∂x2i be the usual Laplacian on Rn and consider the Heat

Equation µ
∂t − 1

2
∆

¶
u = 0 with u(0, x) = f(x), (59.1)

where f is a given function on Rn. By Fourier transforming the equation in
the x — variables one finds that (59.1) implies thatµ

∂t +
1

2
|ξ|2
¶
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ). (59.2)

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then

shows that

u(t, x) = F−1
³
e−t|ξ|

2/2f̂(ξ)
´
(x) =

³
F−1

³
e−t|ξ|

2/2
´
∗ f
´
(x).

Now by well known Gaussian integral formulas one shows that

F−1
³
e−t|ξ|

2/2
´
(x) = (2π)

−n
Z
Rn

e−t|ξ|
2/2eiξ·xdξ = (2πt)−n/2 e−|x|

2/2t.

Let us summarize the above computations in the following Theorem.

Theorem 59.1. Let

p(t, x, y) := (2πt)−n/2 e−|x−y|
2/2t (59.3)

be the heat kernel on Rn. Thenµ
∂t − 1

2
∆x

¶
p(t, x, y) = 0 and lim

t↓0
p(t, x, y) = δx(y), (59.4)

where δx is the δ — function at x in Rn. More precisely, if f is a contin-
uous bounded (can be relaxed considerably) function on Rn, then u(t, x) =R
Rn p(t, x, y)f(y)dy is a solution to Eq. (59.1) where u(0, x) := limt↓0 u(t, x).
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Proof. Direct computations show that
¡
∂t − 1

2∆x

¢
p(t, x, y) = 0, see

Proposition 63.1 and Remark 63.2 below. The main issue is to prove that
limt↓0 p(t, x, y) = δx(y) or equivalently that limt↓0

R
Rn p(t, x, y)f(y)dy = f(x).

To show this let pt(v) := (2πt)
−n/2 e−|v|

2/2t and notice¯̄̄̄Z
Rn

p(t, x, y)f(y)dy − f(x)

¯̄̄̄
≤
Z
Rn

p(t, x, y) |f(y)− f(x)| dy

=

Z
Rn

pt(v) |f(x+ v)− f(x)| dy. (59.5)

Now for a bounded function g on Rn we have thatZ
Rn
|g(v)|pt(v)dv =

Z
B(δ)

|g(v)|pt(v)dv +
Z
B(δ)c

|g(v)|pt(v)dv

≤ sup
v∈B(δ)

|g(v)|+ kgk0
Z
B(δ)c

pt(v)dv

≤ sup
v∈B(δ)

|g(v)|+ C kgk0 e−δ
2/4t, (59.6)

where kgk0 denotes the supremum norm of g. Applying this estimate to Eq.
(59.5) implies,¯̄̄̄Z

Rn
p(t, x, y)f(y)dy − f(x)

¯̄̄̄
≤ sup

v∈B(δ)
|f(x+ v)− f(x)|+ C kfk0 e−δ

2/4t.

Therefore if K is a compact subset of Rn, then

limt↓0 sup
x∈K

¯̄̄̄Z
Rn

p(t, x, y)f(y)dy − f(x)

¯̄̄̄
≤ sup

v∈B(δ)
sup
x∈K

|f(x+ v)− f(x)|→ 0 as δ → 0

by uniform continuity. This shows that limt↓0 u(t, x) = f(x) uniformly on
compact subsets of Rn.

Notation 59.2 We will write
¡
et∆/2f

¢
(x) for

R
Rn p(t, x, y)f(y)dy.
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An Abstract Version of E. Levi’s Argument

The idea for the construction of the heat kernel for more general heat equations
will be based on a method due to E. Levi. Let us illustrate the method with
the following finite dimensional analogue. Suppose that L is a linear operator
on a finite dimensional vector space V and let Pt := etL, i.e. Pt is the unique
solution to the ordinary differential equation

d

dt
Pt = LPt with P0 = I. (60.1)

In this finite dimensional setting it is very easy to solve Eq. (60.1), namely
one may take

Pt =
∞X
k=0

tk

k!
Lk.

Such a series solution will in general not converge when L is an unbounded
operator on an infinite dimensional space as are differential operators. On the
other hand for the heat equation we can find quite good parametrix (approx-
imate solution) to Eq. (60.1). Let us model this by a map t ∈ R+ → Kt ∈
End(V ) such that K0 = I and

d

dt
Kt − LKt = −Rt, (60.2)

where kRtk = O(tα) for some α > −1. Using du Hamell’s principle (or varia-
tion of parameters if you like) we see that Kt is given by

Kt = Pt −
Z t

0

Pt−sRsds = Pt − (QP )t , (60.3)

where

(Qf)t :=

Z t

0

ft−sRsds =

Z t

0

fsRt−sds. (60.4)

We may rewrite Eq. (60.3) as K = (I −Q)P and hence we should have that
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P = (I −Q)
−1

K =
∞X

m=0

QmK. (60.5)

Now a simple change of variables shows that (Qf)t−s =
R t
s
ft−rRr−sdr and

by induction one shows that

(Qmf)t =

Z
t∆m

ft−smRsm−sm−1 . . . Rs2−s1Rs1ds (60.6)

where

t∆m := {s = (s1, s2, . . . , sm) : 0 ≤ s1 ≤ s2 · · · ≤ sm ≤ t} (60.7)

and ds = ds1ds2 . . . dsm. Alternatively one also shows that

(QmK)t =

Z
t∆m

Ks1Rs2−s1Rs3−s2 . . . Rsm−sm−1Rt−sm ds. (60.8)

Equation (60.6) implies that

(Qmf)t =

Z t

0

ft−s
¡
Qm−1R

¢
s
ds. (60.9)

Using this result, we may write Eq. (60.5) as

Pt = Kt +

Z t

0

Kt−sVsds = Kt +

Z t

0

KsVt−s ds (60.10)

where

Vt =
∞X

m=0

(QmR)t = Rt +
∞X

m=1

Z
t∆m

Rt−smRsm−sm−1 . . . Rs2−s1Rs1ds.

(60.11)
Let us summarize these results in the following proposition.

Proposition 60.1. Let α ≥ 0, K, P, R = LK − K̇, Q and V be as above.
Then the series in Eq. (60.5) and Eq. (60.11) are convergent and Eq. (60.10)
holds, where Pt = etL is the unique solution to Eq. (60.1). Moreover,

kP −Kkt ≤
C

α+ 1
eCt

α+1 kKkt tα+1 = O(t1+α), (60.12)

where kfkt := max0≤s≤t |fs|.
Remark 60.2. In the finite dimensional case or where L is a bounded operator,
we may take K = I in the previous proposition. Then Rs = L is constant
independent of s and

Vt =
∞X

m=0

tm

m!
Lm+1
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which used in Eq. (60.10) gives the standard formula:

Pt = I +

Z t

0

∞X
m=0

(t− s)m

m!
Lm+1 ds = I +

∞X
m=0

tm+1

(m+ 1)!
Lm+1 = etL.

Proof. From Eq. (60.6),

|(QmR)t| =
¯̄̄̄Z
t∆m

Rt−smRsm−sm−1 . . . Rs2−s1Rs1ds

¯̄̄̄
≤ (Ct)(m+1)α

Z
t∆m

ds =(Ctα)m+1
tm

m!

Therefore the series in Eq. (60.11) is absolutely convergent and

|Vt| ≤ Ctα
∞X

m=0

1

m!
(Ctα+1)m = CeCt

α+1

tα.

Using this bound on V and the uniform boundedness of Kt,Z t

0

|KsVt−s| ds ≤ CeCt
α+1 kKkt

Z t

0

(t− s)α ds =
C

α+ 1
eCt

α+1 kKkt tα+1
(60.13)

and hence Pt defined in Eq. (60.10) is well defined and is continuous in t.
Moreover, (60.13) implies Eq. (60.12) once we shows that Pt = etL. This is
checked as follows,

d

dt

Z t

0

Kt−sVsds = Vt +

Z t

0

K̇t−sVsds = Vt +

Z t

0

(LKt−s −Rt−s)Vsds

= Vt + L

Z t

0

Kt−sVsds− (QV )t = L

Z t

0

Kt−sVsds+Rt.

Thus we have,

d

dt
Pt = K̇t + L

Z t

0

Kt−sVsds+Rt

= LKt + L

Z t

0

Kt−sVsds = LPt.
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Statement of the Main Results

Let M be a compact Riemannian Manifold of dimension n and ∆ denote the
Laplacian on C∞(M). We again wish to solve the heat equation (59.1). It is
natural to define a kernel ρ(t, x, y) in analogy with the formula for p(t, x, y)
in Eq. (59.3), namely let

ρ(t, x, y) := (2πt)−n/2 e−d
2(x,y)/2t, (61.1)

where d(x, y) is the Riemannian distance between two point x, y ∈ M. We
may then define the operator Tt on C∞(M) by

Ttf(x) =

Z
M

ρ(t, x, y)f(y)dλ(y), (61.2)

where λ is the volume measure on M. Although, limt↓0 Ttf = f, it is not the
case that u(t, x) = Ttf(x) is a solution to the heat equation on M. This is
because ρ does not satisfy the Heat equation. Nevertheless, ρ is an approximate
solution as will be seen Proposition 63.1 below. Moreover, ρ will play a crucial
role in constructing the true heat kernel p(t, x, y) forM. Let us now summarize
the main theorems to be proved.

61.1 The General Setup: the Heat Eq. for a Vector
Bundle

Let π : E → M be a Vector bundle with connection ∇E . We will usually
denote the covariant derivatives on TM and E all by ∇. For a section S ∈
Γ (E), let ¤S := tr

¡∇T∗M⊗E∇ES
¢
be the rough or Bochner Laplacian on

E and let
L :=

1

2
¤+R,

where R is a section of End(E). We are interested in solving

(∂t − L)u = 0 with u(0, x) = f(x), (61.3)

where u(t, ·) and f(·) are section of Γ (E).
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61.2 The Jacobian (J — function)

Definition 61.1. Let D : TM → R be defined so that for each y ∈ M,
exp∗y λ = Dλy where λ = λM is the volume form on M and λy is the volume
form on TyM. More explicitly, if {ei}ni=1 is an oriented orthonormal basis for
TyM, then and v ∈ TyM, then

D(v) = λ(exp∗(e1)v, exp∗(e2)v . . . , exp∗(en)v)

=
q
det

©¡
expy∗(ei)v, expy∗(ej)v

¢ªn
i,j=1

, (61.4)

where exp∗wv =
d
dt |0 exp(v + tw). Further define J(x, y) = D(exp−1y (x)).

Notice that J(·, y) satisfies

exp∗y

µ
1

J(·, y)λ
¶
= λy.

Alternatively we have that J(x, y) = det
¡
expy∗(·)v

¢
where v = exp−1y (x). To

be more explicit, let {ei}ni=1 be an orthonormal basis for TyM, then

J(x, y) =
q
det

©¡
expy∗(ei)v, expy∗(ej)v

¢ªn
i,j=1

.

Remark 61.2 (Symmetry of J). It is interesting to notice that J is a symmetric
function. We will not need this fact below so the proof may be skipped. We
will also be able to deduce the symmetry of J using the asymptotic expansion
of the heat kernel along with the symmetry of the heat kernel.

Proof. Let wy ∈ TyM, then

wyd
2(x, ·) = 2 (V (x, y), wy) = −2

¡
exp−1y (x), wy

¢
where V (x, y) := d

dt |t=1 exp(t exp−1x (y)) = − exp−1y (x). Thus if ux ∈ TxM,
then

uxwyd
2(x, y) = −2

³¡
exp−1y

¢
∗ ux, wy

´
.

Now

J(x, y) = det
h¡
exp−1y

¢
∗

i
= det

"½
−1
2
uiwjd

2(x, y)

¾n

i,j=1

#
where {ui} and {wj} is an orthonormal basis of TxM and TyM respectively.
From this last formula it is clear from the fact that d(x, y) = d(y, x) that
J(x, y) = J(y, x).

Lemma 61.3 (Expansion of D). The function J is symmetric, J(x, y) =
J(y, x). Moreover

D(v) = 1− 1
6
(Ric v, v) +O(v3)

and hence

J(x, y) =
¡
Ric exp−1y (x), exp−1y (x)

¢
+O(d3(x, y)).
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The proof of this result will be given in the Appendix below since the
result is not really needed for our purposes.

61.3 The Approximate Heat Kernels

Theorem 61.4 (Approximate Heat Kernel). For x, y ∈M, let

γy,x(t) := expy(t exp
−1
y (x))

so that γx,y is the geodesic connecting y to x. Also let //t(γx,y) denote parallel
translation along γx,y. (Read γx,y as γx←y.) Define, for (x, y) near the diagonal
∆ ⊂M ×M and k = 0, 1, 2 . . . , uk(x, y) : Ey → Ex inductively by

uk+1(x, y) = u0(x, y)

Z 1

0

sku0(γx,y(s), y)
−1 (Lxuk) (γx,y(s), y)ds for k = 0, 1, 2 . . .

(61.5)
and

u0(x, y) =
1p

J(x, y)
//1(γx,y). (61.6)

For q = 0, 1, 2 . . . ,let

Σq(t, x, y) := ρ(t, x, y)

qX
k=0

tkuk(x, y), (61.7)

where
ρ(t, x, y) := (2πt)−n/2e−d

2(x,y)/2t. (61.8)

Then
(∂t − Lx)Σq(t, x, y) = −tqρ(t, x, y)Lxuq(x, y). (61.9)

Definition 61.5 (Cut off function). Let � > 0 be less than the injectivity
radius of M and choose Ψ ∈ C∞c (−�2, �2) such that 0 ≤ Ψ ≤ 1 and Ψ is 1 in
a neighborhood of 0. Set ψ(x, y) = Ψ(d2(x, y)), a cutoff function which is one
in a neighborhood of the diagonal and such that ψ(x, y) = 0 if d(x, y) ≥ �.

Corollary 61.6 (Approximate Heat Kernel). Let kq(t, x, y) := ψ(x, y)Σq(t, x, y).
Define

rq(t, x, y) := − (∂t − Lx) kq(t, x, y),

then °°∂kt rq(t, ·, ·)°°l ≤ Ctq−n/2−l/2−k, (61.10)

where krkl denotes the supremum norm of r and all of its derivatives up to
order l.
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61.4 The Heat Kernel and its Asymptotic Expansion

Theorem 61.7 (Existence of Heat Kernels). There exists a heat kernel
p(t, x, y) : Ey → Ex for L, i.e. p is a C1 —function in t and C2 in (x, y) such
that

(∂t − Lx) p(t, x, y) = 0 with lim
t↓0

p(t, x, y) = δx(y)id. (61.11)

Remark 61.8. The explicit formula for p(t, x, y) is derived by a formal appli-
cation of equations (60.10) and (60.11) above. The results are:

p(t, x, y) = kq(t, x, y) +

Z t

0

Z
M

kq(t− s, x, z)vq(s, z, y)dλ(z)ds (61.12)

where

vq(s, x, y) =
∞X

m=1

rm(s, x, y) (61.13)

and the kernels rm are defined inductively by where r1 = r and for m ≥ 2

rm(s, x, y) =

Z s

0

Z
M

r(s− r, x, z)rm−1(r, z, y)dλ(z)dr. (61.14)

Corollary 61.9 (Uniqueness of Heat Kernels). The heat equation (61.3)
has a unique solution. Moreover, there is exactly one solution to (61.11).

Proof. Let u(t, x) :=
R
M
p(t, x, y)f(y)dλ(y), then u solves the heat equa-

tion (61.3). We will prove uniqueness of u using the existence of the adjoint
problem. In order to carry this out we will need to know that Lt = 1

2¤E∗+Rt :
Γ (E∗)→ Γ (E∗) is the formal transpose of L in the sense thatZ

M

hLf, gidλ =
Z
M

hf, Ltgidλ (61.15)

for all sections f ∈ Γ (E) and g ∈ Γ (E∗). Here ¤E∗ is the rough Laplacian on
E∗. Indeed, let X be the vector field on M such that (X, v) = h∇vf, gi for all
v ∈ TmM. Then

(∇vX, ·) = ∇vh∇·f, gi = h∇v (∇·f) , gi+ h∇·f,∇vgi,
so that in particular

(∇vX, v) = h∇2v⊗vf, gi+ h∇vf,∇vgi.
Let v = ei, where {ei} an orthonormal frame, and sum this equation on i to
find that

÷(X) = h¤f, gi+ h∇f,∇gi. (61.16)

Using the Riemannian metric on M to identify one forms with vector fields,
we may write this equality as:
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÷h∇·f, gi = h¤f, gi+ h∇f,∇gi.
Similarly one shows that

÷hf,∇·gi = hf,¤gi+ h∇f,∇gi,
which subtracted from the previous equation gives “Green’s identity,”

hf,¤gi− h¤f, gi = ÷ (hf,∇·gi− h∇·f, gi) (61.17)

Integrating equations (61.16) and (61.17) overM, we find, using the divergence
theorem, thatZ

M

h¤f, gidλ =
Z
M

hf,¤gidλ = −
Z
M

h∇f,∇gidλ.

Thus Z
M

hLf, gidλ = 1

2

Z
M

h¤f, gidλ+
Z
M

hRf, gidλ

=
1

2

Z
M

hf,¤gidλ+
Z
M

hf,Rtgidλ =
Z
M

hf, Ltgidλ,

proving Eq. (61.15).
Suppose that u is a solution to Eq. (61.3) with u(0, x) = 0 for all x.

By applying Theorem 61.7, we can construct a heat kernel qt for Lt. Given
g ∈ Γ (E∗), let

v(t, x) :=

Z
M

qT−t(x, y)g(y)dλ(y)

for t < T. Now consider
d

dt

Z
M

hu(t, x), v(t, x)idλ(x)

=

Z
M

hLu(t, x), v(t, x)idλ(x)−
Z
M

hu(t, x), Ltv(t, x)idλ(x) = 0,

and therefore,
R
M
hu(t, x), v(t, x)idλ(x) is constant in t. Considering this ex-

pression in the limit that t tends to 0 and T implies that

0 =

Z
M

h0, v(0, x)idλ(x) =
Z
M

hu(T, x), g(x)idλ(x).

Since g is arbitrary, this implies that u(T, x) = 0 for all x. Hence the solution
to equation (61.3) is unique. It is now easy to use this result to show that
p(t, x, y) must be unique as well.

Theorem 61.10 (Assymptotics of the Heat Kernel). Let p(t, x, y) be the
heat kernel described by Eq. (61.11), then p is smooth in (t, x, y) for t > 0.
Moreover if Kq is as in Corollary 61.6, then°°∂kt (p(t, ·, ·)−Kq(t, ·, ·))°°

l
= O(tq−n/2−l/2−k) (61.18)

provided that q > n/2 + l/2 + k.
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Proof of Theorems 61.7 and 61.10

In this section we will give the proof of Theorems 61.7 and 61.10 assuming
Theorem 61.4 and Corollary 61.6.

62.1 Proof of Theorem 61.7

Let l and k be given and fix q > n/2+ l/2+ k.. Let k(t, x, y) = kq(t, x, y) and
r(t, x, y) = rq(t, x, y) as in Corollary 61.6. Let

Ktf(x) :=

Z
M

k(t, x, y)f(y)dλ(y) andRtf(x) :=

Z
M

r(t, x, y)f(y)dλ(y).

Following the strategy described in Section 60, we will let v(t, x, y) be the
kernel of the operator

P∞
m=0Q

mR, where Q is as in Eq. (60.4). That is

v(s, x, y) =
∞X

m=1

rm(s, x, y) (62.1)

where r1 = r and for m ≥ 2
rm(s,x, y)

=

Z
s∆m−1

Z
Mm−1

r(s− sm−1, x, ym−1)r(sm−1 − sm−2, ym−1, ym−2) . . . r(s1, y1, y)dsdy

=

Z s

0

Z
M

r(s− r, x, z)rm−1(r, z, y)dλ(z)dr (62.2)

and dy =dλ(y1) . . . dλ(ym). The kernel rm is easy to estimate using (61.10) to
find that°°∂ks rm(s, ·, ·)°°l ≤ ³Csq−n/2´m s−l/2−kV ol(M)m−1sm−1/(m− 1)!

= Cmsm(q−n/2)−l/2−kV ol(M)m−1sm−1/(m− 1)!. (62.3)
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and from this it follows that
P∞

m=1

°°∂ks rm(s, ·, ·)°°l = O(s(q−n/2)−l/2−k).
Therefore, v is well defined with ∂ks v(s, x, y) in Γl.
Proof. Let p(t, x, y) be the kernel of the operator Pt defined in Eq. (60.10)

i.e.

p(t, x, y) = k(t, x, y) +

Z t

0

Z
M

k(t− s, x, z)v(s, z, y)dλ(z)ds (62.4)

= k(t, x, y) +

Z t

0

Z
M

k(s, x, z)v(t− s, z, y)dλ(z)ds. (62.5)

Using Eq. (62.5), we find (since ∂tv(0, z, y) = 0) that

∂tp(t, x, y) = ∂tk(t, x, y) +

Z t

0

Z
M

k(s, x, z)∂tv(t− s, z, y)dλ(z)ds

= Lxk(t, x, y)− r(t, x, y)

+

Z t

0

Z
M

k(s, x, z)∂tv(t− s, z, y)dλ(z)ds (62.6)

More generally,

∂itp(t, x, y) = ∂itk(t, x, y) +

Z t

0

Z
M

k(s, x, z)∂itv(t− s, z, y)dλ(z)ds,

from which it follows that ∂itp is continuous in Γl for all i ≤ k. Furthermore,

°°∂itp(t, ·, ·)− ∂itk(t, ·, ·)
°°
l
≤ C

Z t

0

°°∂itv(t− s, ·, ·)°°
l
ds

≤ C

Z t

0

(t− s)q−n/2−l/2−i ds

= O(tq−n/2−l/2−i+1). (62.7)

To finish the proof of Theorem 61.7, we need only verify Eq. (61.11). The
assertion that limt↓0 p(t, x, y) = δx(y)id follows from the previous estimate
and the analogous property of k(t, x, y). Fubini’s theorem and integration by
parts shows that
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�

Z
M

k(s, x, z)∂tv(t− s, z, y)dλ(z)ds

= −
Z
M

k(s, x, z)v(t− s, z, y)dλ(z)
¯̄
s=t
s=�

+

Z t

�

Z
M

∂sk(s, x, z)v(t− s, z, y)dλ(z)ds

=

Z
M

k(�, x, z)v(t− �, z, y)dλ(z)

+

Z t

�

Z
M

(Lxk(s, x, z)− r(s, x, z)) v(t− s, z, y)dλ(z)ds

=

Z
M

k(�, x, z)v(t− �, z, y)dλ(z)

+ Lx

Z t

�

Z
M

k(s, x, z)v(t− s, z, y)dλ(z)ds

−
Z t

�

Z
M

r(s, x, z)v(t− s, z, y)dλ(z)ds.

