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1. Elliptic integrals.

The subject of elliptic curves has its roots in the differential and integral calculus, which
was developed in the 17th and 18th century and became the main subject of what is nowa-
days a ‘basic mathematical education’. In calculus, one tries to integrate the differentials
f(t)dt associated with, say, a real-valued function f on the real line. As is well known,
such integrals are related to the area of certain surfaces bounded by the graph of f. Ex-
plicit integration of the differential f(¢)dt, which amounts to finding an anti-derivative F’
satisfying dF'/dt = f, can only be performed for a very limited number of ‘standard inte-
grals’. These include the integrals of polynomial differentials t*dt with k € Z>, rational
differentials as (t — a)™* with k € Z+o and a few ‘exponential differentials’ as e’dt and
sintdt. Over the complex numbers, any rational differential can be written as a sum of
elementary differentials.

Exercise 1. Show that every rational function f € C(t) can be written as unique C-linear combination
of monomials t* with k € Z>o and fractions (t— a)_k with @ € C and k € Z>;. Use this representation

o write as a sum of elementary functions. [Hint: partial fraction expansion.
t it t)dt f el t functi Hint tial fracti i

Even if one restricts to polynomial or rational functions f, already the problem of com-
puting the length of the graph of f, an old problem known as the ‘rectification’ of plane
curves, leads to the non-elementary differential /1 + f/(¢)2dt. If R € C(z,y) is a rational
function and f € C[t] a polynomial that is not a square, the differential R(¢,+/f(t)dt) is
called hyperelliptic. We can and will always suppose that f is separable, i.e., it has no mul-
tiple roots. If f is of degree 1, one can transform R(t,+/f(¢))dt into a rational differential
by taking 1/ f(t) as a new variable. If f is quadratic, one can apply a linear transformation
t — at + b to reduce to the case f(t) = 1 —t2. We will see in a moment that the resulting
integrals are closely related to the problem of computing lengths of circular arcs or, what
amounts to the same thing, inverting trigonometric functions. If f is of degree 3 or 4 and
squarefree, the differential R(¢,+/f(t))dt is said to be elliptic.

Exercise 2. Show that the length of the ellipse with equation y2 = c2(1 — a:z) in R? equals

2 _ 5 /2
/ 1+ (C zl)t dt =2 \/]_ —+ (c2 — 1)sin2¢d¢,
1-1¢ —m/2

and that the differential 4/ %dt is elliptic.

Elliptic differentials lead naturally to the study of elliptic functions and elliptic curves.
In a similar way, the case of f of higher degree gives rise to hyperelliptic curves. More
generally, it has gradually become clear during the 19th century that an algebraic differen-
tial R(t,u)dt, with R a rational function and ¢ and u satisfying some polynomial relation
P(t,u) = 0, should be studied as an object living on the plane algebraic curve defined
by the equation P(z,y) = 0. For hyperelliptic differentials, this is the hyperelliptic curve
given by the equation y? = f(z).
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As an instructive example, we consider the differential w = dt/+/1 — t? related to the arc
length of the unit circle. The reader can easily check that the graph of the function f(t) =

V1 —t2? on the real interval [—1,1] is a semicircle, and that we have w = /1 + f/(t)2dt.
We attempt to define a map

" b [um [

as a function on C. Note that w has integrable singularities at the points ¢t = +1.

There are two problems with the map ¢. First of all, there is no canonical definition
of a square root /1 —t2 for t € C. One can select a specific square root for ¢t € [—1,1]
or t on the imaginary axis, when 1 — ¢? is real and positive, but such extensions do not
yield an obvious choice for, say, ¢t = £2. A rather uncanonical way out is the possibility of
making a branch cut. This means that one defines ¢ not on C, but on a subset of C, such
as C\ [-1,1], on which v/1 — ¢2 admits a single-valued branch.

If one makes the proposed branch cut and chooses a branch of w, a second problem
arises: two different paths of integration can give rise to different values of ¢(z), so the

map ¢ is not well-defined. z

-l

A

\A

The difference between any two values of ¢(z) for the paths v; and 2 in the picture is
the value of the integral f w along a simple closed curve I' around the two singular points

t = £1 of w. One can compute this contour integral in various ways.

Exercise 3. Apply the residue theorem to evaluate fl" w. [Answer: £2m.]

As the value of the real integral f_ll w is the length of a semicircle of radius 1, one easily
sees that f w has value 427, with the sign depending on the choice of the square root
V1 — t2 along the path of integration. From the topology of C\ [—1, 1], it is clear that the
values of ¢(z) computed along different paths always differ by a multiple of 2.

There is a canonical reparation of the definition of ¢ that makes ¢ into a well-defined
map on a ‘natural domain’ for w. Rather than defining ¢ on C minus some branch cut,
one considers the set

X ={(z,y) € C?: y? =1 - z?}.

This set comes with a natural projection 7, : X — C defined by (z,y) — z. Given any
point ¢ € C, the fiber m(t) consists of the points (¢,u) € C? for which u is a square root
of 1 —t2. For t # 41, there are exactly 2 such points, and one says that the projection

4
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m, : X — C is generically 2-to-1. For the branch points t = £1 there is only one point in
the fiber.

As the complex curve X is a subset of C?, one cannot immediately picture X. There
are two approximate solutions. The first consists of drawing C as a 1-dimensional object
and representing mx as in the picture below. One disadvantage of this method is that the
points (£1,0) on X appear to be of a special nature. The symmetry in z and y in the
definition of X show that this cannot be the case.

Exercise 4. Draw the corresponding picture for the map 7y : X — C sending (z,y) to y. Where are the
points (+1,0) in this picture?

_1<i

Another, usually somewhat more complicated way to visualize X is to take two copies of C

and ‘glue them along a branch cut’ as suggested in the picture. In the space obtained,
paths passing through the branch cut in one copy of C emerge on the ‘opposite side’ of the
branch cut in the other copy. A moment’s reflection shows that, topologically, the resulting
surface is homeomorphic to a cylinder. The path I"' becomes the simplest incontractible
path on X. It is immediate from the picture that every path 0 — z in C that does not pass
through the branch points +1 can uniquely be lifted to a path z¢o = (0,1) — (2, w), where
w is a square root of 1 —22 that is determined by the path 0 — z. The function ¢t — v/1 — ¢2,
which has no natural definition on C, has by construction a natural definition on X: it is
the function (,u) — u. It is now also clear how one should integrate the differential dt/u,
which we denote again by w, along any path in X. We arrive at a definition of ¢ on X
rather than C, which is given by

¢(:L‘):/w:/£ forz € X C C?,
o Iou

The integral is taken along X, and as we have a choice of paths its value is only determined
up to multiples of 27r. This means that ¢(z) is well defined as an element of the factor
group C/2nZ of C. The elements of this group can be viewed as the complex numbers in
the infinite strip {z : —m < Re(z) < 7}, where for any r € R, the elements —m + ir and
m + ir on the boundary are identified. Topologically, one notes that just like X, the group
C/27Z is a cylinder. The following theorem is therefore not so surprising.

1.2. Theorem. The integration of the differential w induces a bijection ¢ : X -~ C/2nZ.

We leave it to the reader to give a complete proof of the theorem, as indicated in the
exercises, and to show that ¢ is in a natural way a homeomorphism of topological spaces.

5
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Theorem 1.2 has a number of interesting consequences. It shows that the set X, which
is the algebraic curve in C? defined by the equation 22 +y? = 1, is in a natural way a group.
From the map ¢, which is defined by means of an integral, it is not immediately clear what
the sum of two points on X should be. However, in this case we know from calculus that
integration of the real differential w = dt/+/1 — t2 yields the function arcsint, a somewhat
artificially constructed inverse to the sine function. In fact, our carefully constructed map
¢ has an inverse which is much easier to handle. From the observation that 7, o ¢~ is
in fact the sine function and the identity ¢—1(0) = (0, 1), the following theorem is now
immediate.

1.8. Theorem. The inverse ¢! : C/2nZ — X of the bijection ¢ in 1.2 is given by
¢~ 1(2z) = (sin z, cos 2).

It follows from 1.3 that we may describe the natural addition on X by the formula
(sina, cos a) + (sin B, cos B) = (sin(a + B),cos(a + B)). From the addition formulas for
the sine and cosine functions one deduces that the group law on X is in fact given by the
simple polynomial formula

(1.4) (z1,9y1) + (22, Y2) = (Z1Y2 + T2y1, Y1Y2 — T122).

The unit element of X is the point (0, 1), and the inverse of (z,y) € X is the point (—z,y).
This shows that X is in fact an algebraic group: for every subfield of K C C, such as Q
or Q(i), the set X(K) C K? of K-valued points of X is an abelian group. A picture of
the real locus X (R) = {(z,y) € R? : 2% 4+ y? = 1} explains why X is known as the circle
group.

Exercise 5. Draw a picture of X(R) and give a geometric description of the group law.

As we have constructed the circle group by analytic means, via the construction of ¢, it is
not immediately obvious that formula 1.4 defines a group structure on X (K) for arbitrary
fields K. Clearly, there is no ‘analytical parametrization’ ¢—! of X if we replace C by a
field of positive characteristic, such as the finite field F,,. Therefore, the following theorem
does require a proof.

1.5. Theorem. Let K be a field. Then formula 1.4 defines a group structure on the set
X(K)={(z,y) € K?: 22 +y* =1}.

Proof. It is straightforward but unenlightening to check the group axioms from the
definition. One can however observe that under the injective map X (K) — SLa(K) given

T

multiplication. It follows that 1.4 defines a group structure on X (K). g

by (z,y) — (y _;), the operation given by 1.4 corresponds to the well known matrix

Exercise 6. Let K be a field of characteristic 2. Show that the projection w5 : X(K) — K mapping (z,y)

to z is a group isomorphism.

As is shown by the preceding exercise, one has to be careful when interpreting pictures over
the complex numbers—such as that of the generically 2-to-1 projection 7, : X(C) — C
above—in positive characteristic.

6
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We now replace the differential dt/+/1 — t? in the preceding example by an elliptic dif-
ferential dt/+/ f(t) for some squarefree polynomial f of degree 3 or 4. We will see that
the complex ‘unit circle’ X = {(z,y) : 22 + y?> = 1} gets replaced by the elliptic curve
E ={(z,y): y*> = f(z)}, and the map ¢~ ! : 2 — (sinz,cosz) by a map z — (P(2), P'(2))
for some elliptic function P. As in the case of the circle, the analytic parametrization by
elliptic functions will equip E with a group structure. In the next section, we will give a
geometric description of the group law and derive explicit algebraic addition formulas.
For a quadratic polynomial f a simple transformation ¢ — at + b suffices to map the
roots of f to +1, yielding a differential with f(¢) = 1—¢2. In the elliptic case, the situation
is more complicated. One can apply Mébius transformations t — £ with ad — be # 0,

ct+d
which act bijectively on the compactified complex plane P(C) = C U {co}, commonly

referred to as the Riemann sphere.

at+b
ct+4+d’

1.6. Lemma. Under a Moébius transformation t — elliptic differentials transform

into elliptic differentials.

Proof. It suffices to check this for a differential w = dt/\/f(t), with f(t) = Ei:o rith of
degree 3 or 4. One finds that w is transformed into

1 at+b, (ad — be) dt
flesdy et a5 (a4 b (et + d)i

The polynomial g(t) = Zi:o r(at + b)*(ct + d)*~* is of degree at most 4. We leave it to
the reader to verify that the degree is at least 3, so that w* is again elliptic. (

Exercise 7. Show that if the polynomial f in the preceding proof is of degree 4, the transformed differential
has a polynomial g of degree 3 if and only if the Mobius transformation maps oo to a zero of f.

Mobius transformations can be used to map three of the roots of f to prescribed values in
P!(C). Different choices lead to different normal forms for elliptic differentials.

Exercise 8. Show that every elliptic differential R(t,+/ f(t)) can be transformed by a Mobius transfor-

mation into a differential for which f has one the following shapes:
f@)=tit—1)Et=2) f@R)=t>+at+b  f(t)=(1—t>)(1—E*?).
[The corresponding normal forms are named after Legendre, Weierstrass and Jacobi.]

As an example of an elliptic differential, we consider the differential w = dt/+/1 — t* related
to the rectification of the lemniscate. In order to find the analogue of 1.2 for w, we start
as in 1.1 and try to define a map

z z dt
Pz / w = / —.
0 0o V1—t4
This time w has integrable singularities in the 4th roots of unity, and it becomes single-

valued if we make make branch cuts [—1,i] and [—4,1]. The picture in the complex plane
is as follows.
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In order to obtain a natural domain for w, we consider the algebraic curve E in C? with
equation

E={(z,y):y*=1-2% c C%

As in our previous example, the projection 7, : E — C on the z-coordinate is generically
2-to-1 with branch points at +1 and +:. A topological model for ¥ can be obtained by
glueing two copies of C along our two branch cuts.

=

c = =

-1 -i i 1

As 9(z) converges for z — oo, it makes sense to view 1 as a map on the Riemann sphere
P!(C). This means that we have to modify the picture above and add two ‘points at
infinity’ to E, one coming from each copy of C in our topological picture. We write E
again for the completed curve. We see from the picture that the glueing of two spheres
along two branch cuts yields a doughnut-shaped surface known as a torus. On this surface,
there are two independent incontractible paths. Under 7, they are mapped to the paths
~1 and 75 in our earlier picture. One can show that the homotopy classes of these paths
generate the fundamental group n(E) =Z x Z of E.

Exercise 9. Show that 'yl'yg'yl_l'yz_l is a contractible path on E.

It follows that the values of i are uniquely determined as elements of the factor group
C/(Zwy + Zw,), where the periods wi and wy are defined as w; = f’n w for 2 =1,2. From
our initial picture we see that the path 71 maps to 5 onder multiplication by —i. As
1 — t* is invariant under this transformation, we deduce that we have wy = —iw;. The

8
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subgroup A = Zw; +Zws is a rectangular lattice in C, and the factor group C/A is therefore
topologically a torus. We have the following analogue of 1.2.

1.7. Theorem. The integration of the differential w = d?“‘

induces a bijection ¢ : E — C/(Zw + Zw,).

along the completed curve E

For a complete proof of 1.7, and for similar results for other elliptic differentials, we refer
to the exercises.

As a consequence of 1.7, we see that the elliptic curve E carries a natural group
structure. Let the inverse function ¢! : C/(Zw; + Zws) — E be given by ¥ ~1(2) =
(P(z),Q(z)). As the derivative of 9 in (x,y) with respect to z is by construction equal
to 1/y, the derivative of P in z = ¥((z,y)) equals y = Q(z). We conclude that as in the
previous example, the inverse of 1 is of the form ¢ ~1(z) = (P(z), P'(z)) for some elliptic
function P. As E has two points at infinity, the ‘lemniscatic P-function’ P(z) has a pole
in two values of z in C/(Zw; + Zwy). At all other points, it is holomorphic. From the
equation of F, it is clear that P is a solution to the differential equation

(P2 =1- P

As a function on C, it has even stronger periodicity properties than the sine function: it
is double-periodic with independent periods w; and ws.

Exercise 10. Define p = f_ll dt/v/1 —t* ~ 2.622057556, the elliptic analogue of w = f_ll dt/v/1 —t2.
Show that we can take w1 = p+ ip and w2 = p — ip in 1.7, and that the elliptic function P has poles in
w1/2 and w2/2. Are these poles simple?

Just as the sine and cosine functions are more convenient to handle than the arcsine and
arccosine functions arising from the integration of dt/+/1 — t2, the functions P and P’
constructed above are easier to study than the function ¢(z) = [ “dt//1 —t%. By clever
substitutions in the integral defining v, one can prove Fagnano’s duplication formula

2P(z)P'(z)

PR =T e

which dates back to 1718. Euler extended this result in 1751 and found the general addition
formula

P(Z1)PI(ZQ) —+ PI(Zl)P(ZQ)
1+ P(21)%2P(23)?

P(Zl) + P(Zg) =

for the lemniscatic P-function.

The next section is devoted to the analysis of analytic functions on an arbitrary
torus. We will show directly that all tori come with functions satisfying algebraic addition
formulas.



Kernvak algebra - §1 version January 20, 1997, 14:57

Exercises.

11.

12.

*13.

14.

15.

16.

17.

*18.