Making use of the fact thatK is uniformly bounded on Γl and that the strong—
lim�↓0K� = I, we may pass to the limit, � → 0, in this last equality to find
thatZ t

0

Z
M

k(s, x, z)∂tv(t− s, z, y)dλ(z)ds

= v(t, x, y) + Lx

Z t

0

Z
M

k(s, x, z)v(t− s, z, y)dλ(z)ds

−
Z t

0

Z
M

r(s, x, z)v(t− s, z, y)dλ(z)ds

= r(t, x, y) + Lx

Z t

0

Z
M

k(s, x, z)v(t− s, z, y)dλ(z)ds,

(62.8)

wherein the last equality we have made use of equations (62.1) and (62.2) to
conclude that

v(t, x, y)−
Z t

0

Z
M

r(s, x, z)v(t− s, z, y)dλ(z)ds = r(t, x, y).

Combining (62.6) and (62.8) implies that (∂t − Lx) p(t, x, y) = 0.

62.2 Proof of Theorem 61.10

Because q in the above proof was arbitrary, we may construct a kernel p(t, x, y)
as in the previous section which is CN for any N we desire. By the uniqueness
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of p, Corollary 61.9, the kernel p(t, x, y) constructed in the proof of Theorem
61.7 is independent of the parameter q. Therefore, by choosing q as large, we
see that p is in fact infinitely differentiable in (t, x, y) with t > 0. Finally the
estimate in Eq. (61.18) has already been proved in Eq. (62.7).



63

Properties of ρ

For the time being let y ∈ M be a fixed point and r(x) := d(x, y). Also let
v(x) := exp−1y (x), γx(t) := exp(tv(x)) and V be the “radial” vector field,

V (x) = Vy(x) :=
d

dt
|1 exp(tv(x)) = //1(γx)v(x), (63.1)

where //t(γx) is used to denote parallel translation along γx up to time t.
Notice that V is a smooth vector field on a neighborhood of y. To simplify
notation we will write ρ(t, x) for ρ(t, x, y), i.e.

ρ(t, x) = (2πt)−n/2 e−r
2(x)/2t. (63.2)

The main proposition of this section is as follows.

Proposition 63.1. Fix y ∈ M,let J(x) = J(x, y) (see Definition 61.1 above)
and ρ(t, x) be as in Eq. (63.2), thenµ

∂t − 1
2
∆

¶
ρ =

1

2t
r∂ lnJ/∂r ρ =

1

2t
(V lnJ) ρ

=
1

2t
(∇ · V − n) ρ. (63.3)

Remark 63.2. If M = Rn with the standard metric, then V (x) = x,∇ · V = n
(and J ≡ 1) so that

p(t, x) = (2πt)
−n/2

e−x
2/2t

is an exact solution to the heat equation as is seen from Eq. (63.3). Moreover,
the constants have been chosen such that

R
Rn p(t, x)dx = 1 for all t > 0. From

this fact and the fact that (2πt)−n/2 e−x
2/2t has most of its mass within a

radius of size order
√
t, it follows that limt↓0 p(t, x) = δ(x). Similar statements

hold for ρ(t, x) given in Eq. (63.2).
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In order to prove the Proposition we will need to introduce some more
notation which will allow us to compute the Laplacian on radial functions
f(r), see Lemma 65.3 below.

Notation 63.3 (Geodesic Polar Coordinates) Let y ∈ M be fixed,
r(x) := d(x, y) and θ(x) := exp−1y (x)/r(x). So that (r, θ) : M → R+ × Sy
where S = Sy is the unit sphere in TyM. We also write ∂f/∂r = gr(r, θ)
when f = g(r, θ). Alternatively,where

∂f/∂r =
1

r
V f =

1

r

d

dt
|1f(expy(t exp−1y (·))) (63.4)

=
d

dt
|0f(expy((r + t) θ) (63.5)

and V is the vector field given in Eq. (63.2) above.

Notice that with this notation exp−1y (x) = r(x)θ(x) and J(x, y) =
D(r(x)θ(x), y).

63.0.1 Proof of Proposition 63.1

We begin with the logaritheoremic derivatives of ρ,

∂t ln ρ(t, x) = − n

2t
+

r2

2t2

and

∇ ln ρ(t, x) = −∇r
2

2t
= −1

t
V.

Therefore,

∆ρ = ∇ · (ρ∇ ln ρ(t, x)) = −1
t
∇ · (ρV )

=
1

t2
|V |2 ρ− 1

t
ρ∇ · V = ρ

µ
r2

t2
− 1

2t
∆r2

¶
and hence µ

∂t − 1
2
∆

¶
ρ = ρ

µ
− n

2t
+

r2

2t2
− r2

2t2
+
1

4t
∆r2

¶
=
1

2t

µ
1

2
∆r2 − n

¶
ρ

=
1

2t
(∇ · V − n) ρ =

1

2t
(r∂ lnJ/∂r) ρ.



63 Properties of ρ 1161

63.0.2 On the Operator Associated to the Kernel ρ

We now modify the definition of Tt in Eq. (61.2) by inserting the cutoff func-
tion ψ as in Definition 61.5, that is let

Ttf(x) :=

Z
M

ψ(x, y)ρ(t, x, y)f(y)dλ(y). (63.6)

We will end this section with some basic properties of Tt.

Theorem 63.4. Let Ttf be as in Eq. (63.6). Then for t > 0, Tt : C(M) →
C∞(M), for each l, there is a constant Cl such that kTtfkl ≤ Cl kfkl for all
0 < t ≤ 1 and f ∈ Cl(M) and moreover limt↓0 kTtf − fkl = 0. Here, kfkl
denotes the sup—norm of f and all of its derivatives up to order l.

Proof. First off, since ψ(x, y)ρ(t, x, y) is a smooth function in (x, y), it
is clear that Ttf(x) is smooth. To prove the remaining two assertions, let us
make the change of variables, y = expx(v) in the definition of Ttf. This gives,

Ttf(x) =

Z
Bx(�)

ψ(x, expx(v))ρ(t, x, expx(v))f(expx(v))D(v)dv

=

Z
TxM

Ψ(|v|2) (2πt)−n/2 e−|v|2/2tf(expx(v))D(v)dv

where Bx(�) be the ball of radius � centered at 0x ∈ TxM. Now let u(x) be
a local orthonormal frame on M , so that u(x) : Rn → TxM is a smoothly
varying orthogonal isomorphism for x in some neighborhood of M. We now
make the change of variables v → u(x)v and v →√tu(x)v with v ∈ Rn in the
above displayed equation to find,

Ttf(x) =

Z
Rn

Ψ(|v|2)f(expx(u(x)v))D(u(x)v)pt(v)dv (63.7)

=

Z
Rn

Ψ(t |v|2)f(expx(u(x)
√
tv))D(u(x)

√
tv)p1(v)dv (63.8)

where pt(v) := (2πt)
−n/2 e−|v|

2/2t.
Suppose that L is a l ’th order differential operator on M, then from Eq.

(63.7) we find that

(LTtf) (x) =

Z
Rn

Ψ(|v|2)Lx [f(expx(u(x)v))D(u(x)v)] pt(v)dv

from which we see that

|(LTtf) (x)| ≤ Cl(L) kfkl
Z
Rn

pt(v)dv = Cl(L) kfkl .

This shows that kTtfkl ≤ Cl kfkl .
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Using the product and the chain rule,

Lx [f(expx(u(x)v))D(u(x)v, x)] =
X
k

ak(x, v) (Lkf) (expx(u(x)v)),

where ak(x, v) are smooth functions of (x, v) with |v| ≤ � and Lk are differ-
ential operators of degree at most l. Noting that

Lf(x) =
X
k

ak(x, 0) (Lkf) (x),

we find that

| (LTtf) (x)− Lf(x)|

≤
X
k

Z
Rn

¯̄̄̄
ak(x, v) (Lkf) (expx(u(x)v))
−ak(x, 0) (Lkf) (x)

¯̄̄̄
Ψ(|v|2)pt(v)dv.

Applying the estimate in Eq. (59.6) to the previous equation implies that

||LTtf − Lf ||0
≤ C kfkl e−δ

2/4t +
X
k

sup
v∈B(δ)

sup
x

¯̄̄̄
ak(x, v) (Lkf) (expx(u(x)v))
−ak(x, 0) (Lkf) (x)

¯̄̄̄
and therefore

limt↓0||LTtf − Lf ||0 ≤
X
k

sup
v∈B(δ)

sup
x

¯̄̄̄
ak(x, v) (Lkf) (expx(u(x)v))
−ak(x, 0) (Lkf) (x)

¯̄̄̄
which tends to zero as δ → 0 by uniform continuity. From this we conclude
that limt↓0 ||Ttf − f ||l = 0.
To conclude this section we wish to consider limt↓0(∂t − 1

2∆)Tt.

Theorem 63.5. Let Tt be as above and S be the scalar curvature on M. Then
∂tTt = (

1
2∆− 1

6S)Tt + O(
√
t). So if we used Tt for K in the construction in

Proposition 60.1, we would construct et(∆/2−S/6) rather than et∆/2.

Proof. We will start by computing,

(∂t − 1
2
∆)Ttf(x)

=

Z
M

(∂t − 1
2
∆x)ψ(x, y)ρ(t, x, y)f(y)dλ(y)

=

Z
M

ψ(x, y)(∂t − 1
2
∆x)ρ(t, x, y)f(y)dλ(y) +O(t∞),

=

Z
M

ψ(x, y)
1

2t
(Vy(x) lnJ(·, y))ρt(x, y) f(y)dλ(y) +O(t∞). (63.9)
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Using Lemma 61.3, we find when x = expy(v), that

(Vy(x) lnJ(·, y)) = ∂v lnD(v) = ∂v ln(1− 1
6
(Ric v, v) +O(v3))

= ∂v(−1
6
(Ric v, v) +O(v3))

= −1
3

¡
Ric exp−1y (x), exp−1y (x)

¢
+O(d3(x, y)).

Using the symmetry of J or by direct means one may conclude that¡
Ric exp−1y (x), exp−1y (x)

¢
=
¡
Ric exp−1x (y), exp−1x (y)

¢
+O(d3(x, y)) (63.10)

so that

(Vy(x) lnJ(·, y)) = −1
3

¡
Ric exp−1x (y), exp−1x (y)

¢
+O(d3(x, y)).

To check Eq. (63.10) directly, let γv(t) = exp(tv) and notice that

d

dt
(Ric γ̇(t), γ̇(t)) =

¡
(∇γ̇(t)Ric γ̇(t)), γ̇(t)

¢
= O(v3).

Integrating this expression implies that (Ric γ̇(1), γ̇(1)) = (Ric v, v) +O(v3).
Taking v = exp−1x (y) implies Eq. (63.10).
Using this result in (63.9) and making the change of variables y = expx v

as above we find that

(∂t − 1
2
∆)Ttf(x)

= −1
3

1

2t

Z
TxM

Ψ(|v|2) e
−|v|2/2t

(2πt)
n/2

©
(Ric v, v) +O(v3)

ª
f(expx(v))D(v)dv

+O(t∞)

= − 1
6t

n
S(x)f(x)t+O(t3/2)

o
= −1

6
S(x)f(x) +O(t1/2).

Therefore, ∂tTt = ( 12∆− 1
6S)Tt +O(

√
t).
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Proof of Theorem 61.4 and Corollary 61.6

64.1 Proof of Corollary 61.6

We will begin with a Proof of Corollary 61.6 assuming Theorem 61.4. Using
Eq. (61.9) and the product rule,

rq(t, x, y) = (∂t − Lx)Kq(t, x, y)

= ψ(x, y) (∂t − Lx)Σq(t, x, y)

− 1
2
∆xψ(x, y)Σq(t, x, y)−∇∇xψ(x,y)Σq(t, x, y)

= −tqψ(x, y)ρ(t, x, y)Lxuq(x, y)
− 1
2
∆xψ(x, y)Σq(t, x, y)−∇∇xψ(x,y)Σq(t, x, y).

Let � > 0 be chosen such that ψ(x, y) = 1 if d(x, y) ≤ �. It is easy to see for
any l that°°°°∂kt µ12∆xψ(x, y)Σq(t, x, y) +∇∇xψ(x,y)Σq(t, x, y)

¶°°°°
l

= O(e−�/3t),

where kfkl denotes the supremum norm of f along with all of its derivatives
in (x, y) up to order l. We also have that

ktqψ(x, y)ρ(t, x, y)Lxuq(x, y)k ≤ Ctq−n/2.

Furthermore, if W is a vector field on M, then by Lemma 65.4,¯̄̄
Wxe

−d2/2t
¯̄̄
=

¯̄̄̄
−(V,W )

t
e−d

2/2t

¯̄̄̄
≤ |W |d

t
e−d

2/2t

=
1√
t
|W | d√

t
e−d

2/2t ≤ e−1/2√
t
|W |.
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Similarly we have the same estimate for
¯̄̄
Wye

−d2/2t
¯̄̄
. Let us now consider

higher order spatial derivatives, for example

UyWxe
−d2/2t = −Uy

µ
(V,W )

t
e−d

2/2t

¶
= −

µ
Uy(V,W )

t
e−d

2/2t +
(V,W )

t
Uye

−d2/2t
¶

from which we find that¯̄̄
UyWxe

−d2/2t
¯̄̄
≤ C

t
e−d

2/2t + C
d2

t2
e−d

2/2t ≤ C

t
.

Continuing in this way we learn that°°°e−d2/2t°°°
l
≤ Ct−l/2.

Let us consider the t—derivatives of ρ(t, x, y),

|∂tρ| = |− ρ(
n

2t
+

d2

2t2
)| ≤ Ct−n/2t−1.

Similarly,

|∂2t ρ| = |ρ(
n

2t2
+

d2

t3
) + ρ(

n

2t
+

d2

2t2
)2| ≤ Ct−n/2t−2.

Continuing this way, one learns that |∂kt ρ| ≤ CCt−(n/2+k). Putting this all
together gives Eq. (61.10).

64.2 Proof of Theorem 61.4

Proposition 64.1. Let y ∈M be fixed, r(x) = d(x, y), J(x) = J(x, y), V and
ρ(t, x) be as above. Suppose that g(t, x) : Ey → Ex is a time dependent section
of hom(Ey → E) and u(t, x) = ρ(t, x)g(t, x). Then

(∂t − L)u = ρ

µ
∂t − L+

1

t

µ
∇V +

1

2
r∂ lnJ/∂r

¶¶
g

= ρ

µ
∂t − L+

1

t
S

¶
g, (64.1)

where
S = ∇V +

1

2
r∂ lnJ/∂r. (64.2)

Proof. First let us recall that

¤(ρg) = tr∇2(ρg) = tr ¡∇2ρ g + 2∇ρ⊗∇g + ρ∇2g¢
= ∆ρg + 2∇∇ρg + ρ¤g
= ∆ρg + 2ρ∇∇ ln ρg + ρ¤g
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and that

∇ ln ρ = ∇
µ
− 1
2t
r2
¶
= −V

t
.

Hence

(∂t − L)u =

µ
∂t − 1

2
¤
¶
(ρg)− ρRg

=

µ
∂t − 1

2
∆

¶
ρ g − ρ∇∇ ln ρg + ρ (∂t − L) g

=
1

2t
(r∂ lnJ/∂r) ρ g +

1

t
ρ∇V g + ρ (∂t − L) g

= ρ

µ
∂t − L+

1

t

µ
∇V +

1

2
r∂ lnJ/∂r

¶¶
g.

Now let

gq(t, x) =

qX
k=0

tkuk(x) and Σq(t, x) = ρ(t, x)gq(t, x) (64.3)

where uk(x) : Ey → Ex are to be determined. Thenµ
∂t +

1

t
S − L

¶
g =

qX
k=0

©
tk−1 (kuk + Suk)− tkLuk

ª
=
1

t
Su0 +

q−1X
k=0

tk ((k + 1)uk+1 + Suk+1 − Luk)− tqLuq.

Thus if we choose u0 such that

Su0(x) =

µ
∇V +

1

2
V lnJ

¶
u0(x) = 0. (64.4)

and uk such that
(S + k + 1)uk+1 − Luk = 0 (64.5)

then
¡
∂t +

1
tS − L

¢
g = −tqLuq or equivalently by Eq. (64.1),
(∂t − L) kq = (∂t − L) (ρg) = −tqρLuq. (64.6)

Let us begin by solving (64.4) for u0. For x, y ∈ M, let γ(t) = γx,y(t) :=
expy(t exp

−1
y (x)) so that γx,y is the geodesic connecting y to x. Notice that

V (γ(t)) = tγ̇(t) and therefore ∇V = t∇γ̇(t). Therefore, the equation Su0 = 0
is implies that

t
∇
dt
u0(γx,y(t)) +

1

2
t

·
∂

∂t
lnJ(γx,y(t))

¸
u0(γx,y(t)) = 0
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or equivalently thatµ
d

dt
+
1

2

d

dt
lnJ(γx,y(t))

¶©
//t(γx,y)

−1u0(γx,y(t))
ª
= 0. (64.7)

We may solve this last equation to find that

//t(γx,y)
−1u0(γx,y(t)) =

1p
J(γx,y(t))

u0(y)

and hence that
u0(x) = //1(γx,y)

1p
J(x, y)

u0(y).

Since we are going to want u to be a fundamental solution, it is natural to
require the u0(y) = IdEy . This gives a first order parametrix,

k0(t, x, y) :=
1p

J(x, y)
ρ(t, x, y)τ(x, y) : Ey → Ex,

where

τ(x, y) := //1(γx,y) and ρ(t, x, y) := ρ(t, x) = (2πt)−n/2 e−d
2(x,y)/2t.

This kernel satisfies,

(∂t − Lx) k0(t, x, y) = −ρ(t, x, y)Lx
Ã

1p
J(x, y)

τ(x, y)

!
.

Proposition 64.2. Let y ∈M be fixed and set, for x near y,

u0(x, y) = //1(γx,y)
1p

J(x, y)
. (64.8)

Then u0(x, y) is smooth for (x, y) near the diagonal in M × M and
Sxu0(x, y) = 0.

Proof. Because of smooth dependence of differential equations on initial
conditions and parameters, it follows that u0(x, y) is smooth for (x, y) near the
diagonal inM×M. To simplify notation, let u0(x) := u0(x, y), τ(x) = τ(x, y),
and J(x) = J(x, y). We must verify that Su0 = 0. This is seen as follows:

∇V u0(x) = ∇V

Ã
1p
J(x)

τ(x)

!
= −1

2

1p
J(x)

(V lnJ) (x)τ(x) +
1p
J(x)

∇V τ(x)

=
1p
J(x)

½
∇V τ(x)− 1

2
(V lnJ) (x)τ(x)

¾
= −1

2
(V lnJ) (x)u0(x),
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since

∇V τ(x) = r(x)
∇
dt
|1τ(γx,y(t)) = r(x)

∇
dt
|1//t(γx,y) = 0.

Hence
Su0(x) = ∇V u0(x) +

1

2
(V lnJ) (x)u0(x) = 0.

We now consider solving Eq. (64.5). Fixing x and y and letting γ(t) :=
γx,y(t), Eq. (64.5) may be written asµ

t
∇
dt
+
1

2
t
d

dt
lnJ(γ(t)) + k + 1

¶
uk+1(γ(t))− Luk(γ(t)) = 0

or equivalently thatµ
d

dt
+
1

2

d

dt
lnJ(γ(t)) +

k + 1

t

¶
//t(γ)

−1uk+1(γ(t))−1
t
//t(γ)

−1Luk(γ(t)) = 0.

(64.9)
Letting f be a solution toµ

d

dt
− 1
2

d

dt
lnJ(γ(t))− k + 1

t

¶
f(t) = 0

it follows that Eq. (64.9) may be written as

d

dt

£
f(t)//t(γ)

−1uk+1(γ(t))
¤− f(t)

t
//t(γ)

−1Luk(γ(t)) = 0. (64.10)

We now let f be given by

f(t) = exp

µZ ·
1

2

d

dt
lnJ(γ(t)) +

k + 1

t

¸
dt

¶
= exp

µ
1

2
lnJ(γ(t)) + (k + 1) ln t

¶
=
p
J(γ(t))t(k+1).

Integrating (64.10) over [0, t] implies that

f(t)//t(γ)
−1uk+1(γ(t)) =

Z t

0

f(τ)

τ
//τ (γ)

−1Luk(γ(τ))dτ.

Evaluating this equation at t = 1 and solving for uk+1(x) gives:

uk+1(x) =
1p

J(x, y)
τ(x, y)

Z 1

0

p
J(γ(t))s(k+1)

s
//s(γ)

−1Luk(γ(s))ds

=
1p

J(x, y)
τ(x, y)

Z 1

0

sk
q
J(γx,y(s), y)//s(γx,y)

−1Luk(γx,y(s))ds.

(64.11)
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Theorem 64.3. Let u0(x, y) be given as in Equation (64.8), and define the
smooth sections uk(x, y) inductively by

uk+1(x, y) = u0(x, y)

Z 1

0

sku0(γx,y(s), y)
−1Lxuk(γx,y(s), y)ds (64.12)

for k = 0, 1, 2, . . . . Then uk solves Eq.(64.5).

Proof. Let us begin by noting that Eq. (64.11) and (64.12) are the same
equation because

u0(γx,y(s), y) =
1p

J(γx,y(s), y)
//s(γx,y).

Let x, y ∈ M be fixed and set γ(t) = γx,y(t). Since γy,γ(t)(s) = γ(ts) and
//s(γy,γ(t)) = //ts(γ),it follows that

uk+1(γ(t), y) = u0(γ(t), y)

Z 1

0

sk1
p
J(γ(ts), y)//ts(γ)

−1Lxuk(γ(ts), y)ds

= t−(k+1)u0(γ(t), y)
Z t

0

rk
p
J(γ(r), y)//r(γ)

−1Lxuk(γ(r), y)dr.

From this equation we learn that

(∇V u0(x) +
1

2
(V lnJ) (x) + k + 1)uk+1(x, y)

=

µ
t
∇
dt
+
1

2
t
d

dt
lnJ(γ(t)) + k + 1

¶
|t=1uk+1(γ(t))

= u0(x, y)
d

dt
|1
Z t

0

rk
p
J(γ(r), y)//r(γ)

−1Lxuk(γ(r), y)dr

= u0(x, y)
p
J(γ(r), y)//1(γ)

−1Lxuk(x, y) = Lxuk(x, y),

wherein the second equality we have used the product rule and the fact thatµ
t
∇
dt
+
1

2
t
d

dt
lnJ(γ(t)) + k + 1

¶
t−(k+1)u0(γ(t), y) = 0

which is verified using Eq. (64.7).
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Appendix: Gauss’ Lemma & Polar Coordinates

Lemma 65.1 (Gauss’ Lemma). Let y ∈M,v,w ∈ TyM, then¡
exp∗y vv, exp∗y wv

¢
exp(v)

= (v, w)y

Proof. Let Σ(t, s) := exp(t(v + sw)), then

d

dt
(Σ̇(t, 0), Σ0(t, 0)) = (

∇
dt
Σ̇(t, 0), Σ0(t, )) + (Σ̇(t, 0),

∇
dt
Σ0(t, 0))

= (Σ̇(t, 0),
∇
ds
|0Σ̇(t, s)) = 1

2

d

ds
|0(Σ̇(t, s), Σ̇(t, s))

=
1

2

d

ds
|0 |v + sw|2 = (v, w).

Combining this equation with the observation that (Σ̇(t, 0), Σ0(t, 0))|t=0 = 0
implies that

(Σ̇(1, 0), Σ0(1, 0)) = (v, w)0.

Corollary 65.2. Suppose that y ∈ M and choose δ > 0 such that expy is
a diffeomorphism on B(0y, δ). Then d(x, y) =

¯̄
exp−1y (x)

¯̄
for all x ∈ V :=

expy (B(0y, δ)) .

Proof. Let σ(t) be a curve inM such that σ(0) = y and σ(1) = x. Suppose
for the moment that σ(t) is contained in V and write σ(t) = expy(c(t)). Set
u = c(1)/ |c(1)| and decompose c(t) = (c(t), u)u + d(t) where (d(t), u) =
0.Then

|σ̇(t)|2 = ¯̄expy∗ ċ(t)c(t)¯̄2 = ¯̄̄expy∗ ³(ċ(t), u)uc(t) + ḋ(t)c(t)

´¯̄̄2
=
¯̄
expy∗(ċ(t), u)uc(t)

¯̄2
+
¯̄̄
expy∗

³
ḋ(t)c(t)

´¯̄̄2
= |(ċ(t), u)|2 +

¯̄̄
expy∗

³
ḋ(t)c(t)

´¯̄̄2
≥ |(ċ(t), u)|2 .
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From this we learn that

Length(σ) =
Z 1

0

|σ̇(t)| dt ≥
Z 1

0

|(ċ(t), u)| dt ≥
Z 1

0

(ċ(t), u)dt = |c(1)|.

That is Length(σ) ≥ ¯̄
exp−1y (x)

¯̄
. It is easily to use the same argument to

show that if σ leaves the open set V then Length(σ) ≥ δ >
¯̄
exp−1y (x)

¯̄
and

hence Length(σ) ≥ ¯̄exp−1y (x)
¯̄
for all path σ such that σ(0) = y and σ(1) = x.

Moreover we have equality if σ(t) is the geodesic joining y to x. This shows
that

d(x, y) = inf
σ
Length(σ) =

¯̄
exp−1y (x)

¯̄
.

For more on geodesic coordinates, see Appendix 67.

65.1 The Laplacian of Radial Functions

Lemma 65.3. Let r(x) := d(x, y) and J(x) = J(x, y) as in Definition 61.1.
Then

∆f(r) =
∂
¡
Jrn−1f 0(r)

¢
/∂r

Jrn−1
= f 00(r) +

µ
n− 1
r

+
∂ lnJ

∂r

¶
f 0(r). (65.1)

We also have that

∆f(r) = f 00(r) +
∇ · V − 1

r
f 0(r) (65.2)

and that

∆r2 = 2∇ · V = 2
µ
n+ r

∂ lnJ

∂r

¶
.

Proof.We will give two proofs of this result. For the first proof recall that
if
©
zi
ª
is a chart on M, then

∆F =
1√
g

∂

∂zi

µ√
ggij

∂

∂zj
F

¶
, (65.3)

where ds2 = gijdz
idzj , gij is the inverse of (gij) and

√
g =

p
det(gij) We

now choose the coordinate system z to be zn := r, and zi := αi ◦ θ, where©
αi
ªn−1
i=1

is a chart on S = Sy ⊂ TyM. We now need to compute gij in this
case. Let us begin by noting that ∂/∂zi = expy∗

¡
r ∂
∂αi |θ

¢
for i = 1, 2, . . . , n−1

and ∂/∂zn = ∂/∂r = expy∗
¡
d
dt |0(r + t)θ

¢
. By Gauss’ lemma, it follows that

ds2 = dr2 + hij(r, θ)dθ
idθj, i.e. g =

·
h 0
0 1

¸
. Therefore g−1 =

·
h−1 0
0 1

¸
and

√
g =
√
h. So if F = f(r) = f(zn), it follows from Eq. (65.3) that
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∆f(r) =
1√
g

∂

∂zi

µ√
ggin

∂

∂zn
F

¶
=

1√
h

∂

∂zn

µ√
h

∂

∂zn
F

¶
= f 00(r) +

∂ ln(
√
h)

∂r
f 0(r). (65.4)

So to finish the proof we need to describe
√
g =
√
h in terms of J. In order to

do this, let us notice that D in Eq. (61.4) may also be expressed as

D(v) =
λ(exp∗(w1)v, exp∗(w2)v . . . , exp∗(wn)v)

λy(w1, w2, . . . , wn)

=

vuutdet
©¡
expy∗(wi)v, expy∗(wj)v

¢ªn
i,j=1

det {(wi, wj)}ni,j=1
, (65.5)

where now {wi} is any oriented basis for TyM. From this expression it follows
that

√
g = D(rθ)

s
det

½µ
r

∂

∂αi
|θ, r ∂

∂αj
|θ
¶¾n−1

i,j=1

= J(·, y)rn−1K(θ)

where

K(θ) :=

s
det

½µ
∂

∂αi
|θ, ∂

∂αj
|θ
¶¾n−1

i,j=1

.

Using these expression in Eq. (65.4) along with the observation that
∂K(θ)/∂r = 0 proves Eq. (65.1).
(Second more direct Proof.) Let (ρ, ω) denote a generic point in R+ × S

and dω denote the volume form on S = Sy ⊂ TyM. ThenZ
M

f(r, θ)dλ =

Z
TyM

f̃D dλy

=

Z
R+×S

f(ρ, ω)D(ρω)ρn−1dρdω,

where f̃(ρω) := f(ρ, ω). Therefore,Z
M

∆f(r)g(r, θ)dλ = −
Z
M

(∇f(r),∇g(r, θ)) dλ

= −
Z
M

f 0(r)∂g(r, θ)/∂r dλ

= −
Z
R+×S

f 0(ρ)∂g(ρ, ω)/∂ρD(ρω)ρn−1dρdω

=

Z
R+×S

∂
¡
f 0(ρ)D(ρω)ρn−1

¢
/∂ρ

D(ρω)ρn−1
g(ρ, ω)D(ρω)ρn−1dρdω

=

Z
M

∂
¡
f 0(r)Jrn−1

¢
/∂r

Jrn−1
g(r, θ) dλ,
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which proves Eq. (65.1).
To prove Eq. (65.2), we compute more directly:

∆f(r) = ∇ ·∇f(r) = ∇ · (f 0(r)∂/∂r) = ∇ ·
µ
f 0(r)
r

V

¶
=

µ
∂

∂r

f 0(r)
r

¶µ
∂

∂r
, V

¶
+

f 0(r)
r
∇ · V

= f 00(r)− f 0(r)
r

+
f 0(r)
r
∇ · V

which proves Eq. (65.2).
In particular we have that ∆r2 = 2∇ · V and

∆r2 = 2 +

µ
n− 1
r

+
∂ lnJ

∂r

¶
2r = 2

µ
n+ r

∂ lnJ

∂r

¶

Lemma 65.4. Let r(x) := d(x, y) as above, then

V r2(x) = 2r2(x),

∇r2 = 2V
and

∇ · V (y) = n.

Proof. We first claim that |V | = r. Moreover,

V r2(x) =
d

dt
|1r2(γx(t)) = d

dt
|1t2r2(x) = 2r2(x).

That is to say V r2 = 2r2. Moreover, if w ∈ TxM is perpendicular to V (x),
then wr2 = 0 so that ∇r2 is proportional to V. One way to argue this is
that V (x) points in the direction of maximum increase of r2 by the triangle
inequality. Hence

∇r2 =
¡∇r2, V ¢
(V, V )

V =
2r2

r2
V = 2V.

If we do not like this explanation, then use Gauss’s lemma I guess. Come back
to this point.
Now we wish to compute ∆r2 = 2∇ ·V.We would like to at least do this at

x = y. To this end, let us work out∇wV for w ∈ TyM. Setting σ(t) = exp(tw),
we find that

∇wV =
d

dt
|0//−1t (σ)V (σ(t)) =

d

dt
|0//−1t (σ)//t(σ)tw = w.

Therefore ∇ · V (y) =Pn
i=1(∇eiV, ei) = n and hence ∆r2(y) = 2n.



66

The Dirac Equation a la Roe’s Book

In this section, we consider the Dirac equation:

∂tS = iDS with St=0 = S0 given. (66.1)

Here D = γei∇ei is the Dirac operator on some spinor bundle over M. The
most interesting statement made by Roe about the Dirac equation is it’s finite
speed of propagation property. Given a compact region Ω ⊂M with smooth
boundary and a solution to Eq. (66.1), let

EΩ(t) :=

Z
Ω

|St(x)|2dλ(x)

be the energy of St in the region Ω. Let us begin by computing the derivative
of EΩ.

Lemma 66.1. Let Ω ⊂M be a compact region with smooth boundary, and S
be a solution to Eq. (66.1). Then

d

dt
EΩ(t) = i

Z
Ω

∇ ·Xt dλ = i

Z
∂Ω

(Xt, N) dσ, (66.2)

where Xt is the smooth vector field on M such that (Xt, Y ) = (γY St, St) for
all vector fields Y on M and N is the outward pointing normal to Ω and σ is
surface measure on Ωt.

Proof. Differentiating under the integral sign implies that

d

dt
EΩ(t) =

Z
Ω

n³
Ṡt, St

´
+
³
St, Ṡt

´o
dλ

=

Z
Ω

{(iDS, S) + (S, iDS)} dλ

= i

Z
Ω

{(DS,S)− (S,DS)} dλ (66.3)

= −
Z
Ω

Im (DS,S) dλ (66.4)
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We also have,

(∇∗X, ·) = ∇∗(X, ·) = ∇∗(γ·S, S)
= ((∇∗γ)·S, S) + (γ·∇∗S, S) + (γ·S,∇∗S)
= (γ·∇∗S, S)− (S, γ·∇∗S),

where we have made use of the fact that ∇γ = 0 and γ∗X = −γX . Taking
∗ = ei and · = ei and summing on i in the above equation implies that

∇ ·X = (DS,S)− (S,DS). (66.5)

Combining Eq. (66.3) and (66.5) along with the divergence (Stoke’s) theorem
proves Eq. (66.2).

Corollary 66.2. The total energy E(t) = EM (t) remains constant and solu-
tions to Eq. (66.1) are unique if they exist.

We now want to examine how EΩ(t) depends on Ω.

Lemma 66.3. Suppose that Ω ⊂ M is as above and φt : Ω → M is a one
parameter family of smooth injective local diffeomorphisms depending smoothly
on t and let Ωt := φt(Ω). Also define a vector field Yt on Ωt by φ̇t = Yt ◦ φt,
i.e. Yt := φ̇t ◦ φ−1t . If f :M → R is a smooth function, then

d

dt

Z
Ωt

fdλ =

Z
Ωt

∇ · (fYt) dλ =
Z
∂Ωt

f(Yt, N) dσ, (66.6)

where again N is the outward pointing normal to ∂Ωt and σ is surface measure
on Ωt.

Proof. SinceZ
Ωt

fdλ =

Z
φt(Ω)

fλ =

Z
Ω

φ∗t (fλ) =
Z
Ω

f ◦ φt φ∗tλ,

=

Z
Ω

f ◦ φt φ∗tλ

d
dtf ◦ φt = Ytf ◦ φt and

d

dt
φ∗tλ = φ∗t ((diYt + iYtd)λ) = φ∗t (∇ · Ytλ) ,

it follows that

d

dt

Z
Ωt

fdλ =

Z
Ω

Ytf ◦ φt φ∗tλ+
Z
Ω

f ◦ φt φ∗t (∇ · Ytλ)

=

Z
Ωt

Ytf λ+

Z
Ωt

f ∇ · Yt λ

=

Z
Ωt

∇ · (fYt) λ
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from which Eq. (66.6) follows.
Fix a point m ∈ M and let B(m,R) be the geodesic ball centered at

m ∈ M with radius R. If we believe that the speed of propagation of the
Dirac equation is 1, then we should have

e(t) :=

Z
B(m,R−t)

|St|2 dλ (66.7)

is non-increasing as t increases to R. The reason is that, we are shrinking the
ball at a rate equal to the speed of propagation, so no energy which was in the
wave at time T outside the ball B(m,R−T ) can enter the region B(m,R− t)
for t ≤ T. We will now verify that e(t) is non-increasing.

Proposition 66.4. For R smaller than the injectivity radius of M, the func-
tion e(t) in Eq. (66.7) is non-increasing as t increases to R.

Proof. Let φt : TmM → M be given by φt(v) = exp(tv) and Yt be
the locally defined vector field on M such that φ̇t(v) = Yt ◦ φt(v) for all v
small. Since φt(D) = B(m, t), where D is the unit disc in TmM, we have that
(Yt,N) = 1, by Gauss’s lemma. So By Lemmas 66.1 and 66.3,

d

dt
e(t) = i

Z
∂B(m,R−t)

(Xt, N) dσ −
Z
∂B(m,R−t)

|St|2(YR−t, N) dσ

= i

Z
∂B(m,R−t)

(Xt, N) dσ −
Z
∂B(m,R−t)

|St|2 dσ.

Now
|(Xt, N)| = |(γNS, S)| ≤ |γNS| |S| ≤ |S|2

since N is a unit vector and γN is an isometry. (Recall that γN is skew adjoint
and γ2N = −I.). This shows that

d

dt
e(t) = − Im

Z
∂B(m,R−t)

(Xt,N) dσ −
Z
∂B(m,R−t)

|St|2 dσ

≤
Z
∂B(m,R−t)

|S|2 dσ −
Z
∂B(m,R−t)

|St|2 dσ = 0.

Corollary 66.5. Suppose that the support of S0 is contained in Ω. Then the
support of St is contained in

Ωt := {x ∈M : d(x,m) < t for all m ∈ Ω}.
Proof. By repeating the argument and using the semi-group property of

eitD, we may and do assume that t is positive and less than the injectivity
radius ofM. Let x /∈ Ω̄t, so that there exists R > t such that B(x,R)∩Ω = ∅.
By the previous proposition, e(τ) :=

R
B(x,R−τ) |Sτ |2 dλ is decreasing and hence
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B(x,R−t)

|St|2 dλ = e(t) ≤ e(0) =

Z
B(x,R)

|S0|2 dλ = 0.

This shows that St ≡ 0 on B(x,R− t) and in particular at x.

66.1 Kernel Construction

Lemma 66.6. Suppose that U ⊂ RN is a open set and A : L2(E)→ Cr+1(U)
is bounded linear map. For each x ∈ U, let Tx ∈ L2(E) such that (Tx, S) =
AS(x) for all S ∈ L2(E). Then the map x ∈ U → Tx ∈ L2(E) is Cr —
smooth. Moreover, we have estimates of the derivatives of x→ Tx in terms of
the operator norm kAkop of A as an operator from A : L2(E)→ Cr+1(U).

Remark 66.7. The above Lemma may has well been formulated with L2(E)
replaced by an abstract Hilbert space H. The proof given below would still
go through without any change.

Proof. First notice that

|(Tx − Ty, S)| = |AS(x)−AS(y)| ≤ |∇AS|U |x− y|
≤ |AS|C1(U)|x− y| ≤ C|S|L2(E)|x− y|,

which shows that |Tx − Ty|L2(E) ≤ C|x − y|, so the T· is continuous. Let us
now consider the directional derivatives of Tx. For x ∈ U and v ∈ RN , let
BS(x, v) := ∂vAS(x). As above there exists Tx,v ∈ L2(E) such (Tx,v, S) =
∂vAS(x) = BS(x, v) for all S ∈ L2(E) and moreover (x, v) → Tx,v is locally
Lipschitz continuous and linear in v. Indeed,

|(Tx,v − Ty,v, S)| = |∂vAS(x)− ∂vAS(y)| ≤ |AS|C2(U) |x− y||v|
≤ kAkop |S|L2(E)|x− y||v|.

That is to say, x ∈ U → Tx,· ∈ B(RN , L2(E)) is a Lipschitz continuous map.
Now let x ∈ U and v ∈ RN , then

(Tx+v − Tx, S) = AS(x+ v)−AS(x) =

Z 1

0

∂vAS(x+ tv)dt

=

Z 1

0

(Tx+tv,v, S)dt,

which shows that

|Tx+v − Tx − Tx,v| ≤
Z 1

0

|Tx+tv,v − Tx,v| dt ≤ C|v|
Z 1

0

|tv| dt
= kAkop |v|2/2.

This shows that Tx is differentiable and that T 0xv = Tx,v. We have already
seen that T 0x is continuous. This shows that Tx is C

1. We may continue this
way inductively to finish the proof of the lemma.
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Proposition 66.8. Suppose that A : L2(E) → Cr+1(E) is a bounded oper-
ator, then AA∗ has an integral kernel which is Cr — smooth. Moreover the
Cr — norm of the kernel is bounded by the square of the operator norm for
A : L2(E)→ Cr+1(E).

Proof. Let x ∈M the map S ∈ L2(E)→ AS(x) ∈ Ex is a bounded linear
map and hence there is a unique element T (x, ·) ∈ L2(End(E,Ex)) such that

AS(x) =

Z
M

T (x, y)S(y)dy.

Notice that if ξ ∈ Γ (E), then

(ξ(x), AS(x)) =

Z
M

(ξ(x), T (x, y)S(y)) dy

=

Z
M

(T ∗(x, y)ξ(x), S(y)) dy,

which by the previous lemma shows that x→ T ∗(x, ·)ξ(x) ∈ L2(E) is a Cr —
map with bounds determined by kAkop .
(Surely one can show that there is a version of T (x, y) such that (x, y)→

T (x, y) is jointly measurable. We will avoid this issue here however.) Ignoring
measurability issues, we know that

A∗S(x) =
Z
M

T ∗(y, x)S(y)dy

so the

AA∗S(x) =
Z
M×M

T (x, y)T ∗(z, y)S(z)dydz

=

Z
M

k(x, z)S(z)dz,

where

k(x, z) :=

Z
M

T (x, y)T ∗(z, y)dy.

Even though the derivation of k above was suspect because of measurability
questions, the formula make perfect sense. Indeed suppose that ξ and η are
in Γ (E), then

(η(x), k(x, z)ξ(z))Ex =

Z
M

(η(x), T (x, y)T ∗(z, y)ξ(z))Ex dy

=

Z
M

(T ∗(x, y)η(x), T ∗(z, y)ξ(z))Ey dy

= (T ∗(x, ·)η(x), T ∗(z, ·)ξ(z))L2(E) .
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Furthermore this shows that (x, z)→ (η(x), k(x, z)ξ(z))Ex is C
r in (x, y) with

a Cr norm which is controlled by the Cr — norms of η, ξ, and kAk2op . Since
η and ξ are arbitrary, we find that k(x, z) is Cr as well and the Cr — norm is
bounded by a constant times kAk2op .
So the only thing left to check is that

AA∗S(x) =
Z
M

k(x, z)S(z)dλ(z).

Letting ξ, η ∈ Γ (E) as before, then

(η(x), k(x, z)ξ(z))Ex =

Z
M

(η(x), T (x, y)T ∗(z, y)ξ(z))Ex dy

= (η(x), (AT ∗(z, ·)ξ(z)) (x))Ex
so thatZ

M

(η(x), k(x, z)ξ(z))Ex dx =

Z
M

(η(x), (AT ∗(z, ·)ξ(z)) (x))Ex dx

=

Z
M

(A∗η(x), T ∗(z, x)ξ(z))Ex dx

=

Z
M

(T (z, x)A∗η(x), ξ(z))Ex dx.

Integrating this last expression over z shows thatZ
M×M

(η(x), k(x, z)ξ(z))Ex dxdz = (AA
∗η, ξ)L2(E) = (η,AA∗ξ)L2(E).