10

Adapt the statement in exercise 1 for rational functions f with real coefficients and show
that f f(t)dt can be expressed in terms of ‘real elementary functions’.

Show that the map ¢ in 1.1 is well-defined as a map on the upper half plane H = {z €
C : Imz > 0}, provided that we fix a branch of v/1 —¢2 on #. Show that for the branch
that is positive on tR>0, we obtain a bijective map ¢ : H — S to the semi-infinite strip
S={z€C:Rez>0and —7/2 < Imz < w/2}. Derive theorem 1.2 from this statement.

[Hint: determine the image of the real axis under ¢.]

Show that the map ¢ in 1.2 is an isomorphism of complex analytic spaces, i.e., a biholomorphic
map between open Riemann surfaces.

A lemniscate of Bernoulli is the set L of points X in the Euclidean plane for which the product
of the distances X P; and X P>, with P; and P> given points at distance P P> = 2d > 0, is
equal to d°.
a. Show that for a suitable choice of coordinates, the equation for L is (x2 —l—y2)2 =22 —¢?
or, in polar coordinates, 2 = cos 2¢. Sketch this curve.
b. Show that the arclength of the ‘unit lemniscate’ in (a) equals 2p, with p defined as in

exercise 10. [Note the similarity with the arclength of the unit circle, which equals 27.]

This exercise gives a ‘proof by algebraic manipulation’ of Fagnano’s duplication formula for
the lemniscatic P-function. See also exercises 5.12 and 5.13.

a. Show that the substitution ¢t = 2v/(1+ 1)2) transforms the differential dt/m to the
rational differential 2dv/(1 4 v?).

b. Show that the substitution ¢* = 2v?/(1 + v*) transforms the differential d¢/+/1 — t* to
the differential v/2dv/(1+ v*), and that the subsequent substitution v* = 2w?/(1 + w*)
leads to the differential 2dw/(1 — w*).

c. Derive the relation t = 2w+/1 — w?/(1 + w*) for variables in (b), and use this to prove
Fagnano’s formula.

On the complex upper half plane H, we can uniquely define a function

? dt
¢(z)—/0 Ao

by integrating along paths in 7. We use the branch of \/(1 — t2)(4 — t2) that is positive on
iR>o. Define A, B € C by A =lim,_,1 ¢(z) and A+ B = lim,_,2 ¢(2).
a. Show that A is real and B purely imaginary, and that we have lim,_,o ¢(z) = B.

b. Show that the map ¢ extends to a bijection between the completion of the elliptic curve
y? = (1 — 2%)(4 — 2?) and the torus C/A with A =Z -4A + Z - 2B.

Prove theorem 1.7. [Hint: imitate the previous exercise.]

Show that the map % in 1.7 is an isomorphism of complex analytic spaces, i.e., a biholomor-
phic map between compact Riemann surfaces.
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2. Elliptic functions

In this section, we will develop the basic theory of double-periodic functions encountered
in the previous section.

A lattice in C is a discrete subgroup of C of rank 2. It has the form A = Zw, + Zw,
for some R-basis {wy,ws} of C. One often writes A = [wy, ws]. The factor group T = C/A
is called a complex torus. A fundamental domain for T is a connected subset F' C C for
which every z € C can uniquely be written as z = f +w with f € F' and w € A. Note that
any translate of a fundamental domain is again a fundamental domain. For every choice
{w1,ws} of a Z-basis of A, the set

F={riw;+rews:r,r2 €R, 0<r;,ra<1}CC

is a fundamental domain for T'.

W

Tl

An elliptic function with respect to A is a meromorphic function f on C that satisfies
f(z+w) = f(z) for all w € A. Such a function is uniquely determined by its values on
a fundamental domain. An elliptic function factors as f : C — C/A = T — P1(C), so
we can identify the set of elliptic functions with respect to A with the set M(T') of mero-
morphic functions on T = C/A. Sums and quotients of meromorphic functions are again
meromorphic, so the set M(T) is actually a field, the elliptic function field corresponding
to T

As T is compact, any holomorphic function f € M(T) is bounded on T'. This means
that f comes from a bounded holomorphic function on C, so by Liouville’s theorem f is
constant. We conclude that any non-constant elliptic function has at least one pole.

Exercise 1. Show that for any non-constant f € M(T), the map f : T — P(C) is surjective.

The most convenient way to describe the zeroes and poles of a function f € M(T) is to
define its associated divisor. The divisor group Div(T) is the free abelian group generated

11
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by the points of T'. Equivalently, a divisor

D= ny[w] € Div(T) = SuerZ
weT

is a finite formal sum of points of T" with integer coefficients.

The divisor group Div(T') comes with canonical surjective homomorphisms to T and Z.
The summation map ¥ : Div(T) — T sends ) rnw[w] to Y cpnyw. The degree map
deg : Div(T) — Z sends ) 7 ny|w] to > 7 ny. The kernel of the degree map is the
subgroup Div®(T) C Div(T) of divisors of degree zero.

The order ord,(f) € Z of a non-zero function f € M(T)* at a point w € T is the
minimum of all k for which the coefficient cj, in the Laurent expansion f(z) = Y, cx(z—w)*
of f around w is non-zero. If we view poles as zeroes of negative order, ord,,(f) € Z is
simply the order of the zero of f in w.

A meromorphic function f € M(T)* has only finitely many zeroes and poles on the
compact torus T', so the divisor map

div : M(T)* — Div(T)
fr—=(f) =) ordu(f)[w]

weT

is a well-defined homomorphism. The divisors in Div(7T) coming from elliptic functions
are called principal divisors. We will prove that a divisor is principal if and only if it is in

the kernel of both ¥ and deg.

2.1. Theorem. Let T = C/A be a torus. Then there is an exact sequence
1— C* — M(T)* B Div(T) =T — 1.

As only constant functions on T are without zeroes and poles, the sequence is exact at
M(T)*. The proof of the exactness at Div®(T) consists of two parts. We first prove that
principal divisors are of degree zero and in the kernel of the summation map. These are
exactly the statements (ii) and (iii) of the lemma below.

2.2. Lemma. Let f be a non-zero elliptic function on T'. Then the following holds.

() Ywerresw(f) = 0.
(ii) > perordy(f) =0.
(iii) > ,erordy(f) - w=0€T.

Proof. Let F be a fundamental domain for 7', and suppose—after translating F' when
necessary—that none of the zeroes and poles of f lies on the boundary 0F of F'. Then the
expressions of the lemma are the values of the contour integrals

1 L P, 1 TG

ami e P i B 0 ami fon 7 1(0)

dz.

12
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The first two integrals vanish since, by the periodicity of f and f’/f, the integrals along
opposite sides of the parallellogram F' coincide; as these sides are traversed in opposite
directions, their contributions to the integral cancel.

The function z% is not periodic, but we can still compute the contribution to the
integral coming from opposite sides AB and DC = {z+ ws : z € AB} of F, as indicated

in the earlier picture. We find

f'(z f'(z — f'(z f'(= — f'(=
fAB z%dz -+ fCD z f((z))dz = fAB Z%dz — fAB(Z + w2) f((z))dz = —wsy fAB %dz
As the integral ﬁ e %dz is the winding number of the closed path described by ff’((:))

if z ranges from A to B along 0F, ﬁ times the value of the displayed integral is an integral

multiple of wy, hence in A. The same holds for the other half | soct Jp 4 of the integral,
which yields an integral multiple of w;. The complete integral now assumes a value in A,

and (iii) follows.

Assertion (ii) of the lemma shows that an elliptic function has as many zeroes as it has
poles on T, if we count multiplicities. The number of zeroes (or, equivalently, poles) of an
elliptic function f, counted with multiplicity, is called the order of f. Equivalently, it is
the degree of the polar divisor ), max(0,—ord,(f)) - (w) of f. It follows from (i) that
the order of an elliptic function cannot be equal to 1.

Exercise 2. Define the order of a meromorphic function on Pl(C), and show that functions of arbitrary

order exist.

In order to complete the proof of 2.1, we need to show that a divisor of degree zero that is
in the kernel of ¥ actually corresponds to a function on T'. This means that we somehow
have to construct these functions.

Function theory provides us with two methods to construct meromorphic functions
with prescribed zeroes or poles. An additive method consists in writing down a series
expansion for the ‘simplest elliptic function’ associated to the lattice A, the Weierstrass-
p-function pp(z). This is an even function of order 2 on T', which has a double pole at
0€T. It is given by

1 1 1
(2.3) p(2)=pr(2) =5+ > |(—3—-3])-
2 weavo ((Z —w)? W )

In order to show that the defining series converges uniformly on compact subsets of C\ A,
one uses the following basic lemma.

2.4. Lemma. The Eisenstein series Gi(A) = >, ca\ {0} w™* is absolutely convergent for
every integer k > 2.

The proof of 2.4 is elementary. One can estimate the number of lattice points in an annulus
{z € C:N < z< N +1}. Note that the values G (A) equal zero if £ > 2 is odd, since
then the terms for w and —w cancel. a

Exercise 3. Prove lemma 2.4.

13
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From the lemma, one deduces that g, is a well-defined meromorphic function on C with
double poles at the elements of A. Some elementary calculus leads to the Laurent expansion

(25) pz) = 5 + D (2n+ 1)Gansa(A)2"

for p(z) around the origin. In order to show that g, is periodic modulo A, one notes first
that the derivative p'(2) = > ca(2 — w)~3 is clearly periodic modulo A. For g itself, it
follows that for w € A we have p(z + w) = p(2) + c,. As g is an even function, we can
take z = w/2 to find ¢, = 0, so p is also periodic modulo A.

A second method to construct periodic functions proceeds multiplicatively, by writing
down a convergent Weierstrass product

o) =on(m) == [[ (1)l
w
weA\{0}
for a function having simple zeroes at the points in A.

Exercise 4. Show that the product expansion for the o-function converges uniformly on compact subsets
of C. [Hint: pass to the logarithm and use 2.3.]

By 2.3, termwise differentiation of the logarithmic derivative

dlogo(z) o'(z) 1 < L1, z>

z—w w w?

(2'6) = = ; +

d?logo(z) _
dlogolz) -
w € A such that we have o(z + w) = e%*tbeg(2) for all z € C. One sometimes says that

yields the relation p(z). As p(z) is periodic, we can find a,,, b, € C for each
o(z) is a theta function with respect to the lattice A.

We are now in a position to finish the proof of 2.1. We still need to show that every
divisor D = ) n,[w] that is of degree 0 and in the kernel of the summation map is the
divisor of an elliptic function. Write 3(D) = >, n,w = w € A. If w is non-zero, we
add the trivial divisor [0] — [w] to D to obtain a divisor satisfying >  n.,w = 0. Now the
function fp =[], o(z — w)™ has divisor )  n.,[w|, and for any w € A we find

o(z+w)=¢e" 2, mwwtbe ), "o(z) =o(2).

Therefore fp is in M(T')*. This finishes the proof of 2.1.

The factor group Jac(T) = Div®(T)/div[M(T)*] of divisor classes of degree zero is the
Jacobian of T'. The content of theorem 2.1 may be summarized by the statement that 7T is
canonically isomorphic to its Jacobian. We will return to this important property in 4.7.

The actual construction of elliptic functions in the proof of 2.1 shows that the field
M(T) can be given explicitly in terms of functions related to the p-function. The precise

statement is as follows.

14
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2.7. Theorem. The elliptic function field corresponding to T = C/A equals

M(T) = C(px, ©})-

This is a quadratic extension of the field C(pp) of even elliptic functions.

— f(z)+2f(—z) + f(z)_2f(_z) of an even and

Proof. Any elliptic function f is the sum f(2)
an odd elliptic function, and for odd f the function fg’ is even. It follows that '’ generates
M(T) over the field of even elliptic functions, and that this extension is quadratic.

Let f € M(T)* be even. We need to show that f is a rational expression in p = pj.
We note first that ord,,(f) is even at ‘2-torsion points’ w satisfying w = —w € T: this
follows from the fact that the derivatives of odd order of f are odd elliptic functions, and
such functions have non-zero order at a point w = —w € T. We can therefore write

N=3" _collwl+[-u]) =3 ey(lw]+[-u] - 2[0]).

We can assume that no term with w = 0 occurs in the last sum. As the functions f and
[[.,(9(2) — p(w))™ have the same divisor, their quotient is a constant. O

Exercise 5. Let f € M(T) have polar divisor 2-(0). Prove: f = c1p + c2 for certain cj,cz € C.
The function g’ is an odd elliptic function with polar divisor 3 - (0), so it is of order 3.

Its 3 zeroes are the 3 points wy/2, wo/2 and w3/2 = (w1 + ws)/2 of order 2 in T = C/A.

The even function (p’)? has divisor Z?=1[2- (wi/2) —2-(0)], so the preceding proof and a

2

look at the first term 4276 of the Laurent expansion of (p’)? around 0 show that we have

a differential equation

3

(2.8) (¢'(2))* = 4] [(0(2) - p(wi/2)).

=1

The coefficients of the cubic polynomial in 2.8 depend on the lattice A in the following
explicit way.

2.9. Theorem. The p-function for A satisfies a Weierstrass differential equation
(92)° = 403 — g2p0n — g3

with coefficients ga = ga(A) = 60G4(A) and g3 = g3(A) = 140Gg(A). The discriminant
A(A) = go(A)3 — 27g3(A)? does not vanish.

Proof. The derivation of the differential equation is a matter of careful administration
based on the Laurent expansion around z = 0 in (2.5). From the local expansions p(z) =

2724+ 3G422 + O(2) and ' (2) = —2273 + 6G 4z + 20G623 + O(2°) one easily finds

(9'(2))? = 4275 — 24G427? — 80Gs + O(2?)
4p(2)® = 427°% + 36G4272 + 60Gs + O(2?).

15



Kernvak algebra - §2 version January 20, 1997, 14:57

It follows that (p'(z))? — 4p> 4+ 60G4p + 140G¢ is a holomorphic elliptic function that
vanishes at the origin, so it is identically zero. For the non-vanishing of the discriminant

A(A) = g2(A)® — 27g3(A)?
=16 (p(*3) —0())* - (p(3) — 0(5))* - (p(*F) — 0(3))%
one observes that the function p(z) — p(w;/2) is elliptic of order 2 with a double zero at
w; /2, so it cannot vanish at w;/2 for j # i. O
Exercise 6. Show that the non-constant solutions to the differential equation (y')2 = 443 — goy — g3

corresponding to a lattice A are the functions pa(z — z0) with zg € C. What are the constant solutions?

It follows from 2.9 that the map W : z — (p(z), 9'(2)) maps T to a complex curve in
C? with equation y? = 423 — gox — g3. This is exactly the kind of map we have been
considering in section 1. If g5 and g3 are real, one can sketch the curve in R2. For a
Weierstrass polynomial having three real roots the picture looks as follows.

N

In order to deal with the poles of the map W, we pass to the projective completion of our
curve in P?(C). This is by definition the zero set in P?(C) of the homogenized equation
Y27 = 4X3 — go X 7% — g373; it consists of the ‘affine points’ (z : y : 1) coming from
the original curve and the ‘point at infinity’ (0 : 1 : 0). One can view the lines through
the origin in R3 as the points of the real projective plane P?(R), and draw the following
picture of the completed curve. The point at infinity in this picture is the single line in
the plane Z = 0.
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2.10. Theorem. Let A C C be a lattice. Then the Weierstrass map

(p(2) : p'(2): 1) forz#0

W:z'_){(O:I:O) for z=10

induces a bijection between the torus T = C/A and the complex elliptic curve E5 with
projective Weierstrass equation

Epn: Y?Z=4X3—gy(A)XZ? — g3(N) Z5.

Proof. By 2.9, the torus C/A is mapped to the curve E5. We have to show that every
affine point P = (z,y) on E) is the image of a unique point z € T'\ {0}. The divisor of
the function p(z) — z is of the form (w) + (—w) — 2(0) for some w € T that is determined
up to sign. For w = —w € T we have y = 0, and z = w is the unique point mapping to P.
Otherwise, we have ' (w) = +y # 0, and exactly one of w and —w maps to P. O

2.11. Corollary. The Weierstrass parametrization 2.10 induces a group structure on the
set Ex(C) of points of the elliptic curve Ex. The zero element of EA(C) is the ‘point at
infinity’ O = (0 : 1 : 0), and the inverse of the point (X :Y : Z) is (X : =Y : Z). Any
three distinct points in E5(C) that are collinear in P?(C) have sum Op.