Since η is arbitrary we conclude that

AA∗ξ(x) =
Z
M

k(x, z)ξ(z)dz.

Using the above results, one can show that f(D) has a smooth kernel for
any function f : R→ C which has rapid decrease. To see this, by writing f in
its real and imaginary parts, we may assume that f is real valued. Further-
more, by decomposing f into its positive and negative parts we may assume
that f ≥ 0. Let g = f1/2, a function with rapid decrease still, we see that g(D)
is a self-adjoint smoothing operator. Therefore f(D) = g2(D) has a smooth
integral kernel. In this way we find that e−tD

2/2 has a smooth integral kernel.
Let kt(x, y) = e−tD

2/2(x, y) denote the smooth kernel.

Proposition 66.9. The function kt(x, y) → 0 in C∞ as t → 0 off of any
neighborhood of the diagonal x = y in M ×M.
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Proof. Let δ > 0 be given, and let φ and ψ be smooth functions on R such
that φ+ψ = 1, the support of φ is contained in (−δ, δ) and ψ is supported in
{x : |x| ≥ δ/2}. Also let pt(λ) = (2πt)−1/2e−λ2/2t. Then

e−tD
2/2 =

Z
R
pt(λ)e

iλDdλ =

Z
R
pt(λ)φ(λ)e

iλDdλ+

Z
R
pt(λ)ψ(λ)e

iλDdλ.

This can be written as e−tD
2/2 = ht(D) + gt(D), where ht(ξ) :=R

R pt(λ)φ(λ)e
iλξdλ and gt(ξ) =

R
R pt(λ)ψ(λ)e

iλξdλ. Now we notice that

|ξngt(ξ)| =
¯̄̄̄
i−n

Z
R
pt(λ)ψ(λ)∂

n
λe

iλξdλ

¯̄̄̄
=

¯̄̄̄
in
Z
R
eiλξ∂nλ (pt(λ)ψ(λ)) dλ

¯̄̄̄
≤ Kn(t)

where limt↓0Kn(t) = 0 for each n. From this it follows for any n that
Dngt(D) : L

2(E) → L2(E) tends to zero in the operator norm as t → 0.
This fact, elliptic regularity, and the Sobolev embedding theorems implies
that gt(D) : L2(E) → Cr(E) tends to zero in operator norm for any r ≥ 0.
Using the previous proposition, this shows that the integral kernel of gt(D)
goes to 0 in C∞. (Note, Roe proves some of this by appealing to the closed
graph theorem for Frechet spaces.) Finally, ht(D) =

R
R pt(λ)φ(λ)e

iλDdλ is an
operator which does not increase the support of a section by more than size
δ. This implies that the support of the integral kernel of ht(D) is contained
{(x, y) : d(x, y) < 3δ}. Since δ is arbitrary, we are done.

66.2 Asymptotics by Sobolev Theory

Let me end this section by explaining how Roe shows that the formal asymp-
totic expansions of the heat kernel are close to the heat kernel.
Let ξ ∈ Em and let wt(x) := etL(x,m)ξ, then¡

∂t +D2
¢
wt = 0 and lim

t↓0
wt = ξδm. (66.8)

Conversely, if wt solves Eq. (66.8), then for all smooth sections S of E,
∂t(e

−(T−t)D2

S,wt) = 0. Therefore

(S,wT ) = lim
t↓0
(e−(T−t)D

2

S,wt) =
³³

e−TD
2

S
´
(m), ξ

´
=

Z ³
S(x),

h
e−TD

2

(m,x)
i∗

ξ
´
dx =

Z ³
S(x), e−TD

2

(x,m)ξ
´
dx,

which shows that wt(x) := e−tD
2

(x,m)ξ. since S is arbitrary.
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Now suppose that St is an approximate fundamental solution at ξm ∈ Em,
so that ¡

∂t +D2
¢
St = tkrt and lim

t↓0
St = ξδm

where rt is a smooth section of Γ (E). Let αt denote the solution to¡
∂t +D2

¢
αt = tkrt with α0 = 0,

which can be written by du Hamel’s principle as αt =
R t
0
e−(t−τ)D

2

τkrτdτ.
Since wt := St − αt satisfies¡

∂t +D2
¢
wt = 0 with lim

t↓0
wt = ξδm,

we find the wt = e−tD
2

(m, ·). Therefore, for any k > n/2,

|e−tD2

(m, ·)− St| = |αt| =
¯̄̄̄Z t

0

e−(t−τ)D
2

τkrτdτ

¯̄̄̄
≤ Ck

°°°°Z t

0

e−(t−τ)D
2

τkrτdτ

°°°°
L2k(E)

≤ Ck

°°°°Dk

Z t

0

e−(t−τ)D
2

τkrτdτ

°°°°
L2(E)

+ Ck

°°°°Z t

0

e−(t−τ)D
2

τkrτdτ

°°°°
L2(E)

.

wherein the second to last inequality we have used the Sobolev embedding
theorem and in the last we use elliptic regularity. Since e−tD

2

is a bounded
operator, we find that

|e−tD2

(m, ·)− St| ≤ Ck

°°°°Z t

0

e−(t−τ)D
2

τkDkrτdτ

°°°°
L2(E)

+ Ck

°°°°Z t

0

e−(t−τ)D
2

τkrτdτ

°°°°
L2(E)

≤ Ckt
k+1 sup

0≤τ≤t

n°°Dkrτ
°°
L2(E)

+ krτkL2(E)
o
= Ktk+1.



67

Appendix: VanVleck Determinant Properties

67.1 Proof of Lemma 61.3

The first step is to get a more explicit expression for D. To this end, fix
v ∈ TyM and for any w ∈ TyM, let

Yw(t) :=
d

ds
|0 exp(t (v + sw)) = exp∗ (tw)tv (67.1)

and γ(t) = exp(tv). Then Yw solves Jacobi’s equation:

∇2
dt2

Yw(t) =
∇2
dt2

d

ds
|0 exp(t (v + sw))

=
∇
dt

∇
ds
|0 d
dt
exp(t (v + sw)) (No Torsion)

=

·∇
dt
,
∇
ds
|0
¸
d

dt
exp(t (v + sw)) (

∇
dt

d

dt
exp(t (v + sw)) = 0)

= R(γ̇(t), Yw(t))γ̇(t). (Definition of R)

Yw obeys the initial conditions

Yw(0) =
d

ds
|0 exp(0 (v + sw)) = 0

and

∇
dt
|0Yw(0) = ∇

ds
|0 d
dt
|0 exp(t (v + sw))

=
∇
ds
|0 (v + sw) = w.

Notice that Yw(t) ∈ Tγ(t)M for each t, so by using parallel translation u(t) :=
//t(γ) along γ we may pull this back to TyM. Set

Zw(t) = u−1(t)Yw(t).
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Using the fact that ∇dtu(t) = 0, the previous equations imply that Zw satisfies:

Z̈w(t) = Aγ(t)Zw(t) with Zw(0) = 0 and Żw(0) = w, (67.2)

where

Aγ(t)w = u−1(t)R(γ̇(t), u(t)w)γ̇(t)

= u−1(t)R(u(t)v, u(t)w)u(t)v. (67.3)

Since u(t) is orthogonal for all t, we may now compute D(v) as

D(v) = λy(Zw1(1), . . . , Zwn(1))/λy(w1, . . . , wn) = detZγ(1), (67.4)

where Zγ is the matrix solution to the differential equation

Z̈γ(t) = Aγ(t)Zγ(t) with Zγ(0) = 0 and Żγ(0) = I. (67.5)

By Taylor’s theorem,

Zγ(1) = I +
1

2
Z̈γ(0) +

1

6
Z(3)γ (0) +

Z 1

0

Z(4)γ (t)dµ(t), (67.6)

where µ is a positive measure such that µ([0, 1]) = 1/4!. Now from the differ-
ential equation Z̈γ(0) = 0,

Z(3)γ (t) = Ȧγ(t)Zγ(t) +Aγ(t)Żγ(t) and

Z(4)γ (t) = Äγ(t)Zγ(t) + 2Ȧγ(t)Żγ(t) +Aγ(t)Z̈γ(t).

In particular Z(3)γ (0) = Aγ(0) = R(v, ·)v, and
Z(4)γ (t) = Äγ(t)Zγ(t) + 2Ȧγ(t)Żγ(t) +Aγ(t)Aγ(t)Zw(t).

Now Aγ(t) = O(v2),

Ȧγ(t) = u−1(t)
¡∇u(t)vR

¢
(u(t)v, u(t)w)u(t)v = O(v3),

Äγ(t) = u−1(t)
³
∇2u(t)v⊗u(t)vR

´
(u(t)v, u(t)w)u(t)v = O(v4)

and hence Z(4)γ (t) = O(v3). Using these estimates in Eq. (67.6) shows that

Zγ(1) = I +
1

6
R(v, ·)v +O

¡
v3
¢
. (67.7)

Taking the determinant of this equation shows that

D(v) = 1 +
1

6
tr (w→ R(v, w)v) +O(v3)

= 1− 1
6
(Ric v, v) +O(v3).

Before finishing this section, let us write out Eq. (67.7) in detail.



67.2 Another Proof of Remark 61.2: The Symmetry of J(x, y). 1185

Lemma 67.1. Let v, w ∈ TyM, then

//−11 (γv) exp∗(wv) = w +
1

6
R(v, w)v +O

¡
v3
¢
w. (67.8)

In particular we have for v,w, u ∈ TyM that

(exp∗(wv), exp∗(wv))

= (w +
1

6
R(v, w)v +O

¡
v3
¢
w, u+

1

6
R(v, u)v +O

¡
v3
¢
u)

= (w, u) +
1

6
(w,R(v, u)v) +

1

6
(R(v,w)v, u) +O

¡
v3
¢
(w, u)

= (w, u)− 1
3
(R(w, v)v, u) +O

¡
v3
¢
(w, u). (67.9)

67.2 Another Proof of Remark 61.2: The Symmetry of
J(x, y).

Recall that λ denotes the Riemannian volume form on M and

J(x, y) = (exp∗x λ)v /λx

where expx(v) = y. Also recall that D(v) := (exp∗x λ)v /λx where x = π(v)
and π : TM → M is the canonical projection map. The precise meaning of
this equation is, given any basis {wi}ni=1 for TxM, then

D(v) = λ(exp∗(w1)v, . . . , exp∗(wn)v)/λx(w1, . . . , wn) = det(Zγ(1)),

where wv =
d
ds |0 (v + sw) ∈ TvTxM and Zγ is defined in Eq. (67.2) above. In

particular,

exp∗wv :=
d

ds
|0 exp(v + sw).

Notice that
J(x, y) = D(exp−1x (y)).

Let i : TM → TM denote the involution given by i(v) = −γ̇(1), where
γ(t) = exp(tv) is the geodesic determined by v. Alternatively we may describe
i(v) = −//1(γ)v. Now if v = exp−1x (y), i.e. y = expx(v) = exp(v), then
exp(i(v)) = x. That is to say, i(v) = exp−1y (x).Hence to show J(x, y) = J(y, x)
if and only if D(v) = D(i(v)). This is what is proved in A. L. Bess, “Manifolds
all of whose Geodesics are Closed,” see Lemma 6.12 on p. 156.
Now let us work out D(i(v)). Let σ(t) = γ(1 − t) = exp(ti(v)). Since

//t(σ) = //1−t(γ)//1(γ)−1, it follows after a short calculation that Aσ(t) =
u(1)Aγ(1 − t)u(1)−1. Let W (t) := u(1)−1Zσ(1 − t)u(1), then W (1) = 0,

Ẇ (1) = −I and
Ẅ (t) = u(1)−1Aσ(1− t)Zσ(1− t)u(1) =W (t) = Aγ(t)W (t).
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Notice that

D(i(v)) = detZσ(1) = det
£
u(1)−1Zσ(1)u(1)

¤
= detW (0).

So to finish the proof, we must show that detW (0) = detZ(1). For this
observe that Aγ(t) is a symmetric operator (by symmetry properties of the
curvature tensor) and hence

d

dt

n
Ż∗(t)W (t)− Z∗(t)Ẇ (t)

o
= Z̈∗(t)W (t)− Z∗(t)Ẅ (t)

= Z∗(t)Aγ(t)W (t)− Z∗(t)Aγ(t)W (t) = 0

and hence n
Ż∗(t)W (t)− Z∗(t)Ẇ (t)

o
|10 = 0.

This implies that

W (0) = Ż∗(0)W (0)− Z∗(0)Ẇ (0) = Ż∗(1)W (1)− Z∗(1)Ẇ (1) = Z∗(1).

Therefore detW (0) = detZ∗(1) = detZ(1) as desired.

67.3 Normal Coordinates

Notation 67.2 Suppose that o ∈ M is given and let x(m) := exp−1o (m) ∈
ToM for m in a neighborhood of o. The chart x is called a geodesic normal
coordinate system near o.

In geodesic coordinates, t→ tx is a geodesic, therefore if Γ is the Christofel
symbols in the this coordinate system, we have

0 =
∇
dt

d

dt
(tx) =

µ
d

dt
+ Γ (tx)hxi

¶
d

dt
(tx) = Γ (tx)hxix

for all x near 0. Since ∇ has zero Torsion we also have that
Γ (z)hxiy = Γ (z)hyix

for all x, y, z. From the previous two equations it follows that

0 = Γ (0)hxiy for all x, y,
i.e. that Γ (0) = 0 and that

∂xΓ (0)hxix = 0.
Let B(x, y, z) := ∂xΓ (0)hyiz, then we have shown that

B(x, y, z) = B(x, z, y) and B(x, x, x) = 0 for all x, y, z. (67.10)
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Thus

0 =
d

dt
|0B(x+ ty, x+ ty, x+ ty) = B(y, x, x) + 2B(x, x, y)

and therefore,

0 =
d

dt
|0 {B(y, x+ tz, x+ tz) + 2B(x+ tz, x+ tz, y)}

= 2B(y, x, z) + 2B(z, x, y) + 2B(x, z, y)

= 2 (B(y, z, x) +B(z, x, y) +B(x, y, z))

wherin the last equality we use Eq. (67.10). Hence we have shown that

∂xΓ (0)hyiz + cyclic = 0. (67.11)

So at x = 0 the curvature tensor is given by R = dΓ and hence

R(x, y)x = ∂xΓ (0)hyix− ∂yΓ (0)hxix
= ∂xΓ (0)hyix+ ∂xΓ (0)hyix+ ∂xΓ (0)hxiy
= 3∂xΓ (0)hyix = 3∂xΓ (0)hxiy

and hence

∂xΓ (0)hxiy = 1

3
R(x, y)x or

Γ (x)hxiy = 1

3
R(x, y)x+O(x2)hx, yi.

Therefore, if

∂2z (x, y)|z=0 = ∂z(Γ hzix, y)|z=0 + ∂z(x, Γ hziy)|z=0
=
1

3
(R(z, x)z, y) +

1

3
(x,R(z, y)z)

=
2

3
(R(z, x)z, y)

and therefore by Taylor’s theorem we learn that

(xz, yz) = (x, y) +
1

2!

2

3
(R(z, x)z, y) +O(z3)

= (x, y)− 1
3
(R(x, z)z, y) +O(z3)

and hence we have reproved Lemma 67.1.
We now change notation a bit. Let E → M be a vector bundle with

connection ∇.
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Notation 67.3 Let x be a chart on M such that x(o) = 0 and let γv(t) =
x−1(tv) for all v ∈ Rdim(M) =: V. Let u u : D(x) → Gl(E) be the local
orthonormal frame given by

u(m) = //1(γx(m)), i.e. u(x
−1(tv)) = //t(γv) : Eo → Em (67.12)

for all v ∈ V sufficiently small. Also let Γ = Γu = u−1∇u be the associated
connection one form.

From Eq. (67.12) it follows that

∇
dt
u(x−1(tv)) =

∇
dt
//t(γv) = 0

and in particular at t = 0 this shows that

0 = vi∇∂iu|γv(t) = viu (γv(t))Γ (∂i|γv(t)) = u (γv(t))Γ (v
i∂i|γv(t)).

That is to say
Γ (vi∂i|γv(t)) = 0 for all v ∈ V.

In particular at t = 0 we learn that Γ (∂i|o) = 0 and

0 =
d

dt
|0Γ (vi∂i|γv(t)) = vivj∂jΓ (∂i)|o for all v ∈ V.

This shows that ∂jΓ (∂i)|o = −∂iΓ (∂j)|o. Since
RE(∂i, ∂j)|o = u−1∇2∂i∧∂ju|o

= u−1(o) {∂iΓ (∂j)− ∂jΓ (∂i) + [Γ (∂i), Γ (∂j)]} |o
= −2∂jΓ (∂i)|o

from which it follows that

∂jΓ (∂i)|o = −1
2
RE(∂i, ∂j)|o.

From Taylor’s theorem we find

Γ (∂i)|m = −1
2
xj(m)RE(∂i, ∂j)|o+o(|x(m)|2) = −1

2
RE(∂i, x

j(m)∂j)|o+o(|x(m)|2).

This result is summarized as follows.

Proposition 67.4. Keeping the notation as above and let w ∈ Rdim(M), then

Γ (wi∂i) = −1
2
RE(wi∂i|o, xj∂j|o) + o(x2)(w) (67.13)

near o ∈M. In particular if x(m) = exp−1o (m) are normal coordinates on M,
then
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wi∂i|m = d

dt
|0x−1(x(m) + tw) =

d

dt
|0 exp(x(m) + tw)

= exp∗(wx(m)).

Therefore, Eq. (67.13) may be written as

Γ (exp∗(wx(m))) = −1
2
RE(w,x(m)) +O(x2(m))(w).

Proof. The quick proof of these results is as follows. We work in the local
frame u. Write //t(σ) = u(σ(t))Pt(σ) and recall the formula

d

ds
|0Pt(Σs) = Pt(Σs)

Z t

0

RE
//τ (Σs)

(Σ̇s(τ), Σ
0
s(τ))dτ − Γ (Σ0

s(t))Pt(Σs).

Apply this to Σs(t) = x−1(t(x(m) + sv)) and use that fact that in the frame
defined by u, Pt(Σs) = id so that

0 =

Z t

0

RE
//τ (Σ0)

(Σ̇0(τ), Σ
0
0(τ))dτ − Γ (Σ0

0(t)).

Therefore, at t = 1,

Γ (vi∂i|m) =
Z 1

0

RE
//τ (Σ0)

(Σ̇0(τ), Σ
0
0(τ))dτ

= −
Z 1

0

RE
//τ (Σ0)

(τvi∂i|x−1(τx(m)), xj(m)∂j |x−1(τx(m)))dτ

= −
Z 1

0

RE
//τ (Σ0)

(vi∂i|x−1(τx(m)), xj(m)∂j |x−1(τx(m)))τdτ

= −1
2
RE(vi∂i|o, xj(m)∂j |o) +O(x2(m))

= −1
2
RE(vi∂i|o, x(m)) +O(x2(m))(v).





68

Miscellaneous

68.1 Jazzed up version of Proposition 68.1

Proposition 68.1. Let α > −1, R, K, P, Q and V be as above. Then the
series in Eq. (60.5) and Eq. (60.11) is convergent and is equal to Pt = etL—
the unique solution to Eq. (60.1). Moreover,

kP −Kkt ≤ κ(t) kKkt tα+1 = O(t1+α), (68.1)

where kfkt := max0≤s≤t |fs| and κ(t) is an increasing function of t, see Eq.
(68.4).

Proof. By making the change of variables r = s+ u(t− s) we find thatZ t

s

(t− r)α(r − s)βdr = C(α, β)(t− s)α+β+1 (68.2)

where

C(α, β) :=

Z 1

0

uα(1− u)βdu = B(α+ 1, β + 1),

and B is the beta function. From Eq. (1.5.5) of Lebedev, “Special Functions
and Their Applications”, p.13,

C(α, β) = B(α+ 1, β + 1) =
Γ (α+ 1)Γ (β + 1)

Γ (α+ β + 2)
. (68.3)

(See below for a proof of Eq. (68.3).)
By repeated use of Eq. (68.2),
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|(QmR)t| =
¯̄̄̄Z
t∆m

Rt−smRsm−sm−1 . . . Rs2−s1Rs1ds

¯̄̄̄
≤ Cm

Z
t∆m

(t− sm)
α
(sm − sm−1)

α
. . . (s2 − s1)

α
sa1ds

= CmC(α, α)

Z
t∆m−1

·
(t− sm−1)

2α+1 (sm−1 − sm−2)
α×

. . . (s2 − s1)
α
sa1

¸
ds

= CmC(α, α)C(α, 2α+ 1)C(α, 3α+ 2) . . .

. . . C(α, (m− 1)α+m− 2)
Z t

0

(t− s1)
mα+m−1 ds1

= CmC(α, α)C(α, 2α+ 1)C(α, 3α+ 2) . . .

. . . C(α, (m− 1)α+m− 2)C(α,mα+m− 1)t(m+1)α+m.
Now from Eq. (68.3) we find that

C(α,α)C(α, 2α+ 1)C(α, 3α+ 2) . . . C(α,mα+m− 1)

=
Γ (α+ 1)Γ (α+ 1)

Γ (2α+ 2)

Γ (α+ 1)Γ (2α+ 2)

Γ (3α+ 3)
×

Γ (α+ 1)Γ (3α+ 3)

Γ (4α+ 4)
. . .

Γ (α+ 1)Γ (mα+ 1)

Γ ((m+ 1)α+m+ 1)

=
Γ (α+ 1)m

Γ ((m+ 1)α+m+ 1)
.