Proof. It is clear that W (0) = O is the zero element for the induced group structure on
E(C), and that the inverse of the point (p(2) : p'(2) : 1) is (p(—2) : '(—2) : 1) = (p(2) :
—¢'(2) : 1). Tt remains to show that three collinear points in E4(C) have sum zero. Let
L :aX +bY + ¢Z = 0 be the line passing through three such points, and consider the
associated elliptic function f = agp+ bg’ +c. If b is non-zero, the divisor of f is of the form
(f) = (w1) + (w2) + (w3) — 3(0) for certain w; € T. We have wy + ws + w3z = 0 € T by
2.1 (iii), and since the Weierstrass parametrization W maps the w; to the three points of
intersection of L and Ej, these points have sum Og. For b = 0 and a # 0, we are in the
case of a ‘vertical line’ with affine equation z = —c/a. The point O is on this line. The
function f = ap + ¢ now has divisor (f) = (w1) + (wz) — 2(0), and the same argument as
above shows that the 2 affine points of intersection of L and E are inverse to each other.
The case a = b = 0 does not occur since then the line L is the line at infinity Z = 0, which
intersects Fp only in Opg. O

Exercise 7. Define multiplicities for the points of intersection of EA with an arbitrary line L, and show

that with these multiplicities the ‘sum of the points in L N E,’ is always equal to Og.

Corollary 2.11 shows that the group law on F4(C) has a simple geometric interpretation.
In order to find the sum of 2 points P and @ in E4(C), one finds the third point R = (a, b)
of intersection of the line through P and @ with E. One than has P + @ = —R, so the
sum of P and Q equals (a, —b).

From the geometric description, one can derive an explicit addition formula for the
points on FE, or, equivalently, addition formulas for the functions g and p’. Let P =
(p(2z1),9'(21)) and Q = (p(22), ©'(22)) be points on E,. If P and @ are inverse to each

17
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other, we have z; = —29 mod A and P + @ is the infinite point Og. Otherwise, the affine
line through P and Q is of the form y = Ax 4+ p with

s = #(21) =9 (22) _ 4p(21)” + 4p(21)0(22) + 4p(22)° — 95
p(21) — p(22) ' (1) + 9/ (22) '

The second expression, which is obtained by multiplication of numerator and denominator
of the first expression and applying 2.9, is also well-defined for P = Q); in this case it yields
the slope of the tangent line in P. As the cubic equation 4z3 — gox — g3 — (Az + u)? has
roots p(z1), p(z2) and p(z1 + 23), we find the z coordinate of P + Q to be

(212) (21 + 22) = —p(z1) — p(22) + % (?; E:; - Z(Z?) (21 # +25 mod A).

In the case P = @, one can use the second expression for A to find the z-coordinate p(2z1)
of 2P as a rational function in p(z1).

Exercise 8. Write p(2z) as a rational function in p(z). Show that this duplication formula for the

g-function also follows from the limit form

" (2) ) ?

ol2s) = <200+ § (55

of 2.12 and the differential equation g = 6p2 — %gg, which is obtained by differentiating 2.9.

As in the previous section, we find that the addition formulas on the elliptic curve E are
algebraic formulas involving the coefficients g, and g3 of the defining Weierstrass equation.
We say that an elliptic curve E with Weierstrass equation y? = 4z3 — gox — g3 is defined
over a subfield K C C if go and g3 are in K. If E is defined over a field K C C, the set
E(K) of K-valued points is a subgroup of E(C). We will especially be interested in the
case where K is the field of rational numbers. When working over Q, it is often convenient
to choose variables X = 4z and Y = 4y satisfying the equation Y2 = X3 — 4g, — 16gs.

In this case the determination of the group E(Q) is a highly non-trivial problem that
has its roots in antiquity. The observation that two (not necessarily distinct) points on a
cubic curve can be used to find a third point already goes back to Diophantus. His method,
which is basically a method for adding points, is known as the chord-tangent method. We
will give a similar description of the group structure on the set of points of an arbitrary
plane cubic curve in section 4.

18
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Exercises.

9.

10.

11.

12.

13.

14.

15.
16.

17.
18.

Let f be a non-constant meromorphic function on C. A number w € C is said to be a period
of fif f(z 4 w) = f(z) for all z € C. Let A be the set of periods of f.

a. Prove that A is a discrete subgroup of C.

b. Deduce that A is of one of the three following forms:

A = {0} A=Zw (w#0) A =2w @ Zw, (with C = Rw; + Rws)

Let p be the p-function associated to A. Show that the function z — e?) s holomorphic
on C \ A and periodic modulo A, but not elliptic.

Let f be a meromorphic function with non-zero period w and define ¢ = ¢(z) = e2miz/w
Prove that there exists a meromorphic function f on C* satisfying f(z) = f(q), and show

that we have ordy(f) = ord.(f) for all z € C.

Let A be lattice and g and o the associated complex functions. Prove the identity

~ la :_a(z—a)a(z+a) .
oe) — pla) = - HTELD (g,

(Degeneracy of the p-function.) Let w be an element in C \ R and ¢ a real number.
a. Prove the identities

1 1 3

li w == d li w =—+ —

foo Ol () 22 o foroo ] (2) sin®(7z) T
for z € C* and z € C\ Z, respectively.

b. What are the degenerate forms of the function o(z) corresponding to the two cases
above, and which identities replace the one in the previous exercise?

c. Find the degenerate analogues of 2.10, and explain why these two forms of degeneracy
are called additive and multiplicative, respectively.

Determine the general solution of the Weierstrass differential equation (y')? = 4y® — g2y — g3
in the degenerate case g5 = 27g3.

Show that the derivative of the p-function satisfies p'(2) = —

Let A = [w1,w2] be a lattice with associated Weierstrass function g, and consider the Weier-
strass functions 1 and g2 associated to the lattices A1 = %A and Ay = [%wl,wg]. Prove the

identities
p1(z) = 4p(22) and p2(2) = p(z) + p(z + 3w1) — p(Fw1).
What are the corresponding identities for ] and p5?

Prove: 4p(2z) = p(2) + p(z + 3w1) + p(z + 2w2) + p(z + Fws).
Define the Weierstrass (-function for the lattice A = Zwi + Zws in C as in (2.6) by ((z) =

diz log o(z2).
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19.

20.

21.

22.

23.

20

a. Show that there exists a linear function 7 : A — C such that {(z + w) = {(z) + n(w) for
w € A and z € C, and that n(w) = 2{(w/2) if w # 2A.
The numbers 7; = n(w;) (¢ = 1,2) are the quasi-periods of {(z).
b. Prove the Legendre relation niws — nawi; = +27i.
[Hint: the right hand side equals § ((z)dz around a fundamental parallelogram.]
c. Prove: o(z + w) = £e"@E+H/2)g (),

(Weil reciprocity law.) For an elliptic function f and a divisor D =) .1y -(w) € Div(T)
on the complex torus T, we let f(D) = [, f(w)™ € C. Prove that for any two elliptic
functions f and g with disjoint divisors, we have

f((9)) = g((f))-

[Hint: write f and g as products of o-functions.]

Let G, = ZwGA’ w™F be the Eisenstein series of order k, and define G2 = G1; = 0 and
Go = —1.
a. Show that (k—1)(k — 2)(k — 3)Gx = 62?=0(j —1)(k—j —1)GjGi—; for all k > 6.
[Hint: p" = 60> — 30G4.]
b. Show that Gg = %GZ, Gi0 = f’—1G4G6 and G123 = %G% + %GZ and that, more
generally, every Eisenstein series can be computed recursively from G4 and Gg by the

formula
k—4

(B = 1)(k—6)Gr =6 (j— 1)(k—j—1)G;Gr—-

j=4

Let A be a lattice for which g2(A) and g3(A) are real. Prove that A is either a rectangular
lattice spanned by a real and a totally imaginary number, or a rhombic lattice spanned by
a real number w; and number ws satisfying ws + w2z = w;. Show that these cases can be
distinguished by the sign of A(A), and that we have group isomorphisms

_ [R/Z xZ/2Z for A(A) > 0;
Er(R) = { R/Z for A(A) < 0.

Let L(nO) be the vector space of meromorphic functions on the torus 77 = C/A having a
pole of order at most n in O. Prove:

. for n > 0;
dimc(L(nO)) = {n ’
c(L(n0)) 1 forn=0.
(Riemann-Roch for the torus.) For a divisor D on the torus T', let L(D) be the vector space
consisting of f = 0 and the meromorphic functions f # 0 on T for which the divisor (f) + D
is without polar part. Prove:

. | deg(D) for deg(D) > 0;
dimc(L(D)) = {0 for deg(D) < 0.

What can you say if D is of degree 07
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3. Complex elliptic curves

We have seen in the previous section that every complex torus 7= C/A is ‘isomorphic’
to the elliptic curve E, with Weierstrass equation y? = 4x3 — go(A)z — g3(A). The
uniformization theorem 3.8 in this section states that conversely, every complex Weierstrass
equation y? = 423 — g,z — g3 of non-zero discriminant A = g3 — 27g2 comes from a torus.
This correspondence is actually an equivalence of categories. In order to make this into a
meaningful statement, we have to define the maps in the categories of complex tori and
complex elliptic curves, respectively.

We will first define a set Hom(T, T>) of maps between complex tori called isogenies
and study its structure. At the end of this section, we will describe the corresponding al-
gebraic maps between complex Weierstrass curves, which are again called isogenies. These
maps will turn out be an important tool in studying the arithmetic of elliptic curves over Q.

3.1. Lemma. Let ¢ : C/A; — C/Ay be a continuous map between complex tori. Then
there exists a continuous map ¢ : C — C such that the diagram

lcan lcan

c/A 5 C/A,
commutes. The map ¢ is uniquely determined up to an additive constant in As.

Proof. Choose ¢(0) such that the diagram commutes for z = 0. If z € C is arbitrary,
choose a path v : 0 — z in C. Let 7 : ¢(0) — %(Z) be the path in C/A, obtained by
reducing modulo A; and applying ¥. As the natural map C — C/A; is a covering map, 7y
can uniquely be lifted under this map to a path in C starting in ¢(0), and we define ¢(z)
as the end point of this map. The value ¢(z) is independent of the choice of the path ~
since C is simply connected, and it is clear that ¢ is continuous. If ¢’ is another map for
which the diagram commutes, then their difference ¢ — ¢’ is a continuous map C — A,
so it is constant. (Il

If the map ¢ in lemma 3.1 is a holomorphic function, we call ¢/ an analytic map between
the tori. An analytic map ¢ : C/A; — C/A, is called an isogeny if it satisfies (0) = 0.
An analytic map 1 is the composition of the isogeny 1 —(0) with a translation over (0).

3.2. Theorem. Let ¢ : C/A; — C/Ay be an isogeny. Then there exists o € C such that
we have
¥(z mod A1) = az mod A and ali C As.

Conversely, every a € C satisfying oAy C Ay gives rise to an isogeny C/A; — C/As.

Proof. Let ¢ : C — C be the lift of ¢ satisfying ¢(0) = 0. For every w; € Aj, the
holomorphic function ¢(z) — ¢(z + wy) has values in Ag, so it is constant. It follows that
¢'(z) is a holomorphic function with period lattice A;, so by Liouville’s theorem it is
constant. For ¢ itself we find ¢(z) = az for some o € Z. As A; maps to zero in C/A,, we
have aA; C Ay. Conversely, it is clear that any « of this form induces an isogeny. O
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3.3. Corollary. Every complex isogeny is a homomorphism on the group of points. The
set of isogenies Hom(C/A1, C/A5) carries a natural group structure. O

We say that two complex tori are isogenous if there exists a non-zero isogeny between
them. Note that a non-zero isogeny is always surjective.

Exercise 1. Take Ay =Z +Zi and A2 =Z + Ziw. Prove: Hom(C/A1,C/A2) = 0.

For a non-zero isogeny ¢ : T = C/A; — Ty = C/A,, we define the degree of 1 as

deg (1) = # ker ) = #[(a " Az) mod Ay] = [Az : ady].

The degree of the zero isogeny is by definition equal to 0.

For 9 of degree n > 0, we have inclusions of lattices nAs g alq g As. This shows
that multlphcatlon by n/a maps As to a lattice of index n in A;. The corresponding
isogeny ¢ Ty — T is the dual isogeny corresponding to ¥. Note that 1/) ¥ and ¥ o ¢ are
multiplication by n on T} and T5, respectively.

Exercise 2. Show that being isogenous is an equivalence relation on the set of complex tori, and that

there are uncountably many isogeny classes of complex tori.

Two complex tori C/A; and C/A, are isomorphic if there is an invertible isogeny between
them, i.e., an isogeny of degree 1. This happens if and only if Ay = aA; for some o € C*.
In that case we say that A; and Ay are isomorphic or homothetic. For homothetic lattices
A1 and Ay we have go(As) = a%ga(A1) and g3(A2) = a=%g3(A1) for some «, so the
J-invariant

g2(A)" _ 17os22(A)°
92(A)? — 27g(A)? A(A)

of a lattice is defined on isomorphism classes of lattices. Note that j(A) is well-defined
since A(A) does not vanish. The factor 1728 = 123 is traditional; it is related to the
Fourier expansion of the j-function.

G(A) = 1728

3.4. Lemma. Two lattices are homothetic if and only if their j-invariants coincide.

Proof. We still need to show that the equality j(A1) = j(A2) implies that Ay and Ag are
homothetic. From the equality j(A1) = j(A2) we easily derive that there exists o € C*
such that we have ga(A2) = a™*g2(A1) and g3(As) = @ %g3(A1). Then Ay and aA; have
the same values of g and g3, so the p-functions g, and paa, coincide. In particular,
their sets of poles As and awA; coincide. O

Every lattice A = [wy,ws] is homothetic to a lattice [1, z] with z = wy/wy in the complex
upper half plane, so we can view j as a function 57 : H — C. The Eisenstein series
Gr(z) = Gg([1, z]) are holomorphic on H by 2.4, so j is again a holomorphic function
on H.
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Two lattices [1,21] and [1, z5] are homothetic if and only if we have zo = %ﬂi)

some matrix (¢ 2) € GL3(Z). The identity

(3-5) Im (%) — (ad — b))

shows that only the matrices in SLy(Z) map H to itself. We conclude that j : H — C is
constant on SLg(Z)-orbits, and that the induced function j : SLa(Z) \ H — C on the orbit
space is injective.

for

3.6. Theorem. The map j : SLy(Z) \ ‘H — C is a bijection.

The main ingredient in the proof of 3.6 is the construction of a fundamental domain for
the action of SLy(Z) on H. The following statement is sufficient for our purposes.

3.7. Lemma. Every SLy(Z)-orbit in H has a representative in the set
D={zeH:|z|>1 and —1/2<Re(z)<1/2}.

Proof. Pick z € H. As the elements cz + d with ¢,d € Z form a lattice in C, the
numerator |cz + d|? in (3.5) is bounded from below, so there exists an element 2 in the
orbit of z for which Im(z) is maximal. Applying a translation matrix ((1) ’;) mapping zg to
2o + k when necessary, we may assume that Re(zp) is in [—1/2,1/2). From the inequality
Im(—1/29) = |20|"2Im(20) < Im(zg) we find |zg| > 1, so 2¢ is in D. O

Exercise 3. Find a representative in D for the SLy(Z) orbit of 11'5%1..

Proof of 3.6. It remains to show that the image j[H] of the j-function is all of C. As j
is a non-constant holomorphic function on #, its image j[#] is open in C. We will show
that j[H] is also closed in C. By the connectedness of C, this proves what we want.

Let 7 = lim,, o j(2,) be a limit point of j[#] in C. By picking the z, suitably inside
their SLo(Z)-orbit, we may assume that all z, lie in D. If the values of Im(z,) remain
bounded, the sequence {z,}, lies in a bounded subset of D, and we can pick any limit
point z € H of the sequence to find j(z) =5 € j[H].

If the values of Im(z,,) are not bounded, we can pass to a subsequence and assume
lim,, 00 Im(z,) = +00. From the definition of g2 and g3 in theorem 2.9 we now find

876

(e o) [e’s) 1
lim go2(z,) =60-2 Z = and nlgﬂogi"(z") =140 - 2 Z —5 =
m=1

1
n— oo m4 3
m=1

so A(zn) = g2(2n)® — 27g3(2,)? tends to 0. This implies lim,, ,o |j(2n)| = +00, contra-
dicting the assumption that j(z,) converges. O

The main corollary of 3.6 is the following theorem. It enables us to translate many state-
ments over complex elliptic curves into analytic facts.
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3.8. Uniformization theorem. Given any two integers go, g3 € C with g3 — 27g2 # 0,
there exists a lattice A C C with go(A) = g2 and g3(A) = gs. In particular, every complex
elliptic curve comes from a complex torus in the sense of 2.7.

Proof. Pick a lattice A with j-invariant j(A) = g3 /(g5 — 27g2). As in the proof of 3.4, we
find that there exists a € C satisfying g2(A) = a*gs and g3(A) = abg3. Now the lattice
al does what we want. O

A complex elliptic curve E in Weierstrass form, or briefly Weierstrass curve, can be spec-
ified as a pair (g2, g3) of coefficients in the corresponding equation y? = 4z3 — goz — g3.
We require that the discriminant A(E) = g3 — 2793 does not vanish and define the j-
invariant of E as j(E) = 1728 g3/A(E). Weierstrass curves are said to be isomorphic if
their j-invariants coincide. As we have already seen, Weierstrass curves with coefficients
(g2,93) and (g5, g5) are isomorphic if and only if there exists a € C satisfying gh = a’gs
and g} = a®gs.

Exercise 4. Show that a Weierstrass curve E is isomorphic to a Weierstrass curve defined over Q(j(E)).

An isogeny between Weierstrass curves is for us simply a map coming from an isogeny
between the corresponding complex tori. Its degree is the degree of the corresponding
isogeny between tori. With this definition, the categories of complex tori and the category
of Weierstrass curves, each with the isogenies as their morphisms, become equivalent in
view of 3.8.

Our definition of an isogeny ¢ : £ — E between curves parametrized by C/A and
C/ A means that ¢ fits in a commutative diagram

C/A =% C/A
,d) ~
E — E.

Here W and W denote the Weierstrass parametrizations, and a € C satisfies aA C A. We
see that ¢ can be described in terms of Weierstrass p-functions as

¥ (p(2), 9'(2)) — (p(z), §(az)).

As z — p(az) and z — @'(az) are elliptic functions on C/A, they are rational expressions
in p(z) and @'(2). Thus v is actually an algebraic map E — E that is everywhere defined.
It is a morphism of curves in the sense of algebraic geometry.

3.9. Theorem. Letv : E — E be an isogeny of degree n > 0 between Weierstrass curves.
Then there exist a € C and monic coprime polynomials A, B € C[X] of degree n and n—1,
respectively, such that v is given on the affine points of F by the algebraic map

( A(z) A'(z)B(z) — A(z)B'(z) y) .
a?B(z)’ a3B(z)?

Y (z,y) —
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Proof. We may suppose that 1 corresponds to a diagram as above. As p(az) is even and
periodic modulo A, there exist ¢ € C and monic coprime polynomials A, B € C[X], say of
degree a and b, for which we have the identity
S(an) o Al
B(p(2))
Comparison of the orders and leading coefficients of the poles of these functions in z = 0

yields equalities ¢ = =2 and 2 = 2a — 2b; in particular we have a = b+ 1. Now consider

the commutative diagram " _
C/A — C/A

® o
PI(C) = PI(C),

in which we write 1 again for the isogeny between tori corresponding to 1. By definition
of the degree, 1) is n to 1. The vertical maps are generically 2 to 1, meaning that for
all but finitely many z € P!(C), the fibers p~1(z) and g~!(x) consist of 2 elements.
This implies that the composition @ o ¢ is generically 2n to 1, and consequently the map
¥, : P1(C) — P(C), which maps z to A(z)/(a®B(z)), is generically n to 1. This easily
yields a = n, as desired. Differentiation of the identity for p(az) yields the value of the
y-coordinate of . O
Exercise 5. Let A, B € C[X] be coprime polynomials of degree a and b. Show that the map on P1(C)
defined by z — A(z)/B(z) is generically max(a,b) to 1.
3.10. Example. Let A = [wy,ws| be any lattice, and define A= [%wl,wg]. Then A is of
index 2 in K, and the natural map T' = C/A — T = C/K is an isogeny of degree 2. Its
kernel is generated by the 2-torsion element %wl € C/A. On the associated Weierstrass
curve E : y? = 4x3 — gox — g3, this corresponds to a point of the form (a,0). The equation
can be written correspondingly as y* = (z — a)(42® + dax + £).

In order to find the polynomials A and B from 3.9 in this case, we have to express the
Weierstrass function p(z) associated to A as a rational function in the Weierstrass function
p(z) associated to A. From exercise 2.16, we have the useful identity

6(2) = p(2) + p(z + Fw1) — p(Fw1).

It is now straightforward from the addition formula (2.12) to evaluate

/2 2 g3 2 2 g3
~ +ap+ —ap+2a”+ 2
p:_2a+97:_2a+P L T P da
4(p — a)? p—a p—a
As expected, A and B are monic of degrees 2 and 1. Rewriting 2 = a’ — 9, we can write

the complete isogeny in algebraic terms as

(2,9) — (7,7) = (“H’( —H)y)-

We refer to the exercises for a proof that (z, %) is a point on the Weierstrass curve E with
equation y? = 4(z + 2a)(z? — 2az + g — 11a?).
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Exercise 6. Show that the isogeny in 3.10 is given by (z,y) — (z + zT — a,y + yr), where (zT,yr) =
(z,y) + (a,0) in the group E(C).

Theorem 3.9 shows that isogenies between elliptic curves, which we defined originally as
analytic maps between tori, turn out be algebraic maps, i.e., given by rational functions
in the coordinates. Conversely, one can show that all algebraic maps between Weierstrass
curves are analytic, so that algebraic and analytic maps come down to the same thing.
This equivalence is a simple example of a ‘GAGA-phenomenon’, an abbreviation referring
to a 1956 paper of Serre, Géométrie algébrique et géométrie analytique, which is devoted
to similar equivalences.

An even simpler example of the phenomenon indicated above is the classification in
theorem 2.7 of the meromorphic functions on a torus 7. Such functions, which are by
definition analytic maps 7' — P!(C), turn out to be rational functions in the coordinates
when viewed as maps on the associated Weierstrass curve. The function field M(T') =
C(gp, ©') of T is therefore isomorphic to the function field M(E) of rational functions in
the affine coordinates on E. This field is usually defined as the field of fractions of the
coordinate ring Clz,y]/(y* — 4z 4 goz + g3), which is the ring of polynomial functions
on the affine part of E. From an algebraic point of view, M(F) is a quadratic extension
C(z,/4x3 — gox — g3) of the rational function field C(z).

The function field M(P!(C)) of meromorphic functions on the Riemann sphere is also

algebraic: it is the rational function field C(z).

Every isogeny ¢ : T — T between complex tori induces a map ¥* : M(T) — M(T)
in the opposite direction mapping an elliptic function f € M(T) to fo. If ¢ is non-zero,
this is an injective homomorphism of fields.

3.11. Theorem. Let ¢ : T — T be an isogeny of degree n > 0. Then the field extension
Y*IM(T)] € M(T) is an algebraic extension of degree n.

Proof. As M(T) and M(T) are quadratic extensions of C(p) and C(p), respectively,
it suffices to show that C(p) is algebraic of degree n over ¢*[C(p)]. In view of 3.9, this
follows from the following lemma. O

3.12. Lemma. Let A, B € C[X] be coprime polynomials of degree a and b. If A and B

are not both constant, then C(z) is an algebraic of degree max(a,b) of C(ggg)

Proof. Write Y = ggg, then z is a zero of the polynomial FF = A(X)-YB(X) € C[X,Y]

of degree max(a, b) in X with coefficients in C(Y").It remains to show that F is irreducible.

As F is of degree 1 in Y, it can only be reducible if there is a polynomial in C[X]\ C
dividing it; this is excluded by the coprimality assumption on A and B. ]

It is a general fact from algebraic geometry that degrees of maps can be read off from the
degrees of the corresponding function field extension. Over C or Q, the degree of a map
is the cardinality of all but finitely many fibers.

Exercise 7. Check this fact for the projections 75 and my of a Weierstrass curve E on the axes. *Can

you generalize the argument to arbitrary rational functions E — P1(C)?
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Exercises.

8.

*10.

11.

12.

13.

14.

15.

*16.

The multiplicator ring of a lattice A is defined as O = O(A) = {a € C : aA C A}. Show
that O is a subring of C isomorphic to the endomorphism ring End(C/A) of the torus C/A.
Show also that we have O(A) = Z unless A is homothetic to a lattice of the form [1, w], with
w € C\ R the zero of an irreducible quadratic polynomial aX? + bX + ¢ € Z[X], and that
in this exceptional case we have O(A) = Z[%ﬁ] with D = b*> — 4ac < 0.

[In the exceptional case, we say that C/A has complez multiplication by O.]

. Show that the subrings of C that are lattices correspond bijectively to the set of negative

integers D = 0,1 mod 4 under the map D — O(D) = Z[D+T‘/B]. Show that there exists a
ring homomorphism O(D1) — O(D3) if and only if D1 /D5 is a square in Z.
[One calls O(D) the quadratic order of discriminant D.]

Show that the isomorphism classes of complex tori with complex multiplication by O corre-
spond bijectively to the elements of the Picard group Pic(O) of O.

Show that the degree map deg : End(C/A) — Z is a multiplicative function, and that there
is a commutative diagram

End(C/A) = O(A) Cc C

ldeg lzn—)z?
7 Md. 72 ¢ R

Compute the structure of the group Hom(C/A1,C/A2) for each of the following choices of
A1 and As:

a. AMi=Ao=2Z+7Z3;

b. A1 =Z+7Zi and Ax = Z + Z 21;

b. Ais=Z+Ziand Ay =Z + Z+/-2.

Show that every group Hom(C/A1,C/Az2) is a free abelian group of rank at most 2. Show
that the rank is non-zero if C/A; and C/A; are isogenous, and that it is 2 if and only if
C/A1 and C/A2 have complex multiplication by rings O; and O having the same field of
fractions.

A non-zero isogeny v : T1 — T3 is said to be cyclic if ker ¢ is a cyclic subgroup of T7. Show
that complex tori are isogenous if and only if there exists a cyclic isogeny between them.
Show also that a torus admitting a cyclic endomorphism (different from the identity) has
complex multiplication.

Show that the set D C H in 3.7 contains a unique representative of every SLa(Z)-orbit if we

remove the elements on its boundary satisfying |z| = 1 and Re(z) > 0.

Let f : E — E be a rational map between Weierstrass curves, i.e., a map of the form
(z,y) — (f1(z,y), f2(z,y)) for functions f1, f2 € M(E) with the property that the image of

(z,y) lies in E(C) whenever it is defined. Show that f can be defined on all points of E, and

that it corresponds to an analytic map of the corresponding tori.
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17. Determine the Weierstrass polynomial W (X)) of the curve E in example 3.10 by proving the

following statements.
a. W(X) = 4(X — p(bwa))(X — B(en)) (X — p(hws + Jwa).
We have p(zw2)) = —2a.
The function 4(p(z) — a)(p(z + tw1) — a) is constant with value 12a® — gs.
We have (p(iw:) —a)® = 4(p(3w1) — a)® = 12a® — go.
W(X) = 4(X +2a)((X — a)® + g2 — 12a®) = 4(X + 2a)(X? — 2aX + g» — 11a®).

o A0 T

18. Show that after a linear change of variables X = 4(z — a) and Y = 4y, the equation of the

28

Weierstrass curves E in 3.10 becomes Y2 = X(X2+aX+,3) witha = 12a and 8 = 48a2—4g2.
Show that a similar change of variables then reduces the 2-isogenous curve to the form
Y? = X(X? - 2aX + o® — 40).
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4. Elliptic curves over fields

By analytic means we saw in the previous section that a complex torus is a plane cubic
curve. It turned out that the group structure on the torus had the following interpretation
on the curve: we have P+ @Q + R = 0 if and only if P, ), and R are collinear. We will
show later that every plane cubic curve over C arises from such a torus, so that indeed
every cubic curve has such a group structure. It turns out that this is a very general fact
that has little to do with C or with analysis. For instance, one can show the same for
plane cubic curves over a field of characteristic p > 0. In order to state and prove precise
results one needs to develop some algebraic geometry.

This is not a course on algebraic geometry, so it will not be our goal to define the
various notions in a very general setting. Our curves will always be embedded in a plane,
and we will postpone talking about morphisms for a while. The one book that dominates
the subject of algebraic geometry is Hartshorne’s Algebraic Geometry (Springer GTM
52). Silverman’s book on elliptic curves starts with two chapters of basics from algebraic
geometry, but he does not include proofs of all theorems.

4.1. Projective space. Let k be a field and let n be a non-negative integer. Affine n-
space A" (k) is the set k™. Projective n-space P™(k) is the set of 1-dimensional subspaces
of the k-vector space k™11, More explicitly,

P" (k) = (k" \{(0,...,0)})/ ~

where

T~y < JXNEk* z =My
We denote the equivalence class of a vector (zg,...,Tnt1) € k™! by (zo:-+-:12py1) €
P"(k).

We have only defined A™ and P" by giving a certain set for each field k. In fact, A"
and P" are algebraic varieties. The precise meaning of this statement is in the subject of
algebraic geometry; we will not define the category of algebraic varieties here, but we will
work with ad-hoc definitions that are sufficient for our number theoretic purposes.

The group GLy,;1(k) of k-linear automorphisms of k"*! acts on P"(k). Of course
the scalar matrices act trivially, so the projective linear group PGL,,+1(k) = GL,41(k)/k*
acts on P"(k).

We have an embedding A™ — P” defined by (z1,...,2,) — (z1:---:2,:1). Projective
space thus consists of an affine part and a copy of P*"~! which is “at infinity,” namely the
points whose last coordinate is 0.

4.2. Plane curves. For us, a plane curve C' over a field k£ will be a non-zero homogeneous
polynomial F' of degree d > 0 in X, Y, Z with coeflicients in k. We then say that the curve
is given by the equation

C: F(X,Y,Z)=0.
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For two curves C and C’ given by polynomials F' and F’ we say that C' C C if F’ divides
F in k[X,Y, Z]. We say that C’ = C if F' and F’ differ by a non-zero scalar. By the set of
points of C' we mean

C(k) = {(a:b:c) € P*(k) : F(a,b,c) = 0}.

We have F(\a, Ab, Ac) = A%F(a, b, c), so either all or none of the representatives in k% of a
point in P2(k) lie in the zero-set of F. In the next exercise it is shown that this equation
characterizes homogeneous polynomials if &k is not a finite field.

Exercise 1. Suppose that k is an infinite field and that d is a positive integer. Show that a polynomial
F € k[X,Y, Z] is homogeneous of degree d if and only if for all A\,a,b,c € k we have F(Aa, Ab, Ac) =
)\dF(a, b,c). [Hint: Show first that a polynomial in X,Y, Z which is zero as a function k3 — k is zero as a

polynomial.]

The affine part of the curve is given by the non-homogeneous equation F(X,Y;1) = 0.
Conversely, a non-homogeneous polynomial f(X,Y) of degree d can be made homogeneous
of degree d by sticking in the correct power of Z in each term. In other words, the
homogeneous form of f is F(X,Y,Z) = Z¢f(X/Z,Y/Z). When we write down a non-
homogeneous equation of a curve, we mean the curve given by this homogenized polynomial
in X,Y and Z.

Let us stress that a curve is much more then its set of points: it is the equation up to
a scalar. A curve over a field is also a curve over every extension field. For instance, the
curves X2+Y24+1=0and X*+Y?*+1 =0 are both curves over R without any points,
but their sets of C-points are different (even topologically).

The easiest example of a curve is a line:
L: aX+bY +cZ=0 (a,b,c) # (0,0,0).

The projective plane has the following properties: two distinct points have a unique line
passing through them, and two distinct lines (in the sense of the last paragraph!) intersect
in a unique point. The proof of these statements is basic linear algebra over k.

Exercise 2. Give this proof in detail.