Therefore,

|(QmR)t| ≤ Cm Γ (α+ 1)m

Γ ((m+ 1)α+m+ 1)
tαtm(α+1)

and thus the series in Eq. (60.11) is absolutely convergent and |Vt| ≤ (a +
1)κ(t)tα where

κ(t) = (α+ 1)−1
∞X

m=0

Cm Γ (α+ 1)m

Γ ((m+ 1)α+m+ 1)
tm(α+1) (68.4)

which is seen to be finite by Stirlings formula,

Γ (m(α+ 1) + 1) v (2π)1/2e−(m(α+1)+1) (m(α+ 1) + 1)(m(α+1)+1/2) ,

see Eq. (1.4.12) of Lebedev.
Using the bound on V and the uniform boundedness of Kt,Z t

0

|KsVt−s| ds ≤ κ(t) kKkt (α+ 1)
Z t

0

(t− s)α ds = κ(t) kKkt tα+1 (68.5)

and hence Pt defined in Eq. (60.10) is well defined and is continuous in t.
Moreover, (68.5) implies Eq. (68.1) once we shows that Pt = etL. This is
checked as follows,
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d

dt

Z t

0

Kt−sVsds = Vt +

Z t

0

K̇t−sVsds = Vt +

Z t

0

(LKt−s −Rt−s)Vsds

= Vt + L

Z t

0

Kt−sVsds− (QV )t = L

Z t

0

Kt−sVsds+Rt.

Thus we have,

d

dt
Pt = K̇t + L

Z t

0

Kt−sVsds+Rt

= LKt + L

Z t

0

Kt−sVsds = LPt.

68.1.1 Proof of Eq. (68.3)

Let us recall that Γ (x) :=
R∞
0

txe−tdt/t and hence let z = x + y and then
x = uz we derive,

Γ (α+ 1)Γ (β + 1) =

Z
[0,∞)2

xαyβe−(x+y)dxdy

=

Z ∞
0

dx

Z ∞
x

dz xα(z − x)βe−z

=

Z
dxdz10<x<z<∞ xα(z − x)βe−z

=

Z ∞
0

dz

Z 1

0

duuα(1− u)βzα+β+1e−z

= C(α, β)Γ (α+ β + 2),

i.e.

C(α, β) =
Γ (α+ 1)Γ (β + 1)

Γ (α+ β + 2)
.

68.1.2 Old proof of Proposition 60.1

Proof. Taking norms of Eq. (60.8) shows that

kQmKkt = kKktCm

Z
t∆m

(s2 − s1)
α (s3 − s2)

α . . . (sm − sm−1)
α (t− sm)

α ds,

where ds = ds1ds2 . . . dsm. To evaluate this last integral, we will make use
Eq. (68.2) to find of Repeated use of Eq. (68.2) gives,
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t∆m

(s2 − s1)
α
(s3 − s2)

α
. . . (sm − sm−1)

α
(t− sm)

α
ds

=C(α, α)

Z
t∆m−1

·
(s2 − s1)

α (s3 − s2)
α×

. . . (sm−1 − sm−2)
α (t− sm−1)

2α+1

¸
ds

= C(α, α)C(α, 2α+ 1)

Z
t∆m−2

·
(s2 − s1)

α
(s3 − s2)

α×
. . . (sm−2 − sm−3)

α
(t− sm−2)

3α+2

¸
ds

= C(α, α)C(α, 2α+ 1)C(α, 3α+ 2)×

. . . C(α, (m− 1)α+m− 2)
Z t

0

(t− s1)
mα+m−1

ds1

= C(α, α)C(α, 2α+ 1)C(α, 3α+ 2)×

. . . C(α, (m− 1)α+m− 2) t
mα+m

mα+m
.

Now from Eq. (68.3) we find that

C(α, α)C(α, 2α+ 1)C(α, 3α+ 2) . . . C(α, (m− 1)α+m− 2)

=
Γ (α+ 1)2

Γ (2α+ 2)

Γ (α+ 1)Γ (2α+ 2)

Γ (3α+ 3)
×

. . .
Γ (α+ 1)Γ ((m− 1)α+m− 1)

Γ (mα+m)

=
Γ (α+ 1)m

Γ (mα+m)
.

Combining these results gives the estimate,

kQmKkt ≤ kKkt
(CΓ (α+ 1))

m

Γ (mα+m)

tmα+m

mα+m

= kKkt
¡
CΓ (α+ 1)tα+1

¢m
Γ (m(α+ 1) + 1)

v kKkt
¡
CΓ (α+ 1)tα+1

¢m em(α+1)+1

(2π)1/2 (m(α+ 1) + 1)
(m(α+1)+1/2)

= kKkt

³
CΓ (α+ 1) (et)

α+1
´m

(2π)1/2e (m(α+ 1) + 1)
(m(α+1)+1/2)

,

where the second to last expression is a result of Stirlings formula, Eq. (1.4.12)
of Lebdev.
From this estimate we learn that

P∞
m=0Q

mK is uniformly convergent on
compact subsets of [0,∞) and that
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∞X

m=0

QmK −K

°°°°°
t

≤
∞X

m=1

kQmKkt

≤ kKkt
∞X

m=1

¡
CΓ (α+ 1)tα+1

¢m
Γ (m(α+ 1) + 1)

= O(t1+α).

So it only remains to prove that P :=
P∞

m=0Q
mK solves (60.1).

Now by the chain rule and the fundamental theorem of calculus, d
dt(Qf)t =R t

0
ḟt−sRsds+ f0Rt or equivalently

d

dt
(Qf) = Qḟ + f0R.

Applying this formula inductively using the fact that (QmK)0 = 0 if m ≥ 1
implies that

d

dt
(QmK) = Qm−1 d

dt
(QK) = QmK̇ +Qm−1 (K0R)

= Qm (LK −R) +Qm−1R

= LQmK −QmR+Qm−1R,

wherein the last equality we have used the fact that L commutes with Q.
Setting PN

t :=
PN

m=0Q
mK, we find using the previous equation that

d

dt
PN
t = LPN

t −
¡
QNR

¢
t

or equivalently that

PN
t = I +

Z t

0

LPN
s ds−

Z t

0

¡
QNR

¢
s
ds. (68.6)

Since, °°QNR
°°
t
≤ kRkt

¡
CΓ (α+ 1)tα+1

¢N
Γ (N(α+ 1) + 1)

→ 0 as N →∞,

we may pass to the limit, N →∞, in Eq. (68.6) to conclude that

Pt = I +

Z t

0

LPs ds.

This completes the proof.
For later purposes, let us rework the above derivative aspects of the proof.

Let

Rm(s) :=

Z
0≤s1≤s2≤···≤sm−1≤s

Rs−sm−1Rsm−1−sm−2 . . . Rs2−s1Rs1ds

=
¡
Qm−1R

¢
s
,
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then by Eq. (60.6)

(QmK)t =

Z t

0

Kt−sRm(s)ds.

Hence

d

dt
(QmK)t = Rm(t) +

Z t

0

d

dt
Kt−sRm(s)ds

= Rm(t) +

Z t

0

(LKt−s −Rt−s)Rm(s)ds

= Rm(t) + L (QmK)t −Rm+1(t)

= L (QmK)t +
¡
Qm−1R

¢
t
− (QmR)t .

as before.
Taking norms of this equation implies that

|(Qmf)t| ≤ Cm

Z
t∆m

|fs1 | (s2 − s1)
α
(s3 − s2)

α
. . . (sm − sm−1)

α
(t− sm)

α
ds

≤ Cmtαm
Z
t∆m

|fs1 | ds =Cmtαm
Z t

0

|fs1 |
(t− s1)

m−1

(m− 1)! ds1

≤
¡
Ct1+α

¢m
m!

Z t

0

|fs| dµm(s) ≤
¡
Ct1+α

¢m
m!

max
0≤s≤t

|fs| , (68.7)

where dµm(s) := m (t− s)
m−1

t−mds, a probability measure on [0, t]. This
shows that kQmfkt ≤

¡
Ct1+α

¢m kfkt /m!. From this estimate we learn thatP∞
m=0Q

mK is uniformly convergent on compact subsets of [0,∞) and that°°°°°
∞X

m=0

QmK −K

°°°°°
t

≤
∞X

m=0

kQmKkt ≤ eCt
1+α − 1 = O(t1+α)).

d

dt

Z t

0

Kt−sVsds = lim
δ→0

1

δ

ÃZ t+δ

0

Kt+δ−sVsds−
Z t

0

Kt−sVsds

!

= lim
δ→0

1

δ

ÃZ t+δ

t

Kt+δ−sVsds+
Z t

0

(Kt+δ−s −Kt−s)Vsds

!

= lim
δ→0

Ã
1

δ

Z t+δ

t

Kt−sVsds+
1

δ

Z t+δ

t

(Kt+δ−s −Kt−s)Vsds

!

+
d

dδ

Z t

0

Kt+δ−sVsds

= Vt +

Z t

0

K̇t−sVsds = Vt +

Z t

0

(LKt−s −Rt−s)Vsds

= Vt + L

Z t

0

Kt−sVsds− (QV )t = L

Z t

0

Kt−sVsds+Rt
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68.1.3 Old Stuff related to Theorem 61.7

Proof. Let

F (t, x, y) =

Z t

0

Z
M

k(t− s, x, z)v(s, z, y)dλ(z)ds

so that p(t, x, y) = k(t, x, y) + F (t, x, y). For δ > 0 set

Fδ(t, x, y) =

Z t

0

Z
M

k(t+ δ − s, x, z)v(s, z, y)dλ(z)ds,

then

∂tFδ(t, x, y) =

Z
M

k(δ, x, z)v(t, z, y)dλ(z)

+

Z t

0

Z
M

∂tk(t+ δ − s, x, z)v(s, z, y)dλ(z)ds

=

Z
M

k(δ, x, z)v(t, z, y)dλ(z)

+

Z t

0

Z
M

Lxk(t+ δ − s, x, z)v(s, z, y)dλ(z)ds

−
Z t

0

Z
M

r(t+ δ − s, x, z)v(s, z, y)dλ(z)ds

=

Z
M

k(δ, x, z)v(t, z, y)dλ(z) + LxFδ(t, x, y)

−
Z t

0

Z
M

r(t+ δ − s, x, z)v(s, z, y)dλ(z)ds.

We may let δ → 0 in this last expression using the fact that Kt is uniformly
bounded on Γl to find that

lim
δ↓0

Fδ(t, x, y) = F (t, x, y)

and

lim
δ↓0

∂tFδ(t, x, y) = v(t, x, y) + LxF (t, x, y)

−
Z t

0

Z
M

r(t− s, x, z)v(s, z, y)dλ(z)ds

with the limits being uniform in t. Also by equation (62.1) and (62.2),

v(t, x, y)−
Z t

0

Z
M

r(t− s, x, z)v(s, z, y)dλ(z)ds = r(t, x, y),

and therefore ∂tF exists and
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∂tF (t, x, y) = LxF (t, x, y) + r(t, x, y).

Hence

∂tp(t, x, y) = ∂tk(t, x, y) + ∂tF (t, x, y)

= Lxk(t, x, y)− r(t, x, y) + LxF (t, x, y) + r(t, x, y)

= Lx (k(t, x, y) + F (t, x, y)) = Lxp(t, x, y).

For s < t, let

b(t, s, x, y) :=

Z
M

k(t− s, x, z)v(s, z, y)dλ(z).

It is clear the b is smooth in t and s and is Cl in (x, y), moreover

lim
s↑0
kb(t, s, x, y)− v(t, x, y)kCl(x,y) = 0.

Hence we set b(t, t, x, y) := v(t, x, y) so that b(t, s, ·, ·) is continuous for s ∈ [0, t]
in the space of Cl sections Γl. Similarly, for s < t,

∂tb(t, s, x, y) =

Z
M

k̇(t− s, x, z)v(s, z, y)dλ(z)

=

Z
M

(Lxk(t− s, x, z)− r(t− s, x, z)) v(s, z, y)dλ(z)

= Lxb(t, s, x, y)−
Z
M

r(t− s, x, z)v(s, z, y)dλ(z).

From this last expression and our previous comments, lims↑0 Lxb(t, s, x, y) =
Lxv(t, x, y) in Γl−2 and hence

lim
s↑0

∂tb(t, s, x, y) = Lxv(t, x, y) in Cl−2.

More precisely, we will construct p(t, x, y) as

p(t, x, y) =
∞X

m=0

Z
t∆m

Z
Mm

k(t− sm, x, ym)r(sm − sm−1, ym, ym−1) (68.8)

r(sm−1 − sm−2, ym−1, ym−2) . . . r(s1, y1, y)dsdy,

Consider,

∂tp(t, x, y) = ∂tk(t, x, y) +

Z t

0

Z
M

k(t− s, x, z)v(s, y, z)dsdλ(y).

is a bounded operator and its derivatives in s up to order k is a convergent
sum in converge.
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Remarks on Covariant Derivatives on Vector
Bundles

Let π : E → M be a vector bundle with fiber W. A local frame u on E is a
local section of the bundle Aut(V,E) → M, i.e. for m ∈ D(u) (the domain
of u) u(m) : W → Em = π−1(m) is a linear isomorphism of vector spaces.
Notice that any local section S of E may be written as S(m) = u(m)s(m),
where s ∈ C∞(M,W ). Suppose that ∇ is a covariant derivative on E, define
for v ∈ TmM , a linear transformation ∇vu :W → Em by

(∇vu)w := ∇v(u(·)w) for each w ∈W.

With this notation and the basic properties of ∇, given s ∈ C∞(M,W ), we
have that

∇v(us) = (∇vu) s(m) + u(m)∂vs,

where ∂vs := d
dt |0s(σ(t)) provided that σ̇(0) = v. In particular this shows that

u(m)−1∇v(us) = ∂vs+A(v)s(m),

where A(v) = Au(v) := u(m)−1 (∇vu) . So the local representation of ∇ is
∇ = d+A, where A is a one form with values in End(W ).
Given a path S(t) ∈ E, let σ(t) = π(S(t)) and s(t) = u(σ(t))−1S(t). Then

define
∇S(t)/dt := u(σ(t)) (ṡ(t) +A(σ̇(t))s(t)) , (69.1)

i.e. the local version of ∇dt =
d
dt + A(σ̇(t)). Notice that if S = us is a local

section of E, then

∇S(σ(t)))/dt = u(σ(t))

µ
d

dt
s(σ(t)) +A(σ̇(t))s(σ(t))

¶
= u(σ(t))

¡
∂σ̇(t)s+A(σ̇(t))s(σ(t))

¢
= ∇σ̇(t)S.

This explains why ∇/dt is independent of the local frame u used in Eq. (69.1),
a property which follows by direct computation as well.
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We say that a path S(t) ∈ E is parallel provided that ∇S(t)/dt = 0 for
all t. Given a curve σ(t) in M and a point S0 ∈ Eσ(0), there is a unique path
S(t) ∈ E such that π(S(t)) = σ(t) and ∇S(t)/dt = 0. This path is constructed
by solving (locally) the linear equation

ṡ(t) +A(σ̇(t))s(t) = 0 with s(0) = u(σ(0))−1S0

and then setting S(t) = u(σ(t))s(t). It is easy to check that the map S0 ∈
Eσ(0) → S(t) ∈ Eσ(t) is linear. In fact S(t) = //t(σ)S0, where //t(σ) =
u(σ(t))g(t)u(σ(0))−1 and g(t) ∈ End(W ) is the unique solution to the linear
differential equation,

ġ(t) +A(σ̇(t))g(t) = 0 with g(0) = id ∈ End(W ).

We will call //t(σ) parallel translation along σ. It is uniquely characterized as
the solution to the differential equation

∇//t(σ)/dt = 0 with //0(σ) = id ∈ End(Eσ(0)),

(If U(t) ∈ End(Eσ(0), Eσ(t)) for each t, then ∇U(t)/dt is by definition the
linear transformation from Eσ(0) to Eσ(t) determined by (∇U(t)/dt) ξ :=
∇ (U(t)ξ) /dt for all ξ ∈ E0.) We have the following properties of parallel
translation which follow from the uniqueness theorem for ordinary differen-
tial equations and the chain rule for covariant derivatives. Namely if S(t) is a
smooth path in E and t = τ(s), then

∇S(τ(s))/ds = τ 0(s)∇S(t)/dt|t=τ(s).

This property is easily verified from Eq. (69.1).

Proposition 69.1. Let σ(t) ∈ M be a smooth curve for t ∈ [0, T ] and
let τ : [0, S] → [0, T ] be a smooth function such that τ(0) = 0. Then
//s(σ ◦ τ) = //τ(s)(σ), i.e. parallel translation does not depend on how
the underlying curve is parametrized. Secondly, let σ̃(t) := σ(T − t), then
//t(σ̃) = //T−t(σ)//T (σ)−1. In particular //T (σ)−1 = //T (σ̃).

Proof. We have that

∇//s(σ ◦ τ)/ds = 0 with //0(σ ◦ τ) = id ∈ End(Eσ(0))

and

∇//τ(s)(σ)/ds = ∇//t(σ)/dt|t=τ(s)τ 0(s) = 0 with
//τ(s)(σ)|s=0 = id ∈ End(Eσ(0))

and hence by uniqueness of solutions to O.D.E.’s we must have that //s(σ ◦
τ) = //τ(s)(σ). Similarly,
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∇//t(σ̃)/dt = 0 with //0(σ̃) = id ∈ Eσ(T )

and

∇//T−t(σ)//T (σ)−1/dt = −∇//s(σ)//T (σ)−1/ds|s=T−t = 0 with
//T−t(σ)//T (σ)−1|t=0 = id ∈ Eσ(T ).

Hence again by uniqueness of solutions to O.D.E.’s we must have that //t(σ̃) =
//T−t(σ)//T (σ)−1.
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Spin Bundle Stuff

Let Mn be a Riemannian manifold, V = Rn, Cl(V ) be the Clifford algebra
over V such that v2 = −(v, v)1. Let Spin(n) ⊂ Cl(V ) be the spin group,
ρ :Spin(n)→ SO(n) be the spin representation andW be a left Cl(V )module.
The following compatibility condition is need below in the construction of
Spinor bundles S over M such that Cl(TM) acts on S.

Assumption 7 For h ∈Spin(n), v ∈ V and w ∈W, h(vw) = (ρ(h)v) (hw).

Now for the construction of spinor bundles. Let {Uα}α∈A be an open cover
of M such that there exists ua : Uα → Hom(Rn, TUα) which are isometries.
For m ∈ Uα ∩ Uβ let gαβ(m) := uα(m)

−1uβ(m) ∈ O(n). Notice that the for
m ∈ Uα ∩ Uβ ∩ Uδ,

gαβ(m)gβδ(m) = uα(m)
−1uβ(m)uβ(m)−1uδ(m) = uα(m)

−1uδ(m) = gαδ(m).

We now assume that M is orientable which means that we may choose
uα such that gαβ(m) ∈ SO(n). Now if M is spin as well, we may choose
g̃αβ(m) ∈Spin(n) such that
1. gαβ(m) = ρ(g̃αβ(m)) for all m ∈ Uα ∩ Uβ and all α and β.
2. g̃αβ(m)g̃βδ(m) = g̃αδ(m).

Given this data, it is now possible to build a spin bundle overM as follows.
For m ∈M, let

Sm := {(m,α,w) : w ∈W and α ∈ A s.t. m ∈ Uα} / v

where (m,α,w) v (m,α0, w0) if and only if w0 = g̃α0α(m)w. Let S := ∪m∈MSm
and π : S → M be the projection map which takes Sm to m for all m ∈ M.
Given α ∈ A, let ũα : Uα → SUα := π−1(Uα) = ∪m∈UαSm be given by
ũα(m)w is the equivalence class containing (m,α,w). Notice that ũα(m) :
W → Sm is a bijective map and that ũα(m)−1ũβ(m)w = g̃αβ(m)w. One may
now easily check that we may make Sm in a well defined way into a linear



1204 70 Spin Bundle Stuff

space by defining ũα(m)w + cũα(m)w
0 := ũα(m) (w + cw0) , i.e. by requiring

each ũα(m) :W → Sm to be linear.
Let us now show that we can make Sm into a Cl(TmM) module. For

η ∈ TmM and ξ ∈ Sm choose α ∈ A such that m ∈ Uα and choose v ∈ Rn
and w ∈ W such that η = uα(m)v and ξ = ũα(m)w. We then define ηξ :=
ũα(m)(vw). To see this is well defined choose α0 ∈ A such that m ∈ Uα0 and
choose v0 ∈ Rn and w0 ∈ W such that η0 = uα0(m)v

0 and ξ0 = ũα0(m)w
0.

Then w = g̃αα0(m)w
0 and v = gαα0(m)v

0 = ρ(g̃αα0(m))v
0, and hence

vw = (gαα0(m)v
0) (g̃αα0(m)w0) = (ρ(g̃αα0(m))v0) (g̃αα0(m)w0) = g̃αα0 (v

0w0) .

From this it follows that ũα(m)(vw) = ũα0(m)(v
0w0) so that ηξ is well defined

independent of the choice of α ∈ A. Since ξ ∈ TmM
φ→ Lξ ∈ End(Sm) (Lξ

denotes left multiplication by ξ) satisfies φ(ξ)2 = −(ξ, ξ)mI, it follows that
the action of TmM on Sm extends uniquely to an action of Cl(TmM) on Sm.
Hence if M is a spin manifold, we have produced a vector bundle S →M

such that each fiber of Sm of S is a Cl(TmM) Clifford module.
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The Case where M = Rn

71.1 Formula involving p

Let L := 1
2∆ + B + c, L0 :=

1
2∆ + B and β(x) := b(x) · x where and B =

b · ∇ =
Pn

i=1 bi∂i and with bi(x) and c(x) in RN×N . Let g be an RN×N —
valued function of (t, x) with t > 0 and x ∈ Rn and set

u(t, x) = p(t, x)g(t, x).

Then

(∂t − L)u = (∂t − L) pg

= (∂t − L0) p · g + p (∂t − L) g −∇p ·∇g
= −Bp · g + p (∂t − L) g −∇p ·∇g
= p {−B ln p+ ∂t − L−∇ ln p ·∇} g.

Now
∇ ln p = ∇ ¡−x2/2t¢ = −x

t

so the above equation may be written as:

(∂t − L)u = p

µ
1

t
b · x+ ∂t − L+

1

t
x ·∇

¶
g

= p

µ
∂t − L+

1

t
S

¶
g

where

S = ∂x + b · x
= ∂x + β

and
β(x) = b(x) · x.
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71.2 Asymptotics of a perturbed Heat Eq. on Rn

Let L := 1
2∆ + B + c, L0 :=

1
2∆ + B and β(x) := b(x) · x where and B =

b ·∇ =Pn
i=1 bi∂i and with bi(x) and c(x) in RN×N . As above let

p(t, x) = (2πt)
−n/2

e−x
2/2t

be the heat kernel with pole at 0 for Rn.