More generally, Bezout’s theorem tells us that two curves of degree n and m, for which
the defining equations have no common factor, intersect in exactly nm points. There are
however three subtleties to keep in mind:

e One has to work in the projective plane because some points may be “at infinity”
(just as when we intersect two lines).

e Some intersection points might only be visible over a larger field, so we have to assume
that k is algebraically closed.

e We have to count the points with a suitable “multiplicity”.
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For example, the curve Y = X2 over k = Q intersects the line Y = 4 in (2,4) and (-2, 4).
But it intersects the line Y = 2 in (v/2,2) and (—+/2,2), and it intersects the line Y = 0
in (0,0) with multiplicity 2.

Of course, one needs to give a precise definition of this intersection multiplicity. If
the two curves are defined by the affine equations f(X,Y) = 0 and g(X,Y) = 0 and the
point (0, 0) lies on both, then the intersection multiplicity at that point is the k-dimension
of k[[X,Y]]/(f,g). With projective linear transformations one can extend this definition
to other points than (0,0), but we will not pursue this further. Instead we will work with
a definition that only works for intersecting a curve and a line, and for now we will only
prove Bezout in that case. There are elementary expositions of the general case of Bezout’s
theorem in Silverman-Tate, and Knapp.

4.3. Divisor of a form on P!. Let k be an algebraically closed field, and let F' € k[U, V]
be a non-zero homogeneous polynomial of degree d. We claim that F' is a product of d linear
homogeneous polynomials: F' = H;.izl(aiU—{— b;V), and that the points (a1:b1), ..., (aq: bq)
in P1(k) are unique up to order. To see this, write F' = V*Fy with V {Fp, and use that
Fy(U,1) € k[U] factorizes uniquely as cH;iz_lk(U — u;). (It is here that we use that k is
algebraically closed.) We now let div(F') be the formal sum of the points (b;: —a;), which
is an element of the free abelian group Div(P!(k)) with P1(k) as a generating set. We
define the order ordp(F) € Z of F at P by div(F) = ) pordp(F)[P]. We see that for
P = (z:y) we have ordp(F') > 0 and

ordp(F)>1 <=  F(z,y)=0.

Thus, div(F) keeps track of the zeroes of F', and it also keeps track of multiplicities. The
degree of div(F') is d. In other words, }_ pcp1 (s ordp(F) = d.

This construction is natural in the sense that a projective linear coordinate change on
P!(k) respects the construction of div(F). More precisely, for o = (z 2) € GLy(k) we let
(c*F)(U,V) = F(aU + bV, cU + dV). Then we have o(div(c*(F))) = div(F). (Here we
again write o for the homomorphism Div(P!(k)) — Div(P!(k)) that sends [P] to [cP)].)

4.4. The intersection divisor of a line and a curve. Let C' be a curve given
by a homogeneous equation F(X,Y,Z) = 0 of degree d. We still assume that the field
k is algebraically closed. Let L be a line whose defining equation does not divide F.
The line L comes from a 2-dimensional vector space in k3, for which we choose a basis
(v1,va,v3), (w1, ws, w3). We now have a bijection

¢: P(k) = L(k) (A ) = (Avg + pws: dvg + pws: Avg + pws).
We let the “pull-back” of F' to P1(k) be the homogeneous polynomial ¢*F € k[U, V] given
by
(¢*F)(U, V) = F(U’Ul + V’U)l, U’U2 + V’U)z, U’l)3 + V’U)g)
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Note that ¢*F' is homogeneous of degree d. Our assumption that the equation of L does
not divide F' ensures that ¢*F is not zero. We now define the intersection divisor L - C' to
be the image under ¢ of div(¢*F). By considering the PGLy(k)-action on P(k) one sees
that L - C' does not depend on the choice of the basis (v1,ve, v3), (w1, we, w3).

Just as the notion of the order of a function on P!(k) at a point P behaves well
under the PGL2(k)-action, one can show the following property: if o € PGL3(k) then
o(L)-o(C) = o(L-C). Thus forming the intersection divisor is stable under projective
linear transformations of the projective plane.

Exercise 3. Make this statement precise and prove it. What is the correct definition of o(C)?

4.5. Intersection multiplicities. Now let k be any field, and again let C' be a curve
given by a homogeneous equation F'(X,Y,Z) = 0 of degree d. For a line L and P € P2(k)
we define the intersection multiplicity i(L,C; P) € Z>o U {oo} as follows. If L C C then
we put i(L,C; P) = oo for P € L(k) and i(L,C; P) =0 for P ¢ L(k). If L ¢ C the we let
i(L, C; P) be the multiplicity with which P occurs in the intersection divisor L-C. If L is
the line through two distinct points P = (pg: p1: p2) and Q = (go: ¢1: ¢2), then we have

i(L, C; P) = ordr F'(po + Tq0,p1 + Tq1,p2 + Tq2),
where ordy is the number of factors T in a polynomial in T' (ord7(0) = oo). We have
i(L,C;P)>1 <<= PeL(k)nC(k).

If k is algebraically closed and L ¢ C then we see that the following version of Bezout’s
theorem holds:
> 4(L,C;P) =d;
PeP2(k)

This follows from the fact that the intersection divisor we constructed has the same degree
as the equation defining C.

We say that L is a tangent line of C' at P if i(L,C; P) > 2, and we say that L is a
flex of C if i(L,C; P) > 3.

4.6. Lemma. Let C be a curve over k given by F(X,Y,7Z) =0 and let P = (pg: p1:p2) €
C(k). If all partial derivatives Fx, Fy, and Fz vanish at P, then every line through P
is a tangent line of C' at P. Otherwise, there is a unique tangent line of P at C' and it is
given by the equation

Lp: Fx (po,p1,p2) X + Fy (po, p1,p2)Y + Fz(po, p1,p2)Z = 0.

Note that the partial derivatives of polynomials can be defined purely algebraically, so the
statements make sense over any field k.
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Proof. We will also consider the equation Lp if all partials do vanish at P, in which case
Lp is the whole P2. To see that P € Lp(k) note that dF(X,Y,Z) = XFx +YFy + ZFz,
where d is the degree of F. Suppose that Q@ = (go:¢1:92) € L(k) with Q # P. Then
i(L, C; P) is the number of factors T in the polynomial

f(T)=F(po+Tqo,p1 + Tq1,p2 + Tq2) € k[T].

Expanding this as a polynomial in 7" one sees that

f(T) = F(po, p1,p2) + (Fx (po, p1,p2)q0 + Fy (po, p1,p2)q1 + Fz(po, p1,p2)g2)T mod (T?)

Thus, L is a tangent to C' at P if and only if (go: ¢1: ¢2) € Lp(k). If all partials vanish at
P then we see that every L is a tangent. Now suppose that Lp is a line. We saw that L
is a tangent if and only if {P,Q} C L(k) N Lp(k), which can only happen if L = Lp. This
proves the lemma.

We say that P € C(k) is a non-singular point of C if C' has a unique tangent line at P.
We say that C is smooth if C(k) consists of only non-singular points. For instance, the
curve (Y — X2)(Y —2) = 0 is defined over Q, and it has only non-singular Q-points, but

it is not smooth.

Exercise 4. If a point P € P2(k) lies on two curves given by homogeneous equations f; = 0 and fy = 0,

then P is a singular point of the curve given by the equation f1 fa = 0.

Together with Bezout’s theorem (in the strong form that we did not prove) the exercise
above implies that a smooth curve is given by an irreducible equation.

4

Exercise 5. Sketch the affine real points of the curves y = 23, y3 = 2%, and y? = 23. For which curves is

(0,0) a singular point?

Exercise 6. Show that a cubic curve which does not contain a line (i.e., the defining homogeneous

polynomial of the curve has no linear factors) has at most one singular point.

Exercise 7. (Singular cubics.) Let k be a field whose characteristic is not 2, and let a € k. Let C, be the
curve y2 = z3 + az?. Sketch Cy and C; for k = R. Show that for every line L through P = (0,0) € C(k)
we have L - C' = 2[P] + [Q] for unique @ € C(k). This gives an injection of C(k)\{P} to the set of lines
through P. What is its image?

4.7. Elliptic curves. Let k be a field. By an elliptic curve E we will mean a smooth
plane cubic curve with a specified point 0g € F(k). For every line L the divisor L - F is a
sum of three points. We claim that for any P, Q € E(k) there is a unique line L such that
L-C =[P]+[Q] +[R)] for some R € E(k). To see this, note first that for any two distinct
points in P?(k) there is exactly one line containing both, so there is only one choice for L if
P # Q. If P = Q then the only choice for L is the tangent line of C' at P, and it is unique
because C' is non-singular. Note that the uniqueness of L also implies the uniqueness of
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R, and we will write R = P x Q. A priori we only have R € FE(k). To see that R € E(k),
note that we obtain R as the third zero of a polynomial over k of degree 3, whose other
two roots are also in k. This shows the claim.

It is clear that PxQ = Q@+ P and Px(P*xQ) = Q for all P,Q € E(K). We now define
P+ Q@ to be O x (P Q). Note that the operation “+” does not depend on the choice of
Oz, but the operation “+” does.

Exercise 8. Check that O + P = P. Putting —P = (0g * 0g) * P show that P 4+ (—P) = O0g. If
L-C = [P]+[Q] + [R], what can you say about P + Q + R?

4.8. Theorem. The operation “+” gives E(k) the structure of an abelian group with
identity element Of.

In the exercise above it was shown that a unit element exists, and that inverses exist. The
operation is also commutative, so only the axiom of associativity P+(Q+R) = P+(Q+R)
remains to be checked.

We will not give a complete proof of this fact in full generality. If char(K) = 0 then
we will deduce it from the complex analytic theory. If char(K) is not 2 or 3, then we will
explain how to give a proof based solely on formulas, which can be written out with help
of a computer.

However it is useful to know the essence of the proof that an algebraic geometer might
give, so we sketch it here with one gap. We may assume that k is algebraically closed. We
already know that Div(FE) is the free abelian group on points of the elliptic curve. Let
us write Div® (E) for the subgroup of divisors for which the coefficients add up to 0. Let
Pr(E) be the subgroup of Div’(E) generated by all divisors of the form L - E — M - E for
lines L, M (neither contained in C). Let us now consider the map

¢: E(k) — Div’(E)/Pr(E) P — ([P] — [0g] mod Pr(E)).

If we take a line L through points P and ) and we take M through Og and P x Q then
we see that

[P]+[Q] + [P+ Q] = [0] + [P+ Q] + [P + Q] mod Pr(E),
so that ¢(P + Q) = ¢(P) + #(Q). This also implies that ¢ is surjective. With some more

algebraic geometry, notably the theorem of Riemann-Roch, one can show that ¢ is also
injective. It then follows that the group law on E is associative. In fact, Pr(F) is the
group of principal divisors, just like in the complex analytic case.

Note that Div®(E)/Pr(E) is a group in a natural way, but that the isomorphism ¢
depends of the choice of a point 0. Again this reflects that the group law on E depends
on the choice of 0g.

Exercise 9. Suppose we are given a second point O'E on an elliptic curve E. Express the group operation

+' on E(k) with identity element 0’; in terms of the operation +.

Exercise 10. The 2-torsion of an elliptic curve E is E(k)[2] = {P € E(k): P+ P = Og}. Suppose that
#E(k)[2] = 4. Show that Og is a flex of E if and only if the points E(k)[2]\{Og} are collinear.
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5. Elliptic curves in Weierstrass form

In this section we assume that the characteristic of k£ is not 2 or 3. A Weierstrass equation,
or an elliptic curve in Weierstrass form, is an equation of the form

E: Y’=X3+aX+0b

for certain a,b € k with 4a® + 27b% # 0. This last condition ensures that the polynomial
X3 + aX + b has no double zero, so that the curve is smooth. As the distinguished point
0 we take 0 = (0:1:0). If we set Z = 0 in the homogeneous equation for E, then we
get X3 = 0, so the line at infinity is a flex line at the unique point 0z of E at infinity. For
P = (z,y) € E(k) one easily sees that —P = (z, —y).

Exercise 1. How do we recognize 2-torsion points (points P with P + P = Og) on E? Show that the

3-torsion points on E are the flexes. How many 3-torsion points do you think exist when &k = C?

5.1. Addition formulas. Suppose that P = (z1,y1) and Q = (z2,y2) are affine points
on our curve F in Weierstrass form. Let us suppose that Q@ # —P. We will find a formula
for P+ Q = (z3,y3).

The line L for which L-E = [P]+[Q] + [P * Q] is of the form y = Az +v. Here A € k
is given by

A= 27U _$%+$1m2+m§+a

To — I Y1 + Yo

in the sense that each formula is correct if it is defined (i.e., has non-zero denominator),
and that at least one is defined. We then have v = y; — Az;. Intersecting with F we see
that we have an identity in k[z].

> tar+b— (Az + 1/)2 = (z —z1)(z — z2)(z — z3).
By looking at the coefficient of 2 on both sides we see that
23 =M\ — 21 — 2o} y3 = —(Az3 + v).
With these formulas one can do explicit computations on elliptic curves.
Exercise 2. Show that the point (2,4) on the elliptic curve y? = 23 + 4z has order 4.
Exercise 3. Show that a point (z,y) of E(k) has order 3 if and only if
z* + 2az? + 4bz — a?/3 = 0.
*Same question for order 4:
2% + 5az? + 20bx3 — 5a’z? — 4abzr — 862 — a® = 0.

Could you have predicted that we should get a degree 6 equation?
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5.2. Applications to algorithms. One of the most striking applications of elliptic
curves is their use in factoring algorithms and primality tests. Older algorithms in this
area that operate with the better known group (Z/pZ)* for a prime number p, can often
be adapted to work on the group of points of an elliptic curve over the field k = Z/pZ.
This can drastically enhance the performance because the group F(Z/pZ) potentially has
much better properties than (Z/pZ)*. A theorem of Hasse says that

p+1—-2p < #E(Z/pZ) < p+1+2,/p,

so the groups F(Z/pZ) and (Z/pZ)* have approximately the same order. Often the alge-
orithm works well if the group order is built up from small primes, and one has more of
a chance that this happens if one can vary this order within Hasse’s interval. We refer to
Koblitz’s recent book A course in number theory and cryptography (Springer GTM 114,
1987) for more details.

5.3. Computational proof of associativity. One can also use the explicit formulas
to check associativity of the group law, i.e., P+ (Q + R) = (P + Q) + R. By hand, one
checks the case that one of the three points is 0g, and the case that the outcome of any
addition is 0. Now we know that for each addition one of the two formulas will work.
If one writes these formulas in projective form, then we get two triples of homogeneous
forms in z1,y1, 21, T2, Y2, 22 that either give coordinates of the sum, or (0:0:0). Doing
the addition of three points gives 2 choices for placing brackets and then 4 possibilities for
picking formulas for the additions. This gives 8 triples of homogeneous forms in 9 variables
z1,...,23, and we have to check that for each triple of points on E the formulas give the
same projective point, or (0:0:0). Thus, we need to check that all 2 x 2-determinants of
2 x 2-submatrices of our 8 x 3-matrix of forms lie in the ideal of Z[a, b][z1, .. ., 23] generated
by {y? — 23 —az; — b:i=1,2,3}. This would prove the result for any elliptic curve in
Weierstrass form, in any characteristic not 2 or 3.
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Exercises.

4.

10.

11.

12.

13.

(Porism of Diophantus.) Let d > 0 be an integer that is a difference of two positive rational
cubes. Show that d is also a sum of two positive rational cubes. Find such cubes for
d=7=2°-1%and d=19=3" - 2°.

. Determine the values of o € Q for which for which the cubic curve E with equation X3 +

Y? + Z® —aXYZ = 0 is non-singular. For these a, let O = (0 : —1 : 1) be the origin on E.

Find a Weierstrass equation for F.

Determine the structure of the group E(Fs) when E is the elliptic curve with Weierstrass
equation

v =2 +z, y? =z° + 2z, yP =z° + 1.
Prove: #E(Fs) < 11 for every elliptic curve over F5. Can you improve this bound? Can
you find examples where #FE(Fs) is close to your bound?

. Show that the nodal cubic curve with singular Weierstrass equation y*> = z* — z? is bira-

tionally equivalent to Pl(K ) over every field K of characteristic different from 2.

[Hint: exercise 4.7].

Same question for the cuspidal cubic curve with singular Weierstrass equation y* = z°.

Find a Weierstrass equation for the cubic curve with affine equation y*> — y*> = z®> — z and
origin O = (1,0).

Find a Weierstrass equation for the cubic curve with equation XY — XY? - XZ?4+Y?Z =0
and origin O =(1:1:1).

Let F be a smooth cubic curve with origin O, defined over an algebraically closed field K
of characteristic different from 2. Show that the 2-torsion subgroup E[2](K) consists of 4
points, and that the 3 non-trivial points in E[2](K) are collinear if and only if O is a flex.

Let C be the curve with affine equation Y? = 1 — X* encountered in section 1. Determine
the singular projective points of C, and show that the rational functions z = 2(Y + 1)/ X?
and y = 4(Y + 1)/X? yield a birational equivalence between C and the elliptic curve with

Weierstrass equation y? = z° + 4z.

Derive Euler’s addition formula for the lemniscatic P-function.
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6. Weak Mordell-Weil theorem

In this section we are concerned with elliptic curves over Q. Let us fix notation: E will be
an elliptic curve given by an equation

E: Y’=W(X), WX)=X>+aX*+bX +ceQ[X]

The theorem of Mordell-Weil says that the group E(Q) is finitely generated. By the
structure of finitely generated abelian groups this means that

EQ) = TeZ,

for a finite abelian group T', the torsion group of E(Q), and an integer r > 0, called the
rank of E.

At this point all we know about the group E(Q) is that it is a countable subgroup
of E(C), which is isomorphic as an abelian group to (R/Z) x (R/Z). In exercise 1 below
we will see that (R/Z) x (R/Z) contains many countable subgroups which are not finitely
generated.

The proof of the Mordell-Weil theorem proceeds in two steps. We first show the weak
version, which says that F(Q)/2E(Q) is finite. The second step is a descent argument,
which will be given in the next section. For the weak version we need to work with the
2-torsion points of the elliptic curve. This forces us to not only do arithmetic in Q but
also in the possibly quadratic or cubic number field that is generated by the z-coordinate
of a 2-torsion point. In this section we will only write out the proof in the case that all
arithmetic takes place in Q. So we will prove the following proposition.

6.1. Proposition. If W(X) has three roots in Q then E(Q)/2E(Q) is finite.

Our proof extends to the general case, where no assumption is made on the roots of W (X),
if the reader is willing to take some algebraic number theory for granted. More precisely,
the argument needs the fact that the class group is finite and that the unit group is finitely
generated.

Using isogenies of degree 2, one can also do the case that W (X) has at least one
rational root, while keeping all arithmetic in Q. We will describe this with explicit formulas
from complex analysis that we saw already in Section 3. This method is often more suitable

for the actual computation of F(Q)/2E(Q) for specific E.

We start the proof of Proposition 6.1 by recalling the definition of the group operation on
E(Q). Let us write out what it means for three affine points (z;,y;) of E(Q) to have sum
zero. There should be a line Y = [X + m whose intersection with F consists of the three
points (counting multiplicity), so

(%) W(X)— (X +m)? = (X —z)(X — z2)(X — z3).
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Let us now consider the ring R = Q[X]/(W (X)) and put X = (X mod W(X)) € R. Then
we have

() (x1 — X)(z2 — X)(z3 — X) = (IX +m)2

Note that for a polynomial g(X) € Q[X] we have g(X) € R* if the roots in C of W (X) are
not roots of g. In particular, for a point (z,y) € E(Q) which is not 2-torsion, the element
z — X is a unit in R. Thus, we have a map

E(Q)\FE(Q)[2] LN R*/R*? (z,y) — = — X mod R*?,

which has the property that for three points on the left with sum zero, the product of
the images on the right is 1. In order to define ¢ on a 2-torsion point (z,0) € E(Q) we
add a correction term W,(X), where W, € Q[X] is the quadratic polynomial for which
W(X) = (X —2z)W,(X). Note that no complex root of W(X) is a root of z — X + W, (X)

so that z — X + W,(X) is a unit in R. We now define ¢(P) € R*/R*? for P € E(Q) by

1 if P = 0p;:
@o(P) = { = — X mod R*? if P = (z,y) with y # 0;
z— X+ W,(X) mod R*? if P = (z,0) € E[2];

We will see in the exercises below why this correction term is the only reasonable thing to
try.

Proposition 6.1 will follow from the next three lemmas, in which it is proved step by
step that ¢ induces a bijection between E(Q)/2FE(Q) and a finite subgroup of R*/R*2.

6.2. Lemma. The map ¢: E(Q) — R*/R*? is a homomorphism of groups.

Proof. We first remark that ¢(—P) = ¢(P) = ¢(P)~!. Therefore, we only need to show
that for points Py, Py, P3 € E(Q) with sum 0g we have ¢(Py)p(Pa2)@(P3) = 1. In the case
that one of the P; is Og this follows from the fact that ¢(—P) = ¢(P). So let us assume
all P; are affine, and put P, = (z;,y;). Equation (xx) above gives o(P1)p(Ps)p(Ps) =1 if
no P; is 2-torsion.

Suppose that there is exactly one 2-torsion point among the P;, say P; = (z1,0).
Then we can write the line as Y = I(X — z1), and by taking out a factor (X — z1) in the
equation (x) and writing T'= W, € Q[X] we obtain

T(X) - 13X —z1) = (X — 22)(X — z3).

Since T(X)(X — z1) = 0 we have T(X)(zg — X)(z3 — X) = T(X)2. With (*) one sees
that

(2 — X + T(X)) (w2 - X)(23 — X) = (XX — 21)? + T(X)?) = (U(X — 1) + T(X))
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The only case left is the case that there are at least two 2-torsion points among the three
affine points P;, Py, P3 with sum Og. This can only happen if the P; are three distinct
2-torsion points. Then W (X) = (X —z1)(X — z2)(X — z3) and by the Chinese Remainder
Theorem we have an isomorphism of rings

R;QXQXQ XH({L']_,JQ,ZIB)-

Let us write down the image of ¢(P;) for i = 1, 2, 3:

¢(21,0) = ( (z1—2z2)(71 — 73), 1 — X2, 1 — 23 )

¢(z2,0) — ( T2 — T1, (z2 — x3) (72 — 71), T2 — T3 )

¢(z3,0) — ( T3 — T1, T3 — T2, (z3 — @1)(z3 — 72) )
Since the product in each column is a square, we have proved Lemma 6.2. U

6.3. Lemma. The kernel of ¢ is 2E(Q).

Proof. Suppose that P = (z, y) lies in the kernel of ¢. We are looking for a point Q € E(Q)
with P = 2Q. In view of equation (x*) this means that we would like to write z — X in R
as the square of the quotient of two linear polynomials in X. Let us first show that z — X
is a square in R. This is just the property ¢(P) = 1 if P is not 2-torsion. If P is 2-torsion,
then still z — X is a square modulo W,(X), because the correction term vanishes modulo
W, (X). Modulo = — X it is zero, which is also a square. Since X — z is coprime to W, (X)
the Chinese Remainder Theorem implies that z — X it is a square in R.

We can now write z — X = (pgy2 + p1y2 + po)?. Since X satisfies no polynomial
relation of degree less than three, z— X is not the square of a constant or a linear polynomial
in X, so pa # 0. For s,t € Q consider the element

(sX + t)(P272 +p1X +po) ER

By using the equation W (X) = 0 we can rewrite this expression in as a degree 2 polynomial

. = . <2 . . . .

in X. For fixed pg, p1, p2 the coefficient of X is a linear homogeneous expression in s and t.
Thus, there exists a pair (s,t) # (0,0) for which this coefficient vanishes. Since ps # 0 we
have s # 0. Thus, we can take s = —1 and we obtain

(t - X)(PsX +pX +po) =X +m
for certain [, m € Q. Squaring gives
(t—X)(z—X) = (X +m)>
But now the monic cubic polynomial (IX + m)? — (t — X)?(z — X) is divisible by W (X)
so it must be equal to W (X). It follows that @ = (¢,{t + m) is an element of E(Q), and

that P is 2Q) or —2Q). ]
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6.4. Lemma. Suppose that W (X) € Z[X| and that e € Z is a root of W(X). Let R — Q
be the ring homomorphism R — Q sending X to e and let ¢, be the composite map

ve: E(Q) -5 R'/R? — Q/Q™
Then ¢, has finite image. More particularly, for (o mod Q*?) in the image we have:

(1) for all p{W,(e) the number ord,(c) is even;
(2) if W(X) has no real roots that are smaller than e, then o > 0.

Proof. Suppose that o = ¢.(P) with P = (z,y) € E(Q). If P = (e,0) then a =
(W.(e) mod Q*?), so (1) holds. To see (2) in this case, note that W,.(X) is a monic
quadratic polynomial, so that W.(e) < 0 implies that W.(X) has a real root smaller
than e.

Now suppose that z # e so that « = (r—e mod Q*?). If d is the denominator of = then
d3 is the denoninator of W(z) and since y? = W, (z) we see that 2 | ord,(d) = — ord,(z—e)
for all prime numbers p | d. Now let p be a prime number with n = ord,(z—e) odd. If n < 0
then ord,(z) = n and ord,(W(z)) = 3n, so that ord,(y?) is odd. Therefore, n > 0, and
since y2 = (z — e)W.(z) we see that ord,(W.(z)) is odd, and therefore positive. Reducing
modulo p, and using that £ = e mod p we see that p | W.(e). The condition in (2) means
that W,(t) > 0 for t € R with ¢ < e, so if < e then we would have y? < 0. This shows
(1) and (2).

It follows that ¢.(E(Q)) is finite because an element o € Q*/Q*? is determined by

its sign and, for every prime number p, the parity of ord,(«). O
6.5. Lemma. If W(X) has 3 rational roots then the map ¢: E(Q) — R*/R*? has finite
image.

Proof. By scaling z and y we may assume that W (X) € Z[X] (see exercise 9). By Gauss’s
lemma this also implies that the roots ej, es, e3 of W(X) are integers. If we identify R
with Q X Q X Q as in the end of the proof of Lemma 6.2, then we see that the map ¢
consists of three components ¢.,, ©@e,, Pe;, €ach of which has finite image by 6.4. O

This completes our proof of Proposition 6.1. The proof that the image of ¢ is finite without
conditions on the roots of W(X) is very similar to the proof of Lemma 6.4 if one knows
enough about arithmetic in number fields (see exercise 8).

Let us show how to make the upper bounds for F(Q)/2E(Q) that one obtains from
the finiteness proof a bit more explicit. If W (X) € Z[X] then we say that a prime number
pis “bad,” or that F has bad reduction modulo p, if the reduction W (X) of W (X) modulo
p has a double root. For such a prime p the polynomial W (X) € F,(X) has exactly 1 or
2 roots, in which case we say that p is “instable” or “semi-stable” respectively.

6.6. Corollary. Suppose that W(X) € Z[X]| and that W(X) has three roots in Q. Let
nes and n;s be the number of semi-stable and instable primes for W (X). Then

dimp, (F(Q)/2E(Q))=2+Tr with r < ng + 2nis — 1.
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Proof. For any prime number p let H, C Fy X F3 x F3 be the sub-Fy-vector space of
vectors (a1, as, as) satisfying

(1) a1 + ag + a3z = 0;
2) a; = 0 if there is no j # ¢ with e; = e; mod p.
J

We also define H,, for p = oo by replacing (2) with
(2") a; = 0 if e; is the smallest real root of W (X).

It follows from what we have proved already that ¢ induces an injective homomorphism

E(Q)/2E(Q) —» Hw x [] H,.

p prime
The statement now follows from the fact that

0 if pis “good”;
dimg, (H,) =< 1 if p is semi-stable or p = oo;
2 if p is instable prime. O

Once we know that F(Q) is finitely generated, we also know that the number r above is
the rank of F. The rank itself is invariant under scaling of the elliptic curve, but the bound
given above is not. Thus, the bound works best when applied to a “minimal” Weierstrass
equation.

Let us consider again the case that W(X) has at least one rational root. If W(X) also has
a quadratic irreducible factor then the argument we alluded to before requires arithmetic
in a quadratic number field. One can avoid this by using isogenies of degree 2. The idea of
this second method is that the multiplication-by-2-map F 2, E breaks up as a product
of two isogenies E — E’ — E which are each of degree 2. One then shows that the
maps F(Q) — E'(Q) and E'(Q) — E(Q) have finite cokernel. It turns out that this last
cokernel is exactly the image of ¢, in Lemma 6.4, which we already know is finite.

One can make this argument precise by giving explicit formulas, which one recovers
from complex analysis. We assume that W(X) has a rational root. After translating we

can assume that this root is 0:
E: Y?=W(X), W(X)=X(X%+aX +b) € Q[X].
In order to find an equation for the isogenous curve E’, consider the Weierstrass parame-
trization for F with period lattice A = Zw; + Zws which maps the 2-torsion point w; /2 €
C/A to (0,0) € E(C):
C/A — E(C) 2+ (4p(2) — 4p(w1/2)), 40/ (2)).
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Put A’ = Zw; /2 + Zws, then we want E’(C) to be C/A’ and we need an isogeny 1 such

that the diagram
C/A — C/N

E(C) % E(C).
commutes. From Section 3 we see that E’ can be taken to be the curve
E': Y’=W(X), W(X)=X(X?-2aX+a®-4b) € Q[X]
and that 9 is given by

b: BB @ ( a=b/y).

with ¢(0g) = ¥((0,0)) = 0. Since the formula for ¢ is defined with rational coefficients
we obtain a group homomorphism E(Q) ANy 5 (Q).

2 +ax+b
T

6.7. Lemma. Let @y be the map in 6.4 for the curve E'. Then the sequence
P o * *
E(Q) — E'(Q) - Q/Q*

is exact

Proof. For (z,y') € E'(Q) with ' # 0 we have (z'° + az’ + b)/z = (y'/z')?, so that
indeed Im(v) C Ker(yp). To show equality, suppose that P’ = (z/,y’) € Ker(¢p) C E'(Q).
If P' = (0,0) then opo(P’") = Wy(0) = a? — 4b is square, which means that z2 + azx + b has
a rational root e, and P = (e, 0). If P/ = (z',y') # (0,0), then 2’ = t? with t € Q*. To
find P = (z,y) € E(Q) with ¢(P) = P’ substitute y = ¢tz and solve (1 — )tz =¥/, i.e.,
solve 2 — (y'/t)z — b = 0. This equation can be solved if (y'/t)? + 4b is a square. But
(v'/t)? = ' — 2az’ 4+ a% — 4b = (z' — a)? — 4b so indeed (y'/t)? + 4b is a square, and a
point P = (z,y) exists with ¢(P) = P’. O

We deduce that the homomorphism #: E'(Q) — FE(Q) has finite cokernel. Under the
Weierstrass parametrization for E’ the element wy/2 € C/A’ maps to (0,0) € E’(C). If we
apply the same process to the curve E’ we find a curve E” corresponing to C/ %A which
is just F scaled by a factor 2. One then checks that the following diagram commutes

C/A — C/N — cC/in X c/A

E(Cc) % E(C) X E'(C) = E(C).
The map E”(C) — E(C) is just scaling (z,y) — (z/4,y/8). All vertical maps are isomor-
phisms of groups, and we deduce that the E(C) — E(C) is multiplication by 2.

6.8. Proposition. If W(X) has a rational root then E(Q)/2E(Q) is finite.
Proof. The muliplication by 2 map on E(Q) is a composition
EQ) % E'(Q) 5 E"(Q) = E(Q).
For each map the index of the image is finite, so E(Q)/2E(Q) is finite as well. O
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Exercises.

1.

(1)

Show that (R/Z) x (R/Z) has a countably infinite subgroup in which every element has finite
order. Show it also has a countable subgroup A for which A/2A is not finite. Show that it
also has a countably infinite subgroup A for which A = 2A, and every non-zero element has
infinite order.

. Let A be a commutative ring containing a field K, and suppose that A is of finite dimensional

d as a vector space over K. We define a norm map Ny x: A — K as follows: an element

a € A is mapped to the determinant of the K-linear endomorphism z +— za of A.

Show that the norm induces a homomorphism A* — K*.