Lemma 71.1. Let u0 ∈ RN×N be given, then there is a unique solution to the
O.D.E

U̇(t, x) = −1
t
β(tx)U(t, x) with U(0, x) = u0 ∈ RN×N . (71.1)

Moreover, U(t, x) is smooth in (t, x) and

U(t, sx) = U(ts, x) (71.2)

for all s, t ∈ R and x ∈ Rn.
Proof. Since β(0) = 0,

1

t
β(tx) =

1

t

Z t

0

∂xβ(τx)dτ =

Z 1

0

∂xβ(utx)du

and hence the matrix function (t, x) → 1
tβ(tx) is smooth even for t near 0.

By basic O.D.E. theory this shows that U exists and is smooth. Since

d

dt
U(ts, x) = sU̇(ts, x) = −s 1

st
β(tsx)U(ts, x)

= −1
t
β(tsx)U(ts, x),

it follows that U(ts, x) satisfies the same O.D.E. as U(t, sx). Hence by unique-
ness of solutions to O.D.E.’s we find that Eq. (71.2) holds.

Remark 71.2. If [β(x), β (y)] = 0 for all x and y, then the solution to Eq.
(71.1) is given by

U(1, x) = exp

µ
−
Z 1

0

1

t
β(tx) dt.

¶
. (71.3)

The rest of this section is devoted to the proof of the following Theorem.

Theorem 71.3. Let U be defined as in Lemma 71.1 and defined

u0(x) = U(1, x), (71.4)

and uk inductively by
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uk+1(x) = u0(x)

Z 1

0

τku0(τx)
−1Luk(τx)dτ. (71.5)

for all k = 0, 1, 2 . . . . If

Σq(t, x) := p(t, x)

qX
k=0

tkuk(x), (71.6)

then
(∂t − L)Σq(t, x) = −tqp(t, x)Luq(t, x). (71.7)

The proof of this theorem could be given by direct computation. However,
we will take a longer route however and derive the formulas in the Theorem.
Let g be an RN×N — valued function of (t, x) with t > 0 and x ∈ Rn and

set
u(t, x) = p(t, x)g(t, x).

Then

(∂t − L)u = (∂t − L) pg

= (∂t − L0) p · g + p (∂t − L) g −∇p ·∇g
=
³
p
r

2t
∂r lnJ −Bp

´
· g + p (∂t − L) g −∇p ·∇g

= p
n r

2t
∂r lnJ −B ln p+ ∂t − L−∇ ln p ·∇

o
g.

Now
∇ ln p = ∇ ¡−x2/2t¢ = −x

t
so the above equation may be written as:

(∂t − L)u = p
³
b · x

t
+ ∂t − L+

x

t
·∇
´
g

= p

µ
∂t − L+

1

t
S

¶
g (71.8)

where
S := x ·∇+ b(x) · x = ∂x + β(x), (71.9)

and β(x) := b(x) · x as above.
Now let

g(t, x) = gq(t, x) =

qX
k=0

tkuk(x) (71.10)

and considerµ
∂t +

1

t
S − L

¶
g =

qX
k=0

©
tk−1 (kuk + Suk)− tkLuk

ª
=
1

t
Su0 +

q−1X
k=0

tk ((k + 1)uk+1 + Suk+1 − Luk)− tqLuq.
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Thus if we choose u0 such that

Su0(x) = (x ·∇.+ β(x))u0(x) = 0. (71.11)

and uk such that
(k + 1)uk+1 + Suk+1 − Luk = 0 (71.12)

then
¡
∂t +

1
tS − L

¢
g = −tqLuq or equivalently by Eq. (71.8),

(∂t − L)Σq = (∂t − L) (pg) = −tqLuq
which then proves Theorem 71.3 show that uk defined in the theorem solve
Equations (71.11) and (71.12).
Suppose that u0 is a solution to Eq. (71.11). If U(t, x) := u0(tx), then

U̇(t, x) = x ·∇u0(tx) = 1

t
tx ·∇u0(tx)

=
1

t
∂txu0(tx) = −1

t
β(tx)u0(tx)

= −1
t
β(tx)U(t, x)

and hence u0(x) must be given by U(1, x) as in Eq. (71.4). Conversely if u0
is defined by Eq. (71.4) then from Lemma 71.1, u0(sx) = U(s, x) and hence

∂xu0(x) =
d

ds
|1u0(sx) = d

ds
|1U(s, x)

= −β(x)U̇(1, x) = −β(x)u0(x).

Thus we have shown that u0 solves Eq. (71.11).
We now turn our attention to solving Eq. (71.12). Assuming uk+1 is a

solution to Eq. (71.12), then Vk+1(t, x) := uk+1(tx) satisfies

tV̇k+1(t, x)(t) = tx ·∇uk+1(tx)

= −
µ
1

t
β(tx) + k + 1

¶
Vk+1(t, x) + Luk(tx)

or equivalently

V̇k+1(t, x) = −
µ
1

t
β(tx) +

k + 1

t

¶
Vk+1(t, x) +

1

t
Luk(tx). (71.13)

This equation may be solved by introducing an integrating factor, i.e. let

Uk+1(t, x) := tk+1u0(tx)
−1Vk+1(t, x).

Then Uk+1 solves
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U̇k+1(t, x) = tk+1u0(tx)
−1V̇k+1(t, x) + (k + 1) tku0(tx)−1Vk+1(t, x)

+ tk+1u0(tx)
−1β(tx)

t
Vk+1(t, x)

= tku0(tx)
−1Luk(tx).

Hence

Uk+1(t, x) = Uk+1(0, x) +

Z t

0

τku0(τx)
−1Luk(τx)dτ

=

Z t

0

τku0(τx)
−1Luk(τx)dτ.

Therefore if uk+1 exists it must be given by Eq. (71.5).
Conversely if uk+1 is defined by Eq. (71.5) then

uk+1(sx) = u0(sx)

Z 1

0

τku0(τsx)
−1Luk(τsx)dτ

= u0(sx)

Z s

0

s−(k+1)tku0(tx)−1Luk(tx)dt

and hence

∂xuk+1(x) =
d

ds
|1uk+1(sx)

= −β(x)uk+1(x) + u0(x)
d

ds
|1
Z s

0

s−(k+1)tku0(tx)−1Luk(tx)dt

= −β(x)uk+1(x) + Luk(x)− (k + 1)u0(x)
Z 1

0

tku0(tx)
−1Luk(tx)dt

= − (β(x) + k + 1))uk+1(x) + Luk(x)

which is shows that uk+1 solves Eq. (71.12). This finishes the proof of Theorem
71.3.
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72

Higher Order Elliptic Equations

Definition 72.1. Hs(Rd,CN ) := {u ∈ S 0(Rd,CN ) : |û| ∈ L2((1 + |ξ|2)sds)}.
Note For s = 0, 1, 2, . . . this agrees with our previous Notations of Sobolev

spaces.

Lemma 72.2. (A) C∞C (Rd,CN ) is dense in Hs(Rd,CN ).
(B) If s > 0 then kuk−s = kukH−s = sup

φ∈C∞c

|<u,φ>|
kφk−s .

Proof. (A) We first rate that S(Rd,CN ) is dense in Hs(Rd,CN ) because
FS = S and S is dense in L2(1 + |ξ|2)sdξ) for all s ∈ R. It is easily seen that
C∞c is dense in S for all s = 0, 1, 2, . . . relative to Hs-norm. But this enough
to prove (A) since for all s ∈ Rk · kS ≤ k · kk for some k ∈ N.
(B)

kuk2−s = kûkL2((1+|ξ|2)−2ds) = sup
φ∈S

|(û, φ)−s|
kφk−s

= sup
φ∈S

| R û(ξ)φ(ξ)(1 + |ξ|2)−sdξ|p
S|φ(ξ)|2(1 + |ξ|2)−sdξ .

Let ψ̂(ξ) = '̂(ξ)(a+ |ξ|2)−s, the arbitrary element of S still to find

kuk−s = sup
ψ∈S

| R û(ξ)ψ̂(ξ)dξ|qR |ψ̂(ξ)|2(1 + |ξ|2)sdξ
= sup

ψ∈S
| < u,ψ > |
kψks = sup

ψ∈C∞c

| < u,ψ > |
kψks

Since C∞c is dense as well.

Definition 72.3. Hs(Rd,CN ) := {u ∈ S 0(Rd,CN ) : |û| ∈ L2((1 + |ξ|2)sdξ)}.
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Proposition 72.4. Suppose L = L0 has constant coefficients then kuks ≤
C(kLuks−k + kuks−1) for all s ∈ R.
Proof.

cLu(s)“ = ” \
L

Z
u(x)eix−ξdx =

\Z
σ(L0)(x, ξ)u(x)eix−ξdx

=

Z
σ(ξ)u(x)eix·ξdx = σ(ξ)û(ξ).

Therefore

kû(ξ)k = kσ(ξ)−1σ(ξ)û(ξ)k ≤ kσ(ξ)−1k kσ(ξ)û(ξ)k
≤ �

|ξ|k kσ(ξ)û(ξ)k.

Therefore

kσ(ξ)û(ξ)k ≥ |ξ|
k

C1
kû(ξ)k

Notice there exist C > 0 such that

1 ≤ C

Ã
|ξ|2k

µ
1

1 + |xı|2
¶k
+

1

1 + |ξ|2
!
.

Then

|û|2(1 + |ξ|2)2 ≤ C(|ξ|2k(1 + |ξ|2)s−k|û|2 + (1 + |ξ|2)s−1|û|2)
≤ eC ¡(1 + |ξ|2)s−k|σ(ξ)û|2 + (1 + |ξ|2)s−1(û(ξ)2¢
≤ eC ³(1 + |ξ|2)s−k|cLu(ξ)|2 + (1 + |ξ|2)s−1(û(ξ)2´ .

Integrate this on ξ to get the desired inequality.

Notation 72.5 Suppose Ω ⊂ Rd is an open set and aα ∈ C∞(Ω,CN ) for
some N and |α| ≤ k. Set L : C∞(Ω,CN ) → C∞(Ω,CN ) to be the operator
L =

P
|α|≤k

aα∂
α and L0 :=

P
|α|=k

aα∂
α

σ(L0)(ξ) =
X
|α|=k

aα(iξ)
α = i|α|

X
|α|=k

aαξ
α

for ξ ∈ Rd. Notice that L0eiξ·x = σ(L0)(x, ξ)e
iξ·x.

Definition 72.6. L is elliptic at x ∈ Ω if σ(L0)(x, ξ)−1 exists for all ξ 6= 0
and L is elliptic on Ω if σ(L0)(x, ξ)−1 exist for all ξ 6= 0, x ∈ Ω.

Remark 72.7. If L is elliptic on Ω then there exist ∈> 0 and C > 0 such that
kσ(L0)(x, ξ)k ≥ �|ξ|k for all x ∈ Ω, ξ ∈ Rd. Also kσ(L0)(x, ξ)−1k ≤ C|ξ|k for
all x ∈ Ω, ξ ∈ Rd \ {0}.
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Indeed for |ξ| = 1, (x, ξ) → kσ(L0)(x, ξ)−1k is a continuous function of
(x, ξ) on Ω × Sd−1. Therefore it has a global maximum say C. Then for
|ξ| = t 6= 0.
kσ(L0)

³
x, ξt

´−1
k ≤ C implies

°°°°h¡1t ¢k σ(L0, x, ξ)i−1°°°° ≤ C or°°σ(L0)(x, ξ)−1°° ≤ Ct−k = C|ξ|−k.
Given Ω as above let

Hs
0(Ω,CN ) := C∞C (Ω,CN )Hs(Rd,CN ).

Theorem 72.8 (A priori Estimates). For all s ∈ R there exist C > 0 such
that ∀ u ∈ H0

s (Ω)
kuks ≤ C(kLuks−k + kuks−1). (72.1)

Reference Theorem (6.28) of Folland p. 210 chapter 6.

Proof. I will only prove the inequality (72.1) for s = 0. (However, negative
s are needed to prove desired elliptic regularity results. This could also be done
using the Theory of pseudo differential operators.) With out loss of generality
we may assume u ∈ C∞c (Ω,CN ).
Step (1) The inequality holds if L = L0 with constant coefficients by

above proposition.
Step (2) Suppose now L = L0 but does not have constant coefficients.

Define Lx0 =
P
|α|=k

aα(x0)∂
α for all x0 ∈ Ω. Then there exist C0 independent

of x0 such that
kuk0 ≤ C0(kLx0uk−k + kuk−1)

for all x0 ∈ Ω. Suppose supp (u) ⊂ B(x0, δ) with δ small. Consider

k(L− Lx0)uk−k = sup
φ∈C∞C

|((L− Lx0)u, φ)|
kφks .

Now

((L− Lx0)u, φ) = (−1)k
X
(u, ∂α(a+α − aα(x0))φ)

= (−1)k(u,
X
(a+α − aα(x0)∂

αφ+ sφ).

Where sφ =
P
|α|=k

[∂α, a+α ]φ is a k − 1 order differential operator. Therefore

|((L = Lx0)u, φ)| ≤ |(s+u, φ)|+
X
α

|(u, (a+α − aα(x0))∂
αφ)|

≤ kS+uk−kkφkk
+
X

sup
α|x−x0|≤δ

|aα(x)− aα(x0)|| {z }
C(δ)

kuk0kφkk

≤ kkuk−1kφkk + C(δ)kuk0kφkk.



1216 72 Higher Order Elliptic Equations

Therefore
k(L− Lx0)uk−k ≤ C(δ)kuk0 +Kkuk−1.

Choose δ small such that C0C(δ) ≤ 1
2 by unit continuous. Therefore

k(L− Lx0)uk−k ≤
1

2
kuk0 +Kkuk−1.

Hence

kuk0 ≤ C0(kLx0uk−k + kuk−1)
≤ C0(kL− Lx0uk−k + kLuk−k + kuk−1)
≤ C0(C(δ)kuk0 + kLuk−k + (1 +K)kuk−1)
≤ 1
2
kuk0 + C0(1 +K)(kLuk−k + kuk−1).

Therefore
kuk0 ≤ 2C0(1 +K)(kLuk−k + kuk−1)

provided suppu ⊂ B(x0, δ) for some x0 ∈ R. Now cover Ω by finite collection
of balls with radius δ and choose a partition of unity subordinate to this cover.
{xi}. Therefore if u ∈ C∞c (Ω), then

P
ψiu = u and

kuk0 ≤ C(kLuk−k + ksuk−k + kuk−1)
≤ eC(kLuk−k + kuk−1).
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Abstract Evolution Equations

73.1 Basic Definitions and Examples

Let (X, k · k) be a normed vector space. A linear operator L on X consists of
a subspace D(L) of X and a linear map L : D(L)→ X.

Notation 73.1 Given a function v : [0,∞) → X, we write v(t) = etLv(0),
provided that v ∈ C([0,∞) → X) ∩ C1((0,∞) → X), v(t) ∈ D(L) for all
t > 0, and v̇(t) = Lv(t).

Example 73.2. Suppose that L is an n × n matrix (thought of as a linear
transformation on Cn) and v0 ∈ Cn. Let v(t) :=

P∞
n=0

tn

n!L
nv0, then the sum

converges and v(t) = etLv0.

The following proposition generalizes the above example.

Proposition 73.3 (Evolution). Suppose that (X, k · k) is a Banach space
and L ∈ B(X)—the Banach space of bounded operators on X with the operator
norm. Then

etL =
∞X
n=0

tn

n!
Ln (73.1)

is convergent in the norm topology on B(X). Moreover, if v0 ∈ X and
v(t) := etLv0, then v is the unique function in C1(R,X) solving the differential
equation:

v̇(t) = Lu(t) with v(0) = v0. (73.2)

Proof. First notice that
P∞

n=0
|t|n
n! kLkn = e|t|kLk < ∞ so that the sum

in (73.1) exists in B(X) and ketLk ≤ e|t|kLk. Let us now check that d
dte

tL =
LetL = etLL. Using the mean value theorem we have,
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e(t+h)L − etL =
∞X
n=0

1

n!
{(t+ h)n − tn}Ln

=
∞X
n=1

n

n!
cn−1n (h)hLn = hL

∞X
n=0

1

n!
cnn+1(h)L

n,

where cn(h) is some number between t and t+ h for each n. Hence

e(t+h)L − etL

h
− LetL = L

∞X
n=0

1

n!
[cnn+1(h)− tn]Ln,

and thus

ke
(t+h)L − etL

h
− LetLk ≤ kLk

∞X
n=1

1

n!
|cnn+1(h)− tn|kLkn → 0,

as n→∞ by the dominated convergence theorem.
Before continuing, let us prove the basic group property of etL, namely:

etLesL = e(t+s)L. (73.3)

To prove this equation, notice that

d

dt
e−tLe(t+s)L = e−tL(−L+ L)e(t+s)L = 0.

Thus e−tLe(t+s)L is independent of t and hence

e−tLe(t+s)L = esL. (73.4)

By choosing s = 0 we find that e−tLetL = I, and by replacing t by −t we
can conclude that e−tL = (etL)−1. This last observation combined with (73.4)
proves (73.3).
Alternate Proof of Eq. (73.3).

e(t+s)L =
∞X
n=0

(t+ s)n

n!
Ln =

∞X
n=0

nX
k=0

tkLksn−kLn−k

k!(n− k)!

=
∞X
n=0

X
k+c=n
b,c≥0

tkLkscLc

k!c!
= etLesL,

where the above manipulations are justified since,

∞X
n=0

X
k+c=n
b,c≥0

|t|k|s|ckLkkkLkc
k!l!

= e(|t|+|s|)kLk <∞.

Now clearly if
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v(t) := etLv0 :=
∞X
n=0

tn

n!
Lnv0

we have that v ∈ C1(R→ X) and v̇ = Lv. Therefore v does solve Eq. (73.2).
To see that this solution is unique, suppose that v(t) is any solution to (73.2).
Then

d

dt
e−tLv(t) = e−tL(−L+ L)v(t) = 0,

so that e−tLv(t) is constant and thus e−tLv(t) = v0. Therefore v(t) = etLv0.

Theorem 73.4 (The Diagonal Case). Consider t > 0 only now. Let p ∈
[1,∞), (Ω,F ,m) be a measure space and a : Ω → R be a measurable function
such that a is bounded above by a constant C < ∞ . Define D(L) = {f ∈
Lp(m) : af ∈ Lp}, and for f ∈ D(L) set Lf = af = Maf. (In general L is
an unbounded operator.) Define etL =Metaf. (Note that |eta| ≤ etC <∞, so
etL is a bounded operator.) by D.C.T. So one has etL → I strongly as t ↓ 0.
1. etL is a strongly continuous semi-group of bounded operators.
2. If f ∈ D(L) then d

dte
tLf = etLLf in Lp(m).

3. For all f ∈ Lp and t > 0, d
dte

tLf = LetLf in Lp(m).

Proof. By the dominated convergence theorem,°°etLf − f
°°p
Lp
=

Z
Ω

¯̄¡
eta − 1¢ f ¯̄p dm→ 0 as t ↓ 0,

which proves item 1. For item 2 we see using the fundamental theorem of
calculus that°°°°µe(t+h)L − etL

h
− etLL

¶
f

°°°°
Lp
=

°°°°° 1h
Z h

0

(ae(t+τ)a − etaa)dτ · f
°°°°°
Lp

=

°°°°° 1h
Z h

0

(e(t+τ)a − eta)dτ · af
°°°°°
Lp

. (73.5)

Since af ∈ Lp, ¯̄̄̄
¯ 1h
Z h

0

(e(t+τ)a − eta)dτ

¯̄̄̄
¯ ≤ 2e(t+|h|)C ,

and
1

h

Z h

0

(e(t+τ)a − eta)dτ → 0 as h→ 0,

the Dominated convergence shows that the last term in Eq. (73.5) tends to
zero as h → 0. The above computations also work at t = 0 provided h is
restricted to be positive.



1220 73 Abstract Evolution Equations

Item 3 follows by the same techniques as item 2. We need only notice that
by basic calculus if t > 0 and τ ∈ (t/2, 3t/2) then¯̄̄

ae(t+τ)a
¯̄̄
≤ max{(t/2)−1, Ce3C/2}.

Example 73.5 (Nilpotent Operators). Let L : X → X be a nilpotent operator,
i.e., ∀v ∈ D(L) there exists n = n(v) such that Lnv = 0 Then

v̇(t) = Lv(t) with v(0) = v ∈ D(L)

has a solution (in D(L)) given by

v(t) = etLv :=
∞X
n=0

tn

n!
Lnv.

A special case of the last example would be to take X = D(L) to be the
space of polynomial functions on Rd and Lp = ∆p.

Example 73.6 (Eigenvector Case). Let L : X → X be a linear operator and
suppose that D(L) =spanX0, where X0 is a subset of X consisting of eigen-
vectors for L, i.e., ∀v ∈ X0 there exists λ(v) ∈ C such the Lv = λ(v)v.
Then

v̇(t) = Lv(t) with v(0) = v ∈ D(L)

has a solution in D(L) given by

v(t) = etLv :=
∞X
n=0

tn

n!
Lnv.

More explicitly, if v =
Pn

v=1 vi with vi ∈ X0, then

etLv =
nX
i=1

etλ(vi)vi.

The following examples will be covered in more detail in the exercises.

Example 73.7 (Translation Semi-group). Let X := L2(Rd, dλ), w ∈ Rd and
(Tw(t)f)(x) := f(x+ t).