Let K be a field and let f € K[X] be a non-constant polynomial. Then the ring A = K[X]/(f)

contains K and the dimension d of A over K is the degree of f. Over an algebraic closure K of
K we can write f = (X —e1)(X —ez2)--- (X — eq) with ey, ea,...,eq € K. For any g € K[X] we
now claim that

(2)
(3)

(1)
(2)
3)
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Nask(gmod f) = g(e1)g(e2) - - - g(ea)-

Show this with the Chinese Remainder Theorem in the in the case that f has no double
roots.
Show that the image of ¢ is contained in the kernel of the map

R*/R*Z N Q*/Q*z

induced by Ng/q: R — Q.

. Suppose that P = (z,0) € E(Q)[2]. Show that R =2 Q x S for a ring S with £ — X mapping to

(0,u) for some u € S*. Show that W,(X) is sent to (Ns/q(u),0). Suppose that a candidate
correction term 7' € R maps to (¢,0) with ¢ € Q* and satisfies N q(z — X + T) € Q*°.
Show that T = v>W,(X) for some v € Q*.

. Find the 2-power torsion and sets of representatives for £(Q)/2E(Q) for the following elliptic

curves F:

Y? = X(X - 3)(X + 4);
Y? = X(X — 1)(X + 3);
Y?=X(X +1)(X — 14).

. Show that F(Q)[4] is a group of order at most 8.

. Let p be an odd prime number. Consider the elliptic curve E: Y2 = X3 — p?X.

Compute the image of the 2-torsion of £ under ¢.

Show that for all P € E(Q) there is a 2-torsion point @ such that ¢(P — Q) = (d1,d2,ds)
with every d; a divisor of 2.

Show that the rank r of F is at most 2.

*For primes p with p = 3 mod 8 show that » = 0.

. Find the 2-power torsion and sets of representatives for £(Q)/2E(Q) for the elliptic curve

E: Y? = X(X? +1). Try to do this both with arithmetic in Q(i) and with isogenies.
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8.

10.

* Assuming that for each number field the class group is finite and the unit group of the ring
of integers is finitely generated, show that Mordell’s theorem also holds if the 2-torsion is not
rational.

. In the proof of Lemma 6.4 we reduced to the case that a and b are integers by “scaling”.

This exercise is intended to make this more precise. Let v € Q*, and consider E': Y? =
X3 +u?aX?+u*bX +cu. Show that we have isomorphisms E(Q) — E'(Q) and R — R’ =
Q[X]/(X?® + v?aX? + u*bX + cu®) such that the diagram

BQ) - R/R®

|

E'(Q * R*/R™

is commutative. How does the discriminant change if we pass from E to E'? Can you do the
same for a map X — uX + v rather than X +— uX?

Give an analog of Corollary 6.6 in the case that W(X) has exactly one root in Q by using
the proof of Proposition 6.8.
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7. Heights and the Mordell-Weil theorem

In this section we show how to deduce that E(Q) is finitely generated if one knows that
E(Q)/2E(Q) is finite. In this section we suppose that F is given by a Weierstrass equation

E: Y’=W(X), WX)=X*+aX+beQX]

We will develop the notion of the “height” of a point in E(Q). This height will be such
that for every B € R there are only finitely many points P in E(Q) of height less than B.
Up to translation by one of finitely many points representing E(Q)/2E(Q) we can now
write a big point P € F(Q) as 2 times a point Q. We will show that for some B € R and
all P of height at least B the height of this ) is at most half of the height of P. Thus, large
P can be rewritten as a combination of smaller points, and in the end we see that F(Q)
is generated by the points of height at most B and the representatives of F(Q)/2E(Q).

7.1. Definition. For z = a/b € Q with a,b € Z coprime, the height of x is the positive
integer

H(z) = max{]al, |b]}.

For convenience we will put H(co) = H(1/0) = 1. In fact, heights can be defined on
projective spaces, and we only consider the case of a P'. We need a lemma about how the
height of a rational number changes if we apply a rational function to it.

7.2. Lemma. Let f,g € Q[X] be coprime polynomials and let n = max{deg f,degg}.
Then there are real numbers C1,Cy > 0 such that for all x € Q we have

C1H(z)" < H(f(x)/g(z)) < CoH (z)".

Proof. We may assume that f and g have integer coefficients. Let M be the largest
absolute value of a coefficient occurring in f or g. Suppose that z = a/b with a,b € Z
coprime. We write f(z)/g(z) = A/B with A =0"f(a/b) and B = b"g(a/b). Both A and
B are Z-linear combinations of the numbers a™, a®~'b, ..., b" with coefficients bounded
by M. Since |a|, |b| < H(z) we see that

H(f(z)/g(z)) < max{[A],|B[} < (n+ 1)M H(z)".

This shows the second inequality with Cy = (n 4 1)M. The first inequality is more subtle,
because we have to prove two things: we need max{|A|,|B|} to be big, and we need
gcd(A, B) to be small.

We claim that there are polynomials fy and g2 in Z[X] of degree at most n — 1 such
that fof + gog = R for some non-zero R € Z. To see this, suppose that deg(f) < deg(g)
and note that we can invert (g mod f) in the ring Q[X]/(f). This gives gg1 =1 — f f; for
f1,91 € Q[X] of degree at most n — 1, and we get f5, go by multiplying out denominators
of the coefficients. Now we plug in = = a/b and multiply by 5>"~1, so that we get

(" fa(a/b) A+ (b7 g2(a/b)) B = b*" 'R,
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where A and B are as above. Since a Z-linear combination of A and B is divisible by
gcd(A, B) we see that the coprime-to-b-part of gcd(A, B) divides the constant R. The
coefficients in front of A and B are at most CH(z)"!, for some C > 0 depending only on
f2 and gs. Thus, we have

bR < 2 max{| ], | B[}CH(z)",
which implies that
max{|A|, |B|} > S|b/*"~!/H(z)"~" for some constant S > 0.

We now observe that the whole setup is symmetric in @ and b, if we allow ourselves to
change f and g. More precisely, if we let f*(X) = X" f(1/X) and ¢*(X) = X"g(1/X)
be the reciprocal polynomials, then A = a” f*(b/a) and B = a™g*(b/a). Thus we see that
coprime-to-a-part of ged(A, B) also divides some fixed non-zero integer R*, and that

max{|Al, |B|} > S*|a|*"'/H(z)"~! for some constant S* > 0.

Since H(z) is equal to |a| or to |b| we conclude that

max{|A|, |B|} S min{S, S*}
gcd(A,B) —  |RR¥|

H(f(z)/g(z)) = H(A/B) = H{(z)". O

We now apply this lemma in the descent process—it implies that dividing a point by 2
on F significantly reduces the height of its z-coordinate. For the point 0 we say that its
z-coordinate is infinity, which has height 1.

7.3. Corollary. There is a real number C > 0 (depending on E) such that for all points
P,Q € E(Q) with P = 2Q the heights of the z-coordinates satisfy

H(CL‘Q) S CH(CL‘p)l/4.
Proof. We saw before that zp can be expressed as a quotient of a degree 4 polynomial

and a coprime degree 3 polynomial in zg. (See Exercise 8 in Section 1, or write it out
with the formulas in section 5.1.) U

We need one more ingredient to do the descent argument. It is an estimate in the easy
direction, but it involves both the z- and y-coordinate of a point.

7.4. Lemma. For every Q € E(Q) there is a C € R such that for all P € E(Q) we have
H(zpi+q) < CH(zp)”.
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Proof. We will use the addition formula from 5.1. For Q = O the statement is trivial, so
assume that Q = (zg, yo) is an affine point. We write P = (z,y) and since we may exclude
finitely many P we can assume that x # zy. Then we have

y—yo>2_ —:L‘3+y2—2y0y+degree2in:z:

TPQ =TT B0t ( degree 2 in z

r — I

The term —z3 + y? can be rewritten as a linear polynomial in z. Recall from the proof
of Lemma 6.4 that we can write (z,y) = (r/t?,s/t3) with r, s, t € Z and gcd(r,t) =
ged(s,t) = 1. We obtain
_ Nst+ hy(r, t2)
rTp+Q = ho (,’_’ t2) ’

where N is an integer and h; and hs are homogeneous forms of degree 2 in 2 variables.
Clearly |h;(r,t?)| can be bounded by a constant times H(z)?. We also know that |¢| is
bounded by H(z)'/2. It remains to show that |s| is bounded by a constant times H (z)3/2.
This is another instance of Lemma 7.2:

% < H(y)? = H®) = HW () < CoH(x)". =

We are now ready to put the ingredients together and prove the following.

7.5. Proposition. Assume that F(Q)/2E(Q) is finite. Then E(Q) is finitely generated
as an abelian group.

Proof. Choose a finite subset S of F(Q) which represents all classes in E(Q)/2E(Q).
There is a constant C; so that for all P € E(Q) and Q € S we have H(zp_g) < C1H(zp)>.
For each P € E(Q) there is a Q € S so that P — Q = 2R for some R € E(Q). We then
have

H(zg) < CH(zp_g)"* < CCI*H(zp)'/?,

with C as in Corollary 7.3. If H(zg) > H(xzp)/2 then it follows that H(zp) < B, where
B = 4C;1C?. Let T be the set of points P € E(Q) for which H(zp) < B. Since there are
only finitely many rational numbers of height at most B and since there are at most two
points in F(Q) with a given z-coordinate, the set T is finite. We claim that the group
generated by S and T contains every point P € E(Q). In order to show this with induction
to the height of zp one writes P = Q + 2R for some Q € S and R € E(Q). Then either R
lies in T, or we have H(zgr) < H(xzp)/2, in which case the induction hypothesis says that
R lies in the group generated by S and T O
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Exercises.

1. For an integer N > 0 let Ry be the number of z € Q with H(z) < N.
(1) Show that Ry < 2N(N +1).

(2) *Show that

i Rn 12
m — = —.
n— oo N2 71'2

2. For the curve Y? = X3 + 4 give an explicit C for which the statement in Corollary 7.3 holds.

3. Let f € Q[X] be a polynomial of degree at least 2. Show that there are only finitely many
z € Q for which {z, f(z), f(f(z)),---} is finite.
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8. Reduction and torsion points

Let F be an elliptic curve over Q given by an equation
E: Y’=W(X), W(X)=X*+aX +be Z[X].

The discriminant of W (X) is the non-zero integer A = —4a3 — 27b%. In this section we
show the theorem on Nagell-Lutz:

8.1. Theorem. If P = (z,y) € E(Q) is an affine point of E of finite order, then z,y € Z
and either y = 0 or y2 | A.

This gives us very explicit information on where to look for rational torsion points on E.
The proof is based on the notion of reduction modulo a prime p.

8.2. The p-adic valuation on Q. Fix a prime number p. For an integer z € Z we
denote the number of factors p in « by ord,(z), with the convention that ord,(0) = +o0.
For z € Q we write z = a/b with a,b € Z and put ord,(z) = ord,(a) — ord,(b), which does
not depend on the choice of a and b. We have the following properties, which express that
ord,(-) is a discrete valuation on Q:

(1) ordy,(zy) = ord,(x) + ord,(y) for all z,y € Q;
(2) ord,(z + y) > min{ord,(z),ord,(y)} for all z,y € Q;
(3) ord,(z + y) = min{ord,(z), ord,(y)} for all z,y € Q with ord,(z) # ord,(y).

It follows that the set Z,) = {r € Q: ord,(z) > 0} is a subring of Q containing Z. An
element x € Z ;) is a unit if and only if ord,(z) = 0. We now have a ring homomorphism
Z,) — F, called the reduction map that sends z to Z = z mod p.

8.3. The reduction map. We say that an n-tuple (ai,...,a,) € Q" is primitive
(with respect to p) if min{ord,(a1),...,ord,(a,)} = 0. We say that polynomial with
coefficients in Q is primitive if its coefficients form a primitive tuple. We have a well-defined
map P"(Q) — P"(F,) which for primitive (ag,...,a,) € Q™" sends (ag : ... : a,) to
(@ : ... : a,) € P*(F,). Now suppose that n = 2 and that we have a curve C given
by a homogeneous polynomial F(X,Y,Z) € Q[X,Y,Z]. We can multiply F by a non-
zero scalar so that F' becomes primitive. Then we let C be the curve over F, given the
equation that we get from F' by reducing its coefficients modulo p. For example, the line
L: X +Y/2+ Z/2 = 0 reduces to the line L: Y + Z = 0 over Fs.

For our elliptic curve this means that we have a map E(Q) — E(F,). In order to see
how this map behaves with respect to the group operation on E(Q) we need the following
Lemma.

8.4. Lemma. Suppose that C and L are a curve and a line over Q, and suppose that C
does not contain L. Suppose also that C - L = [P)]+ - - -+ [P,] for rational points P;. Then
we have C - [ = []51]+---+[]5d].

Proof. We refer to Section 4.3 and 4.4 for terminology and notation. Choose two
points (v1 : vy : v3) and (wy : wy : ws), with (vy,ve,v3) and (wy,ws,w3) primitive,
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which lie on L and which do not have the same reduction modulo p. Then we can write
P; = (a;v1 + bjw; : a;ve + bjws : a;vg + b;wg) for primitive (a;,b;). Let C be given by a
primitive form F'(X,Y, Z). Then we have

d
F(Uvy + Vwy,Uvg + Vws, Uvs + Vws) = cH(biU —a;V),

=1

for some scalar ¢ € Q*. If ord,(c) > 1 then we would have L C C, which contradicts
the assumption. If ord,(c) < —1 then the product of the non-zero polynomials b,U —a;V
would be zero in F,[U, V], which contradicts the fact that F,[U, V] is a domain. Thus,
ord,(c) = 0, and reducing the whole equation modulo p we get the result. O

8.5. Corollary. If p{2A then E is an elliptic curve over F, and the reduction map
E(Q) — E(F,) is a group homomorphism.

Proof. For odd p the only non-smooth points of E are the points (x,0), where = € F, is
a double root of W. Such an z only exists when p | A(W) = A. So for p{2A the curve E
is an elliptic curve, and F (F,) is a group. Lemma 8.4 implies that the reduction map is a
homomomorphism. O

8.6. Kernel of reduction. For a prime number p and an integer n > 1 we let F,, be
the “kernel of reduction” modulo p":

E,=EP ={(z:y:2) € E(Q): yE¢€ Z{,) and z,z € p"Z,)}.

We saw that E is the kernel of a group homomorphism if p{2A. We now show that for
arbitrary p and n the set F,, is a subgroup of F(Q). We will use that (0: 1 : 0) is a smooth
point of E, even if E is not smooth.

8.7. Proposition. Fix a prime number p and let n > 1. Then the following hold:
(1) for every P = (z:y: z) € E1 we have y # 0 and

P € E, < ordy(z/y) >n <= ordy(z/y) > 3n;

(2) the subset E,, of E(Q) is a subgroup;
(3) the map E, — Z,) given by (x:y: z) = z/y induces a group homomorphism

Ep/Enyo — "Ly /0" L) = Z/p*Z.

Proof. A rational point on F is always of the form P = (rt:s:t3) for r, s, t € Z with
ged(r,t) = ged(s,t) = 1. If P € E; then p | ¢, so ptr and ptt, and (1) follows.

Let L be a line with L - E = [Py] + [P;] + [Ps], where P; = (z;:y;: 2;) € E(Q), and
suppose that Pj, Py € E,,. By Lemma 8.4 the line L is a tangent of F'in (0:1: 0) € E(F,).
But (0:1:0) is a smooth point of F(F,) with flex line Z = 0, so L is the line Z = 0, and
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P3 = (0:1:0). It follows that P; € E1, and that L has a homogeneous equation of the
form
L: Z7Z=aX+/p3Y,
with a, 8 € pZ,). Since Py € E,, we see with (1) that 8 = z1/y1 — az1/y1 € pP"T2Z(y,. If
we substitute the equation for L in the equation for E we get
Y23(aX +08Y) = X3+ aX(aX + BY)? +b(aX + BY)3.
Dividing by Y3 and putting T'= X/Y we get a cubic equation
(14 aa® 4+ ba®)T3 + (2aaB + 3ba*B)T? + lower order terms in T = 0.

The roots of this equation are the numbers z;/y;, so
(2aa8 + 3baB) = (1 + aa® + ba?) (ﬂ + 2 + E) i
Yr Y2 Y3
The left hand side lies in p”"‘lz(p) and since 1 + aa? + ba?® € Z’("p) we deduce that
1 T2 T3 n-42

* — +—+— € p"T L.