Then Tw(t) is a strongly continuous contraction semi-group. In fact Tw(t) is
unitary for all t ∈ R.
Example 73.8 (Rotation Semi-group). Suppose that X := L2(Rd, dλ) and
O : R → O(d) is a one parameter semi-group of orthogonal operators. Set
(TO(t)f)(x) := f(O(t)x) for all f ∈ X and x ∈ Rd. Then TO is also a strongly
continuous unitary semi-group.
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73.2 General Theory of Contraction Semigroups

For this section, let (X, k·k) be a Banach space with norm k · k. Also let
T := {T (t)}t>0 be a collection of bounded operators on X.

Definition 73.9. Let X and T be as above.

1. T is a semi-group if T (t+ s) = T (t)T (s) for all s, t > 0.
2. A semi-group T is strongly continuous if limt↓0 T (t)v = v for all

v ∈ X. By convention if T is strongly continuous, set T (0) ≡ I—the identity
operator on X.

3. A semi-group T is a contraction semi-group if kT (t)k ≤ 1 for t > 0.
Definition 73.10. Suppose that T is a contraction semi group. Set

D(L) := {v ∈ X :
d

dt
|0+T (t)v exists in X}

and for v ∈ D(L) set Lv := d
dt |0+T (t)v. L is called the infinitesimal gen-

erator of T.

Proposition 73.11. Let T be a strongly continuous contraction semi-group,
then

1. For all v ∈ X, t ∈ [0,∞)→ T (t)v ∈ X is continuous.
2. D(L) is dense linear subspace of X.
3. Suppose that v : [0,∞) → X is a continuous, then w(t) := T (t)v(t) is
also continuous on [0,∞).
Proof. By assumption v(t) := T (t)v is continuous at t = 0. For t > 0 and

h > 0,

kv(t+ h)− v(t)k = kT (t)(T (h)− I)vk ≤ kv(h)− vk→ 0 as h ↓ 0.
Similarly if h ∈ (0, t),

kv(t− h)− v(t)k = kT (t− h)(I − T (h))vk ≤ kv − v(h)k→ 0 as h ↓ 0.
This proves the first item.
Let v ∈ X set vs :=

R s
0
T (σ)vdσ, where, since σ → T (σ)v is continuous,

the integral may be interpreted as X—valued Riemann integral. Note

k1
s
vs − vk = k1

s

Z s

0

(T (σ)v − v)dσk ≤ 1

|s|
¯̄̄̄Z s

0

kT (σ)v − vkdσ
¯̄̄̄
→ 0

as s ↓ 0, so that D := {vs : s > 0 and v ∈ X} is dense in X. Moreover,

d

dt

¯̄̄̄
0+

T (t)vs =
d

dt

¯̄̄̄
0+

Z s

0

T (t+ σ)vdσ

=
d

dt

¯̄̄̄
0+

Z t+s

t

T (τ)vdτ = T (s)v − v.
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Therefore vs ∈ D(L) and Lvs = T (s)v−v. In particular, D ⊂ D(L) and hence
D(L) is dense in X. It is easily checked that D(L) is a linear subspace of X.
Finally if v : [0,∞) → X is a continuous function and w(t) := T (t)v(t),

then for t > 0 and h ∈ (−t,∞),
w(t+ h)− w(t) = (T (t+ h)− T (t))v(t) + T (t+ h)(v(t+ h)− v(t))

The first term goes to zero as h → 0 by item 1 and the second term goes to
zero since v is continuous and kT (t+h)k ≤ 1. The above argument also works
with t = 0 and h ≥ 0.
Definition 73.12 (Closed Operators). A linear operator L on X is said
to be closed if Γ (L) := {(v, Lv) ∈ X ×X : v ∈ D(L)} is closed in the Banach
space X ×X. Equivalently, L is closed iff for all sequences {vn}∞n=1 ⊂ D(L)
such that limn→∞ vn =: v exists and limn→∞ Lvn =: w exists implies that
v ∈ D(L) and Lv = w.

Roughly speaking, a closed operator is the next best thing to a bounded
(i.e. continuous) operator. Indeed, the definition states that L is closed iff

lim
n→∞Lvn = L lim

n→∞ vn (73.6)

provided both limits in (73.6) exist. While L is continuous iff Eq. (73.6) holds
whenever limn→∞ vn exists: part of the assertion being that the limit on the
left side of Eq. (73.6) should exist.

Proposition 73.13 (L is Closed). Let L be the infinitesimal generator of a
contraction semi-group, then L is closed.

Proof. Suppose that vn ∈ D(L), vn → v, and Lvn → w in X as n→∞.
Then, using the fundamental theorem of calculus,

T (t)v − v

t
= lim

n→∞
T (t)vn − vn

t
= lim

n→∞
1

t

Z t

0

T (τ)Lvndτ

→ 1

t

Z t

0

T (τ)wdτ.

Therefore v ∈ D(L) and Lv = w.

Theorem 73.14 (Solution Operator).

1. For any t > 0 and v ∈ D(L), T (t)v ∈ D(L) and d
dtT (t)v = LT (t)v.

2. Moreover if v ∈ D(L), then d
dtT (t)v = T (t)Lv.

Proof. T (t) : D(L) → D(L) and d
dtT (t)v = LT (t)v = T (t)Lv. Suppose

that v ∈ D(L), then
T (t+ h)− T (t)

h
v =

(T (h)− I)

h
T (t)v =

T (t)(T (h)− I)

h
v.
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Letting h ↓ 0 in the last set of equalities show that T (t)v ∈ D(L) and
d

dh
|0+T (t+ h)v = LT (t)v = T (t)Lv.

For the derivative from below we will use,

T (t− h)− T (t)

h
v =

(I − T (h))

h
T (t− h)v =

T (t− h)(I − T (h))

h
v, (73.7)

which is valid for t > 0 and h ∈ [0,∞). Set u(h) := h−1(I − T (h))v if h > 0
and u(0) := Lv. Then u : [0,∞)→ X is continuous. Hence by same argument
as in the proof of item 3 of Proposition 73.11), h→ T (t−h)w(h) is continuous
at h = 0 and hence

T (t− h)(I − T (h))

h
v = T (t− h)w(h)→ T (t− 0)w(0) = T (t)Lv as h ↓ 0.

Thus it follows from Eq. (73.7) that, for all t > 0,

d

dh
|0−T (t+ h)v = LT (t)v = T (t)Lv.

Definition 73.15 (Evolution Equation). Let T be a strongly continuous
contraction semi-group with infinitesimal generator L. A function v : [0,∞)→
X is said to solve the differential equation

v̇(t) = Lv(t) (73.8)

if

1. v(t) ∈ D(L) for all t ≥ 0,
2. v ∈ C([0,∞)→ X) ∩C1((0,∞)→ X), and
3. Eq. (73.8) holds for all t > 0.

Theorem 73.16 (Evolution Equation). Let T be a strongly continuous
contraction semi-group with infinitesimal generator L. The for all v0 ∈ D(L),
there is a unique solution to (73.8) such that v(0) = v0.

Proof. We have already shown existence. Namely by Theorem 73.14 and
Proposition 73.11, v(t) := T (t)v0 solves (73.8.
For uniqueness let v be any solution of (73.8). Fix τ > 0 and set w(t) :=

T (τ − t)v(t). By item 3 of Proposition 73.11, w is continuous for t ∈ [0, τ ].We
will now show that w is also differentiable on (0, τ) and that ẇ := 0.
To simplify notation let P (t) := T (t− t) and for fixed t ∈ (0, τ) and h > 0

sufficiently small let �(h) := h−1(v(t+h)−v(t))−v̇(t). Since v is differentiable,
�(h)→ 0 as h→ 0. Therefore,
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w(t+ h)− w(t)

h
=
1

h
[P (t+ h)v(t+ h)− P (t)v(t)]

=
(P (t+ h)− P (t))

h
v(t) + P (t+ h)

(v(t+ h)− v(t))

h

=
(P (t+ h)− P (t))

h
v(t) + P (t+ h)(v̇(t) + �(h))

→ −P (t)Lv(t) + P (t)v̇(t) as h→ 0,

wherein we have used kP (t+ h)�(h)k ≤ k�(h)k→ 0 as h→ 0. Hence we have
shown that

ẇ(t) = −P (t)Lv(t) + P (t)v̇(t) = −P (t)Lv(t) + P (t)Lv(t) = 0

Therefore w(t) = T (t− t)v(t) is constant or (0, t) and hence by continuity of
w(τ) = w(0), i.e.

v(τ) = w(τ) = w(0) = T (τ)v(0) = T (τ)v0.

This proves uniqueness.

Corollary 73.17. Suppose that T and T̂ are two strongly continuous con-
traction semi-groups on a Banach space X which have the same infinitesimal
generators L. Then T = T̂ .

Proof. Let v0 ∈ D(L) then v(t) = T (t)v and v̂(t) = T̂ (t)v̂ both solve Eq.
(73.8 with initial condition v0. By Theorem 73.16, v = v̂ which implies that
T (t)v0 = T̂ (t)v0, i.e., T = T̂ .
Because of the last corollary the following notion is justified.

Notation 73.18 If T is a strongly continuous contraction semi-group with
infinitesimal generator L, we will write T (t) as etL.

Remark 73.19. Since T is a contraction, L should be “negative.” Thus, work-
ing informally,Z ∞

0

e−tλetLdt =
1

L− λ
et(L−λ)|∞t=0 =

1

λ− L
= (λ− L)−1.

Theorem 73.20. Suppose T = etL is a strongly continuous contraction semi-
group with infinitesimal generator L. For any λ > 0 the integralZ ∞

0

e−tλetLdt =: Rλ (73.9)

exists as a B(X)—valued improper Riemann integral.1 Moreover, (λ − L) :
D(L)→ X is an invertible operator, (λ− L)−1 = Rλ, and kRλk ≤ λ−1.
1 This may also be interpreted as a Bochner integral, since T (t) is continuous and
thus has separable range in B(X).
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Proof. First notice thatZ ∞
0

e−tλketLkdt ≤
Z ∞
0

e−tλdt = 1/λ.

Therefore the integral in Eq. (73.9) exists and the result, Rλ, satisfies kRλk ≤
λ−1. So we now must show that Rλ = (λ− L)−1.
Let v ∈ X and h > 0, then

ehLRλv =

Z ∞
0

e−tλe(t+h)Lvdt =
Z ∞
h

e−(t−h)λetLvdt = ehλ
Z ∞
h

e−tλetLvdt.

(73.10)
Therefore

d

dh

¯̄̄̄
0+

ehLRλv = −v +
Z ∞
0

λe−tλetLvdt = −v + λRλv,

which shows that Rλv ∈ D(L) and that LRλv = −v+λRλv. So (λ−L)Rλ = I.
Similarly,

Rλe
hLv = ehλ

Z ∞
h

e−tλetLvdt (73.11)

and hence if v ∈ D(L), then

RλLv =
d

dh

¯̄̄̄
0+

Rλe
hLv = −v + λRλv.

Hence Rλ(λ− L) = ID(L).
Before continuing it will be useful to record some properties of the resolvent

operators Rλ := (λ−L)−1. Again working formally for the moment, if λ, µ ∈
(0,∞), then we expect

Rλ −Rµ =
1

λ− L
− 1

µ− L
=

µ− L− (λ− L)

(λ− L)(µ− L)
= (µ− λ)RλRµ.

For each λ > 0 define Lλ := λLRλ. Working again formally we have that

Lλ =
λL

λ− L
=

λ(L− λ+ λ)

λ− L
= −λ+ λ2Rλ

and
d

dλ
Lλ =

L(λ− L)− λL

(λ− L)2
= − L2

(λ− L)2
= −LRλLRλ.

These equations will be verified in the following lemma.

Lemma 73.21. Let L : X → X be an operator on X such that for all λ > 0,
λ−L is invertible with a bounded inverse Rλ or (λ−L)−1. Set Lλ := λLRλ.
Then
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1. for λ, µ ∈ (0,∞),
Rλ −Rµ = (µ− λ)RλRµ, (73.12)

and in particular Rλ and Rµ commute,
2. Lλ = −λ+ λ2Rλ, and
3. d

dλLλ = −LRλLRλ.

Proof. Since λ − L is invertible, λ − L is injective. So in order to verify
Eq. (73.12 it suffices to verify:

(λ− L)(Rλ −Rµ) = (µ− λ)(λ− L)RλRµ. (73.13)

Now

(λ−L)(Rλ−Rµ) = I− (λ−µ+µ−L)Rµ = I− (λ−µ)Rµ− I = −(λ−µ)Rµ,

while
(µ− λ)(λ− L)RλRµ = (µ− λ)Rµ.

Clearly the last two equations show that Eq. (73.13) holds. The second item
is easily verified since, Lλ = λ(L− λ+ λ)Rλ = −λ+ λ2Rλ.
For the third item, first recall that λ → Rλ is continuous in the operator

norm topology (in fact analytic). To see this let us first work informally,

Rλ+h =
1

λ+ h− L
=

1

(λ− L+ h)
=

1

(λ− L)(I + h(λ− L)−1)
= Rλ(I+hRλ)

−1.

(73.14)
To verify this last equation, first notice that for sufficiently small h, khRλk <
1, so that

P∞
n=0 k− hRλkn <∞ and hence (I + hRλ) is invertible and

(I + hRλ)
−1 =

∞X
n=0

(−hRλ)
n.

To verify the ends of Eq. (73.14) are equal it suffices to verify that Rλ+h(I +
hRλ) = Rλ, i.e., Rλ+h − Rλ = −hRλ+hRλ. But this last equation follows
directly form (73.12). Therefore, we have shown that for h sufficiently close
to zero,

Rλ+h = Rλ

∞X
n=0

(−hRλ)
n.

Differentiating this last equation at h = 0 shows that

d

dλ
Rλ =

d

dh
|0Rλ+h = −R2λ. (73.15)

We now may easily compute:

d

dλ
Lλ =

d

dλ
(−λ+ λ2Rλ) = −I + 2λRλ − λ2R2λ = −(λRλ − I)2.
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This finishes the proof since,

λRλ − I = λRλ − (λ− L)Rλ = LRλ

We now show that Lλ is a good approximation to L when λ→∞.

Proposition 73.22. Let L be an operator on X such that for each λ ∈ (0,∞),
Rλ := (λ− L)−1 exists as a bounded operator and k(λ− L)−1k ≤ λ−1. Then
λRλ → I strongly as λ→∞ and for all v ∈ D(L)

lim
λ→∞

Lλv = Lv. (73.16)

Proof. First notice, informally, that

λRλ =
λ

λ− L
=

λ− L+ L

λ− L
= I +RλL.

So we expect that
λRλ|D(L) = I +RλL. (73.17)

(This last equation is easily verified by applying (λ− L) to both sides of the
equation.) Hence, for v ∈ D(L),

λRλv = v +RλLv,

and kRλLvk ≤ kLvk/λ. Thus limλ→∞ λRλv = v for all v ∈ D(L). Using
the fact that kλRλk ≤ 1 and a standard 3�—argument, it follows that λRλ

converges strongly to I as λ→∞. Finally, for v ∈ D(L),
Lλv = λLRλv = λRλLv → Lv as λ→∞.

See Dynkin,

Lemma 73.23. Suppose that A and B are commuting bounded operators on
a Banach space, X, such that ketAk and ketBk are bounded by 1 for all t > 0,
then

k(etA − etB)vk ≤ tk(A−B)vk for all v ∈ X. (73.18)

Proof. The fundamental theorem of calculus implies that

e−tAetB − I =

Z t

0

d

dτ
e−τAeτBdτ =

Z t

0

e−τA(−A+B)eτBdτ,

and hence, by multiplying on the left by etA,

etB − etA =

Z t

0

e(t−τ)A(−A+B)eτBdτ

=

Z t

0

e(t−τ)AeτB(−A+B)dτ,

wherein the last line we have used the fact that A and B commute. Eq. (73.18)
is an easy consequence of this equation.
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Theorem 73.24 (Hile-Yosida). A closed linear operator L or a Banach
space X generates a contraction semi-group iff for all λ ∈ (0,∞),
1. (λ− L)−1 exists as a bounded operator and
2. k(λ− L)−1k ≤ λ−1 for all λ > 0.

Proof.

Tλ(t) := etLλ = etLλ :=
∞X
n=0

(tLλ)
n/n!.

The outline of the proof is: i) show that Tλ(t) is a contraction for all t > 0,
ii) show for t > 0 that Tλ(t) converges strongly to an operator T (t), iii) show
T (t) is a strongly continuous contraction semi-group, and iv) show that L is
the generator of T.
Step i) Using Lλ = −λ+ λ2Rλ, we find that etLλ = e−tλetλ

2Rλ . Hence

kTλ(t)k = ketLλk ≤ e−tλetλ
2kRλk ≤ e−tλetλ

2λ−1 = 1.

Step ii) Let α, µ > 0 and v ∈ D(L), then by Lemma 73.23 and Proposition
73.22,

k(Tα(t)− Tµ(t))vk ≤ tkLαv − Lµvk→ 0 as α, µ→∞.

This shows, for all v ∈ D(L), that limα→∞ Tα(t)v exists uniformly for t in
compact subsets of [0,∞) For general v ∈ X, w ∈ D(L), τ > 0, and 0 ≤ t ≤ τ,
we have

k(Tα(t)− Tµ(t))vk ≤ k(Tα(t)− Tµ(t))wk+ k(Tα(t)− Tµ(t))(v − w)k
≤ k(Tα(t)− Tµ(t))wk+ 2kv − wk.
≤ τkLαw − Lµwk+ 2kv − wk.

Thus

lim sup
α,µ→∞

sup
t∈[0,τ ]

k(Tα(t)− Tµ(t))vk ≤ 2kv − wk→ 0 as w→ v.

Hence for each v ∈ X, T (t)v := limα→∞ Tα(t)v exists uniformly for t in
compact sets of [0,∞).
Step iii) It is now easily follows that kT (t)k ≤ 1 and that t → T (t) is

strongly continuous. Moreover,

T (t+ s)v = lim
α→∞Tα(t+ s)v = lim

α→∞Tα(t)Tα(s)v.

Letting �(α) := Tα(s)v − T (s)v, it follows that

T (t+ s)v = lim
α→∞Tα(t)(T (s)v + �(α)) = T (t)T (s)v + lim

α→∞Tα(t)�(α).

This shows that T is also satisfies the semi-group property, since kTα(t)�(α)k ≤
k�(α)k and limα→∞ �(α) = 0.
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Step iv) Let L̃ denote the infinitesimal generator of T. We wish to show
that L̃ = L. To this end, let v ∈ D(L), then

Tλ(t)v = v +

Z t

0

eτLλLλvdτ.

Letting λ→∞ in this last equation shows that

T (t)v = v +

Z t

0

T (τ)Lv dτ,

and hence d
dt |0+T (t)v exists and is equal to Lv. That is D(L) ⊂ D(L̃) and

L = L̃ on D(L).
To finish the proof we must show that D(L̃) ⊂ D(L). Suppose that ṽ ∈

D(L̃) and λ > 0 and let v := (λ−L)−1(λ−L̃)ṽ. Since D(L) ⊂ D(L̃), (λ−L̃)ṽ =
(λ− L)v = (λ− L̃)v and because λ− L̃ is invertible, ṽ = v ∈ D(L).
Theorem 73.25. Let L be a closed operator or Hilbert space H. Then L
generates a contraction semi-group T (t) iff there exits λ0 > 0 such that
Ran(L+ λ0) = H and Re(Lv, v) ≤ 0 for all v ∈ D(L).

Proof. (⇒) If T (t) = etL is a contraction semigroup, then, for all
v ∈ D(L), ketLvk2 ≤ kvk2 with equality at t = 0. So it is permissible to
differentiate the inequality at t = 0 to find 2Re(Lv, v) ≤ 0. The remaining
assertions in this direction follows from Theorem 73.24. (⇐=) If Re(Lv, v) ≤ 0
and λ > 0 then

k(λ− L)vk2 = λ2kvk2 − 2λRe(Lv, v) + kLvk2 ≥ λ2kvk2

which implies λ− L is 1-1 on D(L) and Ran(λ− L) is closed.

Theorem 73.26. Let Pt : X → X be a contraction semi-group. D(L) =©
v ∈ X|Lv = d

dt |0tPtv
ª
exists Then for all v ∈ D(L) v(t) = Ptv is the unique

solution to
v̇(t) = Lv(t)v(0) = v.

Lemma 73.27. D(L) is dense in X.

Proof. Let ϕ ∈ C∞c ((0,∞)) set

Pφv :=

Z ∞
0

ϕ(s)Psvds

then

PtPϕv =

Z ∞
0

ϕ(s)Pt+svds =

Z ∞
0

ϕ(s− t)Psvds = Pϕ(0−t)v
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PtPϕv − Pϕv

t
=

Z ∞
0

ϕ(s− t)− ϕ(s)

t
Psvds

→
Z ∞
0

−ϕ0(s)Psvds d
dt
|0PtPϕv = −Pϕ0v

so Pϕv ∈ D(L) and LPϕv = −Pϕ0v Now ϕ→ δ0.
Proof of Theorem Key point is to prove uniqueness. Let P ∗t = transpose

semi group. Let B = d
dt |0+P ∗t denote the adjoint generator.

Claim B = L∗.

ϕ ∈ D(B)⇒ d

dt
|0hP ∗t ϕ, vi = hBϕ, vi

d

dt
|0hϕ,Ptvi = hϕ,Lvi ∀v ∈ D(Lt

⇒ ϕ ∈ D(L∗) and Bϕ = Lϕ so that B ⊆ L∗. Suppose ϕ ∈ D(L∗) ⇒
∃ψ 3 L∗ϕ = ψ. For example hL∗ϕ, vi = hψ, vi ∀v ∈ D(L) for example
hϕ,Lvi = hψ, vi

d

dt
hϕ,Ptvi = hψ,Ptvi.

So hϕ,Ptvi − hϕ, vi =
R t
0
hP ∗t ψ, vidt ∀v ∈ D(L). So P ∗t ϕ = ϕ+

R t
0
P ∗t ψdt.