*) Y Y2 Y3 2
By (1) we have z1/y1, z2/y2 € p"Z(y), and it follows that x3/ys € p"Z(,). We knew already
that P3 € E; so again with (1) we see that P3 € E,,. Thus, the point P; + P, = —Pj also
lies in E,, and (2) follows. Finally, (*) implies that the map in (3) is a homomorphism. O

8.8. Corollary. If P € E; has finite order then P = Og.

Proof. Suppose that P € F; has prime order. There is an n > 1 so that P € E,, but
P ¢ E,,+1. Under the homomorphism in (3) above P maps to 0 or to an element of prime
order. But the only elements in p™Z,) /p”+2Z(p) of prime order are in p"+1Z(p)/p”+2Z(p),
and by (1) above this means that P € E,,;1: contradiction. Thus, F; has no elements of

prime order, so its torsion subgroup must be trivial. O
8.9. Corollary. If p{2A then the homomorphism E(Q)ior — E(F,) is injective.
Proof. The kernel of the map is exactly E1 N E(Q)tor = (F1)tor = {0r}- O

Proof of Theorem 8.1. Suppose that P = (z,y) € E(Q) is a torsion point. If z or y
has a denominator which is divisible by p, then the reduction P € E (Fp) lies on the line
Z = 0. Since this line intersects £ only in (0:1:0) € E(F}), it follows that P € E;. But
we just showed that E is torsion free, so z,y € Z.

If 2P = 0p then we have y = 0 and we are done. Otherwise, the point 2P = (z/,y')
is also an affine torsion point so z’,y’ € Z. The tangent line at P has slope A = W'(z)/2y
where W' is the derivitive of W(X) = X3+ aX + b. Recall that we have z/ + 2z = —\2
so we see that A € Z and y | W/(z) Thus the polynomial

f(T)=W(T +z) = W(z) + W (z)T + higher order = cy+ c1T + coT? + T3
satisfies y2 | cg and y | ¢;. This implies that
y? | —27c2 + 18cocico — depcy — 4ch + e = A(f) = A(W). O
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Exercises.

1. Find the groups of rational torsion points for
(1) Y?=X3+1;
(2) Y? = X® — 43X + 166;
(3) Y? = X® — 219X + 1654;
(4) Y2 =X(X —1)(X +2).

2. *Extend theorem 8.1 to elliptic curves E: Y2 = X3 4+ aX?+ bX + ¢ with a, b, c € Z but
a # 0.

3. For p = 2, can it happen that E is smooth?

4. Fix a prime number p. Let E,s(F,) be the set of non-singular points of E(F,), and let
E,={P € E(Q): Pe Ens(Fp)}. Show that
(1) EHS(FP) has a natural group structure;
(2) Ep is a subgroup of E;
(3) the sequence 0 — E1 — Eoy — Ens(Fp) is exact.

5. Consider the elliptic curve E: Y?=X3+qwithacZ.

(1) Show that for p = 2 mod 3 with p{a we have #E(F,) = p + 1.
(2) Show that #FE(Q)sor | 6.

6. For z,y € Q and let dp(z,y) = p~ °ordp(2=¥)  Show that Q is a metric space with metric dp.
Show that the completion Q, has a natural field-structure—it is called the field of p-adic
numbers. Show that Q,, is locally compact. Show that 1 +p+p> 4+ --- = 1/(1 — p) in Q,.
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Sinterklaasopgaven.

1. (Fermat aan Mersenne, 1643) Vind een rechthoekige driechoek met geheeltallige zijden zodat

de som a + b van de rechthoekszijden en de hypotenusa ¢ kwadraten zijn.
a. Laat zien dat een niet-triviale oplossing (a,b,c) aanleiding geeft tot een punt op de
affiene kromme
C:Y?=2X"*-1.

[Hint: neem z = a — b en 2% = ¢, dan geldt 2z* — y* = 22.]

b. Geef een birationele equivalentie aan tussen C en de elliptische kromme E : y*> = z°+8z.

env = ﬁ komt het punt (1,1) € C in oneindig

[Hint: in nieuwe variabelen u = X1—1
te liggen, dus

v? =u + 8u® +12u” 4+ 8u + 2 = (u® + 4u — 2)® + 24u — 2.

Neem nu T = v + (u2 + 4u — 2), vermenigvuldig met T en schrijf Tu = S om de
vergelijking T — 252 — 8ST + 4T? — 245 + 2T = 0 te krijgen.]

c. Laat zien dat P = (1,3) € E(Q) oneindige orde heeft, en vind een punt op E dat
aanleiding geeft tot een oplossing van Fermats probleem.
[Hint: het punt P correspondeert met het triviale punt (—1,1) op C, en 2P geeft een
negatieve waarde voor b. Maar 4P werkt!]

2. (Fermat voor exponent 4) Bewijs: voor alle geheeltallige oplossingen van de vergelijking

54

z* 4+ y* = 2* geldt zyz = 0.
[Hint: voor u = x/y en v = 2% /y® geldt v? = u* + 1. De codrdinatentransformatie u ++ u en
v = v+ u? geeft een kubische kromme v2 + 2u?v = 1 met flex in oneindig. |

. Laat zien dat P = (—2, 8) oneindige orde heeft in E(Q) voor E : y*> = z° — 36z, en bepaal de

structuur van FE(Q). Welk punt op E correspondeert met de Pythagoreische 3-4-5-driehoek
die laat zien dat 6 een congruent getal is?

. Bepaal de rang van E : y* = x> —49z en geef een Pythagoreische driehoek met oppervlakte 7.

[Hint: (25,120) € E(Q).]
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9. Function fields, local rings, and morphisms of curves

Sofar, we mainly dealt with elliptic curves over subfields of C, and we were able to use
complex analysis to show many properties. This section is devoted to some algebraic
geometry that we need to deal with elliptic curves in characteristic p > 0. This section
is much more sketchy than the last 8 sections: it is just an account of what was stated
and what was proved in the lectures. We refer to Lang’s Algebra for resultants, field
theory (separable, inseparable and transcendental extensions) and Nakayama’s lemma.
In Silverman’s Arithmetic of Elliptic Curves one finds a more extensive treatment of
the material in this section, but he does often refer elsewhere for proofs.

9.1. Function fields and local rings. If a curve C over a field K is given by an
irreducible homogeneous equation F'(X,Y, Z) = 0 then the function field K(C) consists
of equivalence classes of pairs (f,g) with f,g € K[X,Y, Z] homogeneous of the same
degree, and F' t g. Here we say that (f,g) ~ (f',¢") if F | f¢’ — gf’. The equivalence
class of (f,g) is denoted by f/g. The field operations on K(C) are defined in the
obvious way, e.g., f/g+ f'/9' = (fg'+9f")/gg’. We say that ¢ € K(C) has no pole at
P if ¢ = f/g with g(P) # 0, and we then put ¢(P) = f(P)/g(P) € K. The collection
of such ¢ is called the local ring at P, and we denote it by Op. The evaluation map
¢ — ¢(P) is a ring homomorphism Op — K. Its kernel mp is a maximal ideal, and
Op = mp UO%. We showed that mp can always be generated as an Op-ideal by two
elements. With Nakayama’s lemma we showed that it can be generated by one element
if and only if P is a smooth point.

9.2. Resultants. For a commutative ring A and two polynomials f,g € A[X] of
degree n and m we introduced the resultant R = Rx(f,g) € A as a determinant of
size n + m. We showed three properties:

(1) Re(f,9);

(2) If Ais a UFD and R = 0 then f and g have a factor in common which is not a
unit.

(3) If A = Ap[X4,...,X,] and f and g are also homogeneous in Xi,...,X,,, X of
degrees n and m, then R is homogeneous of degree nm in Xq,..., X,,.

We deduced a number of corollaries:

(1) Bezout: suppose we are given two curves C7, Cy by homogeneous equations F}, Fy
of degree n and m, and suppose that F; and F5 have no non-constant factor in
common. Then C;(K) N C3(K) is non-empty, and it has cardinality at most nm.

(2) A curve C over a field K which is irreducible over K only has finitely many non-
smooth points over K.

(3) If K is a field and f,g € K|[z,y] have no non-constant factor in common, then
K(z,y]/(f, g) is finite dimensional as a vector space over K.

It also follows that a rational function f on an irreducible curve C over a field K has
only finitely many poles, i.e., f € Op for all but finitely many P € C(K).
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9.3. Discrete valuation rings. With property (3) above and Nakayama’s lemma
we deduced that for smooth P € C(K) the ring Op is a DVR, i.e, there is a 7 € Op
such that for all f € K(C)* there is a unique n € Z such that f € 7"O%. This n is
independent of the choice of m and we write n = ordp(f).

9.4. Rational maps and morphisms. We now introduce rational maps between two
irreducible curves C7 and Cs over K. We define the set of rational maps from C'; to Cy
to be Rat(Cy,Cy) = C2(K(C1)). A rational map ¢ = (¢1: p1: p2) € Co(K(Ch)) is said
to be defined at P € C1(K) if there is a A € K(C7) such that the three functions Ay;
are all in Op, but not all in mp. We then let o(P) = ((Apo)(P) : (Ap1)(P) : (Ap2)(P)).
By the discrete valuation property, such a A always exists if P is a smooth point. We
say that ¢ is a morphism if it is defined at all P € C;(K). In particular, every rational
map C7 — (5 is a morphism if C is itself smooth.

Now assume that C; is irreducible over K. For a nonconstant rational map ¢
from Cy to Cy we showed (up to exercise 9) that we have an induced K-linear field
homomorphisms ¢*: K(C2) — K(C1). Conversely, every K-linear field homomorphism
K(C3) — K(C1) occurs this way.

9.5. Facts from algebraic geometry. Let ¢ € Rat(Ci,C3) with C; and Cs
irreducible over K. By general field theory which we did not go into (transcendence
theory) the field extension K(C1)/¢*(K(C3)) has finite degree d = dd;, where d; is
the degree of the separable part. A general result about the algebraic geometry of
curves says that for almost all points @ € Cy(K) the fiber ¢~ 1(Q) = {P € C1(K) : ¢
defined at P and ¢(P) € Q} consists of exactly d, points.

9.6. Morphisms between elliptic curves. Since elliptic curves are smooth, ratio-
nal maps between them are morphisms. We say that a rational map F; — E3 between
elliptic curves over a field K is an isogeny if 0 +— 0, and the set of isogenies is written
Hom(F1, F3). We have the following three properties.

(1) For P € E(K) there is a translation map tp : E — FE sending Q to P + Q.

(2) The group structure on Ey(K(E;)) gives Rat(E7, Es) the structure of an abelian
group and for P € E;(K) we have (¢ + ¢)(P) = ¢(P) + ¢ (P).

(3) For an isogeny ¢: E; — F5 the map E1(K) — E2(K) is a group homomorphism.

The proof of (1) is in exercise 11.

The proof of (2) is exactly like the proof that the reduction map E(Q) — E(F,)
is a group homomorphism when E has good reduction at p. The role of the discrete
valuation ring Z,) is now played by Op.

The proof of (3) is still a bit difficult for us. One can sketch it like this: if
R = P+Q in E1(K) then there is a function f € K (F,) with divisor [P]+[Q]—[R]—[0].
Taking the field norm of f down to K(F;) (via ¢*) gives a function with divisor
[p(P)] + [0(Q)] = [¢(R)] = [0], s0 o(P) + ¢(Q) = ¢ (R).
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Exercises.

1. Laat K een lichaam zijn van karakteristiek p > 0. Stel dat @ € K een element is dat geen
kwadraat is in K. Laat C C P? de kromme over K zijn die gegeven is door X?—aY? = 0.
a. Bewijs dat C irreducibel is, en bepaal C(K).
b. Laat zien dat + = X/Z € K(C), en dat K(C) een kwadratische uitbreiding is van
het lichaam K(z) (= quotientenlichaam van K[z]). Is deze uitbreiding separabel?
c. Bewijs dat C niet irreducibel is over K, de algebraische afsluiting van K.
d. Bepaal de gladde punten van C(K). (Onderscheid twee gevallen: karakteristiek 2

en niet-2.)

2. Een lichaam K van karakteristiek p heet perfect als p = 0 of K¥ = K. Hier is K? =
{z?: z € K}.

a. Bewijs dat een lichaam K perfect is dan en slechts dan als alle eindige uitbreidingen
van K separabel zijn.

b. Laat zien dat elk lichaam een perfecte afsluiting K ¢ heeft met de eigenschap dat
elk lichaamshomomorfisme K — L met L perfect, te schrijven is als compositie
K C Kyt ¥+ L voor een unieke ®.

c. Laat zien dat deze perfecte afsluiting uniek uniek is, dat wil zeggen uniek op uniek
isomorfisme na.

d. Voor welke lichamen K is de algebraische afsluiting van K uniek uniek?

3. Laat p een priemgetal zijn en laat K = F,(X,Y) het quotientenlichaam zijn van de
polynoomring F,[X,Y].
a. Bewijs dat K een uitbreiding is van K? = F,(X?,Y?) van graad p°.

b. Bewijs dat er oneindig veel tussenlichamen zijn van de uitbreiding K? C K.

4. Laat K een lichaam zijn en L = K(«) een lichaamsuitbreiding van K van eindige graad.
Een derivatie van L over K is een K-lineaire afbeelding d : L — L die voldoet aan
dry = zdy + ydz. Bewijs dat L/K separabel is dan en slechts dan als d = 0 de enige
derivatie van L over K is.

5. Let K be a field and let C be the line over K in P? given by X = 0.
a. Show that K(C) is isomorphic to the quotient field K(t) of the polynomial ring K [t]
with Y/Z € K(C) mapping to t.
b. For algebraically closed K show that the intersection within K(C) of the rings Op,
with P ranging over C(K), is equal to K.

6. Let f=(X—a1)---(X—an)and g = (X —b1)--- (X —bp). Then R(f,g) is a polynomial
expression in the variables a1,...,0n,b1,...,bm.
a. Show that this expression is homogeneous and compute its degree.
b. Show that R(f,g) = [[;_, [[;—,(ai — b))
c. If we define the discriminant of f as A(f) = Hi<j(ai —a;)?, then show that A(f) =
+R(f,f'), and determine the sign.

7. Let R be a noetherian domain which is not a field, and let K = Q(R) be its quotient
field. Show that R is a DVR if and only if for all z € K we have x € Ror 2~ ' € R.

8. Let C be an irreducible curve over K. Suppose that C(K) contains a smooth point P.
Let f € K(C) be algebraic over K.
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a.

b.

Show that f € Op.
Show that f € K.

9. The object of this exercise is to prove that K is algebraically closed in K(C) without

10.

assuming existence of a smooth K-valued point. Let C be a curve over K which is

irreducible over K. Suppose that C is not the line at infinity, and that it is given by an

affine equation f(z,y) = 0. For an algebraic extension L of K let Or be the quotient
ring L[z, y]/(f). This is a domain, and its quotient field is the function field L(C).

a.

b.

C.

d.

For an ideal I in K[z,y], let I be the ideal of K[z,y] generated by I. Show that
INKlz,y] = I, and that a K-basis of K|[z,y]/I is a K-basis of K|[z,y]/I.

Show that in K(C) we have Oz N K = K.

For ¢ = a/b € K(C) N Ok with a,b € Ok show that ¢ € Ok by showing that
a € (b).

Deduce that K is algebraically closed in K(C).

In this exercise we show that rational functions and rational maps are determined by the

induced maps on sets of K-valued points.

a.

Let C be an irreducible curve over a field K. Show that for two distinct fi, fo €
K(C) there are infinitely many points P € C(K) with fi1,f2 € Op and fi(P) #
f2(P). )

Let C1,C> be irreducible curves over an algebraically closed field K. Show that
every element ¢ € Rat(C1,C>) is determined by where it maps the smooth K-

valued points of C;.

11. Let E: y?> = 2 + az + b be an elliptic curve over a field K, and let P € E(K).
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a.

b.

C.

Deduce with the addition formulas that there is a unique morphism tp: £ — E
sending Q € E(K) to P+ Q € E(K) when Q # —P.

Show that tp otg = tpyq for all P,Q € E(K).

Show that tp(—P) = 0p.