So d
dt |0+P ∗t ϕ = ψ ⇒ ϕ ∈ D(L∗) and L∗ϕ = ϕ.
Uniqueness: Let v̇ = Lv, v(0) = v0. Let ϕ ∈ D(L∗), T > 0.

d

dt
hP ∗T−tϕ, v(t)i = h−L∗P ∗T−tϕ, v(t)i+ hP ∗T−tϕ,Lvi = 0

⇒ hP ∗T−tϕ, v(T )i = construction therefore hP ∗Tϕ, v0i = hϕ, v(T )i ∀ϕ ∈
D(L∗)hϕ00, PT v0i. Since D(L∗) is dense v(T ) = PT v0.
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A

Multinomial Theorems and Calculus Results

Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn, α! := α1! · · ·αn!,

xα :=
nY
j=1

x
αj
j and ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
.

We also write

∂vf(x) :=
d

dt
f(x+ tv)|t=0.

A.1 Multinomial Theorems and Product Rules

For a = (a1, a2, . . . , an) ∈ Cn, m ∈ N and (i1, . . . , im) ∈ {1, 2, . . . , n}m let
α̂j (i1, . . . , im) = # {k : ik = j} . ThenÃ

nX
i=1

ai

!m

=
nX

i1,...,im=1

ai1 . . . aim =
X
|α|=m

C(α)aα

where

C(α) = # {(i1, . . . , im) : α̂j (i1, . . . , im) = αj for j = 1, 2, . . . , n}

I claim that C(α) = m!
α! . Indeed, one possibility for such a sequence

(a1, . . . , aim) for a given α is gotten by choosing

(

α1z }| {
a1, . . . , a1,

α2z }| {
a2, . . . , a2, . . . ,

αnz }| {
an, . . . , an).

Now there are m! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these m! permuta-
tions we must divide by the number of permutation which just rearrange the
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groups of ai’s among themselves for each i. There are α! := α1! · · ·αn! such
permutations. Therefore, C(α) = m!/α! as advertised. So we have provedÃ

nX
i=1

ai

!m

=
X
|α|=m

m!

α!
aα. (A.1)

Now suppose that a, b ∈ Rn and α is a multi-index, we have

(a+ b)α =
X
β≤α

α!

β!(α− β)!
aβbα−β =

X
β+δ=α

α!

β!δ!
aβbδ (A.2)

Indeed, by the standard Binomial formula,

(ai + bi)
αi =

X
βi≤αi

αi!

βi!(αi − βi)!
aβibαi−βi

from which Eq. (A.2) follows. Eq. (A.2) generalizes in the obvious way to

(a1 + · · ·+ ak)
α =

X
β1+···+βk=α

α!

β1! · · ·βk!a
β1
1 . . . aβkk (A.3)

where a1, a2, . . . , ak ∈ Rn and α ∈ Zn+.
Now let us consider the product rule for derivatives. Let us begin with the

one variable case (write dnf for f (n) = dn

dxn f) where we will show by induction
that

dn(fg) =
nX

k=0

µ
n

k

¶
dkf · dn−kg. (A.4)

Indeed assuming Eq. (A.4) we find

dn+1(fg) =
nX

k=0

µ
n

k

¶
dk+1f · dn−kg +

nX
k=0

µ
n

k

¶
dkf · dn−k+1g

=
n+1X
k=1

µ
n

k − 1
¶
dkf · dn−k+1g +

nX
k=0

µ
n

k

¶
dkf · dn−k+1g

=
n+1X
k=1

·µ
n

k − 1
¶
+

µ
n

k

¶¸
dkf · dn−k+1g + dn+1f · g + f · dn+1g.

Since µ
n

k − 1
¶
+

µ
n

k

¶
=

n!

(n− k + 1)!(k − 1)! +
n!

(n− k)!k!

=
n!

(k − 1)! (n− k)!

·
1

(n− k + 1)
+
1

k

¸
=

n!

(k − 1)! (n− k)!

n+ 1

(n− k + 1) k
=

µ
n+ 1

k

¶
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the result follows.
Now consider the multi-variable case

∂α(fg) =

Ã
nY
i=1

∂αii

!
(fg) =

nY
i=1

"
αiX

ki=0

µ
αi
ki

¶
∂kii f · ∂αi−kii g

#

=

α1X
k1=0

· · ·
αnX

kn=0

nY
i=1

µ
αi
ki

¶
∂kf · ∂α−kg =

X
k≤α

µ
α

k

¶
∂kf · ∂α−kg

where k = (k1, k2, . . . , kn) andµ
α

k

¶
:=

nY
i=1

µ
αi
ki

¶
=

α!

k!(α− k)!
.

So we have proved

∂α(fg) =
X
β≤α

µ
α

β

¶
∂βf · ∂α−βg. (A.5)

A.2 Taylor’s Theorem

Theorem A.1. Suppose X ⊂ Rn is an open set, x : [0, 1] → X is a C1 —
path, and f ∈ CN (X,C). Let vs := x(1)−x(s) and v = v1 = x(1)−x(0), then

f(x(1)) =
N−1X
m=0

1

m!
(∂mv f) (x(0)) +RN (A.6)

where

RN =
1

(N − 1)!
Z 1

0

¡
∂ẋ(s)∂

N−1
vs f

¢
(x(s))ds =

1

N !

Z 1

0

µ
− d

ds
∂Nvsf

¶
(x(s))ds.

(A.7)
and 0! := 1.

Proof. By the fundamental theorem of calculus and the chain rule,

f(x(t)) = f(x(0)) +

Z t

0

d

ds
f(x(s))ds = f(x(0)) +

Z t

0

¡
∂ẋ(s)f

¢
(x(s))ds (A.8)

and in particular,

f(x(1)) = f(x(0)) +

Z 1

0

¡
∂ẋ(s)f

¢
(x(s))ds.

This proves Eq. (A.6) when N = 1. We will now complete the proof using
induciton on N.
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Applying Eq. (A.8) with f replaced by 1
(N−1)!

¡
∂ẋ(s)∂

N−1
vs f

¢
gives

1

(N − 1)!
¡
∂ẋ(s)∂

N−1
vs f

¢
(x(s)) =

1

(N − 1)!
¡
∂ẋ(s)∂

N−1
vs f

¢
(x(0))

+
1

(N − 1)!
Z s

0

¡
∂ẋ(s)∂

N−1
vs ∂ẋ(t)f

¢
(x(t))dt

= − 1

N !

µ
d

ds
∂Nvsf

¶
(x(0))− 1

N !

Z s

0

µ
d

ds
∂Nvs∂ẋ(t)f

¶
(x(t))dt

wherein we have used the fact that mixed partial derivatives commute to show
d
ds∂

N
vsf = N∂ẋ(s)∂

N−1
vs f. Integrating this equation on s ∈ [0, 1] shows, using

the fundamental theorem of calculus,

RN =
1

N !

¡
∂Nv f

¢
(x(0))− 1

N !

Z
0≤t≤s≤1

µ
d

ds
∂Nvs∂ẋ(t)f

¶
(x(t))dsdt

=
1

N !

¡
∂Nv f

¢
(x(0)) +

1

(N + 1)!

Z
0≤t≤1

¡
∂Nwt∂ẋ(t)f

¢
(x(t))dt

=
1

N !

¡
∂Nv f

¢
(x(0)) +RN+1

which completes the inductive proof.

Remark A.2. Using Eq. (A.1) with ai replaced by vi∂i (although {vi∂i}ni=1 are
not complex numbers they are commuting symbols), we find

∂mv f =

Ã
nX
i=1

vi∂i

!m

f =
X
|α|=m

m!

α!
vα∂α.

Using this fact we may write Eqs. (A.6) and (A.7) as

f(x(1)) =
X

|α|≤N−1

1

α!
vα∂αf(x(0)) +RN

and

RN =
X
|α|=N

1

α!

Z 1

0

µ
− d

ds
vαs ∂

αf

¶
(x(s))ds.

Corollary A.3. Suppose X ⊂ Rn is an open set which contains x(s) = (1−
s)x0 + sx1 for 0 ≤ s ≤ 1 and f ∈ CN (X,C). Then

f(x1) =
N−1X
m=0

1

m!
(∂mv f) (x0) +

1

N !

Z 1

0

¡
∂Nv f

¢
(x(s))dνN (s) (A.9)

=
X
|α|<N

1

α!
∂αf(x(0))(x1 − x0)

α +
X

α:|α|=N

1

α!

·Z 1

0

∂αf(x(s))dνN (s)

¸
(x1 − x0)

α

(A.10)
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where v := x1 − x0 and dνN is the probability measure on [0, 1] given by

dνN (s) := N(1− s)N−1ds. (A.11)

If we let x = x0 and y = x1 − x0 (so x+ y = x1) Eq. (A.10) may be written
as

f(x+ y) =
X
|α|<N

∂αx f(x)

α!
yα +

X
α:|α|=N

1

α!

µZ 1

0

∂αx f(x+ sy)dνN (s)

¶
yα.

(A.12)

Proof. This is a special case of Theorem A.1. Notice that

vs = x(1)− x(s) = (1− s)(x1 − x0) = (1− s)v

and hence

RN =
1

N !

Z 1

0

µ
− d

ds
(1− s)N∂Nv f

¶
(x(s))ds =

1

N !

Z 1

0

¡
∂Nv f

¢
(x(s))N(1−s)N−1ds.

Example A.4. Let X = (−1, 1) ⊂ R, β ∈ R and f(x) = (1 − x)β . The reader
should verify

f (m)(x) = (−1)mβ(β − 1) . . . (β −m+ 1)(1− x)β−m

and therefore by Taylor’s theorem (Eq. (??) with x = 0 and y = x)

(1− x)β = 1 +
N−1X
m=1

1

m!
(−1)mβ(β − 1) . . . (β −m+ 1)xm +RN(x) (A.13)

where

RN (x) =
xN

N !

Z 1

0

(−1)Nβ(β − 1) . . . (β −N + 1)(1− sx)β−NdνN (s)

=
xN

N !
(−1)Nβ(β − 1) . . . (β −N + 1)

Z 1

0

N(1− s)N−1

(1− sx)N−β
ds.

Now for x ∈ (−1, 1) and N > β,

0 ≤
Z 1

0

N(1− s)N−1

(1− sx)N−β
ds ≤

Z 1

0

N(1− s)N−1

(1− s)N−β
ds =

Z 1

0

N(1− s)β−1ds =
N

β

and therefore,

|RN (x)| ≤ |x|N
(N − 1)! |(β − 1) . . . (β −N + 1)| =: ρN .
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Since

lim sup
N→∞

ρN+1
ρN

= |x| · lim sup
N→∞

N − β

N
= |x| < 1

and so by the Ratio test, |RN (x)| ≤ ρN → 0 (exponentially fast) as N →∞.
Therefore by passing to the limit in Eq. (A.13) we have proved

(1− x)β = 1 +
∞X

m=1

(−1)m
m!

β(β − 1) . . . (β −m+ 1)xm (A.14)

which is valid for |x| < 1 and β ∈ R. An important special cases is β = −1
in which case, Eq. (A.14) becomes 1

1−x =
P∞

m=0 x
m, the standard geometric

series formula. Another another useful special case is β = 1/2 in which case
Eq. (A.14) becomes

√
1− x = 1 +

∞X
m=1

(−1)m
m!

1

2
(
1

2
− 1) . . . (1

2
−m+ 1)xm

= 1−
∞X

m=1

(2m− 3)!!
2mm!

xm for all |x| < 1. (A.15)



B

Zorn’s Lemma and the Hausdorff Maximal
Principle

Definition B.1. A partial order ≤ on X is a relation with following properties

(i) If x ≤ y and y ≤ z then x ≤ z.
(ii)If x ≤ y and y ≤ x then x = y.
(iii)x ≤ x for all x ∈ X.

Example B.2. Let Y be a set and X = P(Y ). There are two natural partial
orders on X.

1. Ordered by inclusion, A ≤ B is A ⊂ B and
2. Ordered by reverse inclusion, A ≤ B if B ⊂ A.

Definition B.3. Let (X,≤) be a partially ordered set we say X is linearly a
totally ordered if for all x, y ∈ X either x ≤ y or y ≤ x. The real numbers R
with the usual order ≤ is a typical example.
Definition B.4. Let (X,≤) be a partial ordered set. We say x ∈ X is a
maximal element if for all y ∈ X such that y ≥ x implies y = x, i.e. there is
no element larger than x. An upper bound for a subset E of X is an element
x ∈ X such that x ≥ y for all y ∈ E.

Example B.5. Let

X =
©
a = {1} b = {1, 2} c = {3} d = {2, 4} e = {2}ª

ordered by set inclusion. Then b and d are maximal elements despite that fact
that b £ a and a £ b. We also have

• If E = {a, e, c}, then E has no upper bound.

Definition B.6. • If E = {a, e}, then b is an upper bound.
• E = {e}, then b and d are upper bounds.

Theorem B.7. The following are equivalent.
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1. The axiom of choice: to each collection, {Xα}α∈A , of non-empty sets
there exists a “choice function,” x : A→

ὰ∈A
Xα such that x(α) ∈ Xα for

all α ∈ A, i.e.
Q

α∈AXα 6= ∅.
2. The Hausdorff Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.

3. Zorn’s Lemma: If X is partially ordered set such that every linearly
ordered subset of X has an upper bound, then X has a maximal element.1

Proof. (2⇒ 3) Let X be a partially ordered subset as in 3 and let F =
{E ⊂ X : E is linearly ordered} which we equip with the inclusion partial
ordering. By 2. there exist a maximal element E ∈ F . By assumption, the
linearly ordered set E has an upper bound x ∈ X. The element x is maximal,
for if y ∈ Y and y ≥ x, then E ∪ {y} is still an linearly ordered set containing
E. So by maximality of E, E = E ∪ {y} , i.e. y ∈ E and therefore y ≤ x
showing which combined with y ≥ x implies that y = x.2

(3⇒ 1) Let {Xα}α∈A be a collection of non-empty sets, we must showQ
α∈AXα is not empty. Let G denote the collection of functions g : D(g) →`
α∈AXα such that D(g) is a subset of A, and for all α ∈ D(g), g(α) ∈ Xα.

Notice that G is not empty, for we may let α0 ∈ A and x0 ∈ Xα and then
set D(g) = {α0} and g(α0) = x0 to construct an element of G. We now put
a partial order on G as follows. We say that f ≤ g for f, g ∈ G provided
that D(f) ⊂ D(g) and f = g|D(f). If Φ ⊂ G is a linearly ordered set, let
D(h) = ∪g∈ΦD(g) and for α ∈ D(g) let h(α) = g(α). Then h ∈ G is an upper
bound for Φ. So by Zorn’s Lemma there exists a maximal element h ∈ G. To
finish the proof we need only show that D(h) = A. If this were not the case,
then let α0 ∈ A\D(h) and x0 ∈ Xα0 .We may now define D(h̃) = D(h)∪{α0}
and

h̃(α) =

½
h(α) if α ∈ D(h)
x0 if α = α0.

1 If X is a countable set we may prove Zorn’s Lemma by induction. Let {xn}∞n=1
be an enumeration of X, and define En ⊂ X inductively as follows. For n = 1
let E1 = {x1}, and if En have been chosen, let En+1 = En ∪ {xn+1} if xn+1
is an upper bound for En otherwise let En+1 = En. The set E = ∪∞n=1En is a
linearly ordered (you check) subset of X and hence by assumption E has an upper
bound, x ∈ X. I claim that his element is maximal, for if there exists y = xm ∈ X
such that y ≥ x, then xm would be an upper bound for Em−1 and therefore
y = xm ∈ Em ⊂ E. That is to say if y ≥ x, then y ∈ E and hence y ≤ x, so
y = x. (Hence we may view Zorn’s lemma as a “ jazzed” up version of induction.)

2 Similalry one may show that 3 ⇒ 2. Let F = {E ⊂ X : E is linearly ordered}
and order F by inclusion. IfM ⊂ F is linearly ordered, let E = ∪M =

S
A∈M

A.

If x, y ∈ E then x ∈ A and y ∈ B for some A,B ⊂M. NowM is linearly ordered
by set inclusion so A ⊂ B or B ⊂ A i.e. x, y ∈ A or x, y ∈ B. Sinse A and B are
linearly order we must have either x ≤ y or y ≤ x, that is to say E is linearly
ordered. Hence by 3. there exists a maximal element E ∈ F which is the assertion
in 2.
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Then h ≤ h̃ while h 6= h̃ violating the fact that h was a maximal element.
(1⇒ 2) Let (X,≤) be a partially ordered set. Let F be the collection of

linearly ordered subsets of X which we order by set inclusion. Given x0 ∈ X,
{x0} ∈ F is linearly ordered set so that F 6= ∅.
Fix an element P0 ∈ F . If P0 is not maximal there exists P1 ∈ F such

that P0 Ã P1. In particular we may choose x /∈ P0 such that P0 ∪ {x} ∈ F .
The idea now is to keep repeating this process of adding points x ∈ X until
we construct a maximal element P of F . We now have to take care of some
details.
We may assume with out loss of generality that F̃ = {P ∈ F : P is not maximal}

is a non-empty set. For P ∈ F̃ , let P ∗ = {x ∈ X : P ∪ {x} ∈ F} . As the above
argument shows, P ∗ 6= ∅ for all P ∈ F̃ . Using the axiom of choice, there exists
f ∈QP∈F̃ P ∗. We now define g : F → F by

g(P ) =

½
P if P is maximal

P ∪ {f(x)} if P is not maximal.
(B.1)

The proof is completed by Lemma B.8 below which shows that g must have
a fixed point P ∈ F . This fixed point is maximal by construction of g.
Lemma B.8. The function g : F → F defined in Eq. (B.1) has a fixed point.3

Proof. The idea of the proof is as follows. Let P0 ∈ F be chosen
arbitrarily. Notice that Φ =

©
g(n)(P0)

ª∞
n=0
⊂ F is a linearly ordered set and it

is therefore easily verified that P1 =
∞S
n=0

g(n)(P0) ∈ F . Similarly we may repeat

the process to construct P2 =
∞S
n=0

g(n)(P1) ∈ F and P3 =
∞S
n=0

g(n)(P2) ∈ F ,
etc. etc. Then take P∞ = ∪∞n=0Pn and start again with P0 replaced by P∞.
Then keep going this way until eventually the sets stop increasing in size, in
which case we have found our fixed point. The problem with this strategy is
that we may never win. (This is very reminiscent of constructing measurable
sets and the way out is to use measure theoretic like arguments.)
Let us now start the formal proof. Again let P0 ∈ F and let F1 = {P ∈

F : P0 ⊂ P}. Notice that F1 has the following properties:
1. P0 ∈ F1.
2. If Φ ⊂ F1 is a totally ordered (by set inclusion) subset then ∪Φ ∈ F1.
3. If P ∈ F1 then g(P ) ∈ F1.
Let us call a general subset F 0 ⊂ F satisfying these three conditions a

tower and let
3 Here is an easy proof if the elements of F happened to all be finite sets and
there existed a set P ∈ F with a maximal number of elements. In this case the
condition that P ⊂ g(P ) would imply that P = g(P ), otherwise g(P ) would have
more elements than P.
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F0 = ∩ {F 0 : F 0 is a tower} .
Standard arguments show that F0 is still a tower and clearly is the smallest
tower containing P0. (Morally speaking F0 consists of all of the sets we were
trying to constructed in the “idea section” of the proof.)
We now claim that F0 is a linearly ordered subset of F . To prove this let

Γ ⊂ F0 be the linearly ordered set

Γ = {C ∈ F0 : for all A ∈ F0 either A ⊂ C or C ⊂ A} .

Shortly we will show that Γ ⊂ F0 is a tower and hence that F0 = Γ. That is
to say F0 is linearly ordered. Assuming this for the moment let us finish the
proof. Let P ≡ ∪F0 which is in F0 by property 2 and is clearly the largest
element in F0. By 3. it now follows that P ⊂ g(P ) ∈ F0 and by maximality of
P, we have g(P ) = P, the desired fixed point. So to finish the proof, we must
show that Γ is a tower.
First off it is clear that P0 ∈ Γ so in particular Γ is not empty. For each

C ∈ Γ let
ΦC := {A ∈ F0 : either A ⊂ C or g(C) ⊂ A} .

We will begin by showing that ΦC ⊂ F0 is a tower and therefore that ΦC = F0.
1. P0 ∈ ΦC since P0 ⊂ C for all C ∈ Γ ⊂ F0. 2. If Φ ⊂ ΦC ⊂ F0 is totally

ordered by set inclusion, then AΦ := ∪Φ ∈ F0. We must show AΦ ∈ ΦC , that
is that AΦ ⊂ C or C ⊂ AΦ. Now if A ⊂ C for all A ∈ Φ, then AΦ ⊂ C and
hence AΦ ∈ ΦC . On the other hand if there is some A ∈ Φ such that g(C) ⊂ A
then clearly g(C) ⊂ AΦ and again AΦ ∈ ΦC .
3. Given A ∈ ΦC we must show g(A) ∈ ΦC , i.e. that

g(A) ⊂ C or g(C) ⊂ g(A). (B.2)

There are three cases to consider: either A Ã C, A = C, or g(C) ⊂ A. In the
case A = C, g(C) = g(A) ⊂ g(A) and if g(C) ⊂ A then g(C) ⊂ A ⊂ g(A) and
Eq. (B.2) holds in either of these cases. So assume that A Ã C. Since C ∈ Γ,
either g(A) ⊂ C (in which case we are done) or C ⊂ g(A). Hence we may
assume that

A Ã C ⊂ g(A).

Now if C were a proper subset of g(A) it would then follow that g(A)\A would
consist of at least two points which contradicts the definition of g. Hence we
must have g(A) = C ⊂ C and again Eq. (B.2) holds, so ΦC is a tower.
It is now easy to show Γ is a tower. It is again clear that P0 ∈ Γ and

Property 2. may be checked for Γ in the same way as it was done for ΦC
above. For Property 3., if C ∈ Γ we may use ΦC = F0 to conclude for all
A ∈ F0, either A ⊂ C ⊂ g(C) or g(C) ⊂ A, i.e. g(C) ∈ Γ. Thus Γ is a tower
and we are done.
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